New Results
Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN
View ORCID ProfileYanay Rosen, View ORCID ProfileMaria Brbić, View ORCID ProfileYusuf Roohani, View ORCID ProfileKyle Swanson, Ziang Li, View ORCID ProfileJure Leskovec
doi: https://doi.org/10.1101/2023.02.03.526939
Yanay Rosen
1Department of Computer Science, Stanford University, Stanford, CA, USA
Maria Brbić
2School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
Yusuf Roohani
3Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
Kyle Swanson
1Department of Computer Science, Stanford University, Stanford, CA, USA
Ziang Li
4Department of Computer Science and Technology, Tsinghua University, Beijing, China
Jure Leskovec
1Department of Computer Science, Stanford University, Stanford, CA, USA
Article usage
Posted September 24, 2023.
Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN
Yanay Rosen, Maria Brbić, Yusuf Roohani, Kyle Swanson, Ziang Li, Jure Leskovec
bioRxiv 2023.02.03.526939; doi: https://doi.org/10.1101/2023.02.03.526939
Subject Area
Subject Areas
- Biochemistry (13708)
- Bioengineering (10436)
- Bioinformatics (33157)
- Biophysics (17109)
- Cancer Biology (14173)
- Cell Biology (20106)
- Clinical Trials (138)
- Developmental Biology (10868)
- Ecology (16018)
- Epidemiology (2067)
- Evolutionary Biology (20346)
- Genetics (13395)
- Genomics (18634)
- Immunology (13750)
- Microbiology (32164)
- Molecular Biology (13392)
- Neuroscience (70069)
- Paleontology (526)
- Pathology (2190)
- Pharmacology and Toxicology (3741)
- Physiology (5864)
- Plant Biology (12020)
- Synthetic Biology (3367)
- Systems Biology (8166)
- Zoology (1841)