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Abstract 16 

Cell-cell interaction networks are pivotal in cancer development and treatment response. 17 

These networks can be inferred from data; however, this process often combines data from 18 

multiple patients, and/or creates networks on a cell-types level. It creates a good average 19 

overview of cell-cell interaction networks but fails to capture patient heterogeneity and/or 20 

masks potentially relevant local network structures. We propose a mathematical model based 21 

on random graphs (called RaCInG) to alleviate these issues using prior knowledge on potential 22 

cellular interactions and patient’s bulk RNA-seq data. We have applied RaCInG to extract 444 23 

network features related to the tumor microenvironment, unveiled associations with immune 24 

response and subtypes, and identified cancer-type specific differences in inter-cellular 25 

signaling. Additionally, we have used RaCInG to explain how immune phenotypes regulated 26 

by context-specific intercellular communication affect immunotherapy response. RaCInG is a 27 

modular pipeline, and we envision its application for cell-cell interaction reconstruction in 28 

different contexts.  29 
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Introduction 30 

In the fight against cancer, it is key to stratify patients based on tumor characteristics, since 31 

these predict how a patient will respond to treatment. To stratify effectively, one needs to 32 

measure the functional state of the cells and molecules that reside in a tumor, collectively 33 

called the tumor microenvironment (TME). Big breakthroughs have been achieved focusing 34 

on the functionality of individual cells and proteins. For example, the development of 35 

programmed cell death ligand 1 (PD-L1) blockers1 to counteract the protein’s unambiguous 36 

pro-tumor effect2.  37 

However, the TME exhibits emergent behavior that cannot be explained by individual cell- or 38 

protein types3,4 and focusing only on individual parts of the TME hinders the development of 39 

more comprehensive treatment strategies. For example, the tumor necrosis factor alpha (TNF-40 

α) protein can elicit both a pro- or anti-tumor reaction based on further context cues in the 41 

TME5. Thus, to fully capture the functional state of the TME it should be considered as an 42 

interconnected system rather than a collection of individual components. 43 

An unbiased approach to do this consists in the modeling of the TME as a cell-cell 44 

communication network, which can be inferred typically from RNA sequencing (RNAseq) data 45 

using statistical inference methods or machine learning techniques6. Several studies have 46 

shown the value of using the reconstructed cell-cell communication networks to study the role 47 

of cell-cell communication in the TME7–12. However, existing techniques have several 48 

drawbacks. Most of them build a network on the cell- and protein-type level and not on the 49 

level of individual cells/proteins6–9. This creates a “low resolution picture” of the cell-cell 50 

communication network that masks important local network structures. Moreover, these 51 

methods are often do not capture cell-cell communication networks of individual patients11,13.  52 

Most of the methods that construct networks of individual cells or individual patients rely on 53 

single-cell RNA-sequencing (scRNA-seq) data to derive their networks9,12. This provides 54 

“higher resolution” modeling, but is more complicated to apply in specific use cases, since 55 

scRNA-seq data itself has some technical limitations: higher uncertainty, drop-outs, and 56 

limited clinical applicability due to its higher costs and difficulties in sample preparation14. A 57 

recent approach has been proposed that combines bulk RNA-seq data with probabilistic 58 

techniques to reconstruct cell-cell interaction networks for individual patients10. However, this 59 

method builds a network on the level of cell-types that provides only a mean-field 60 

approximation to the actual cell-cell interaction network without mathematical guarantees on 61 

how well this approximation fits the data.  62 
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The field of random graphs models15 can help in addressing these limitations, providing natural 63 

ways to deal with limited prior knowledge when constructing cell-cell interaction networks. 64 

Where prior knowledge fails us, stochasticity of random graphs can fill the knowledge gaps in 65 

the most unbiased way possible, ensuring the result has no statistical bias outside the 66 

provided data. Although these models explicitly introduce noise in the cell-cell interaction 67 

network construction, emergent network behavior remains statistically consistent. These 68 

consistencies can be mathematically proven, extracted and used as fingerprints of the actual 69 

cell-cell interaction network. We can then use these fingerprints as features to understand, 70 

predict and ultimately reshape the TME. Thus, even if we cannot derive a cell-cell 71 

communication network at the level of individual cells directly from available data, random 72 

graph modeling will still allow us to pinpoint local properties that should emerge from such 73 

“high resolution” networks. In practice, this means random graph modeling allows us to 74 

reconstruct single cell networks from widely accessible bulk RNA-seq data. It can do this by 75 

relying on prior knowledge until uncertainties are encountered, which it resolves by sampling 76 

from all possible options uniformly at random without making extra explicit assumptions16.  77 

Here, we provide a methodological pipeline to reconstruct (ensembles of) cell-cell interaction 78 

networks using patient-specific bulk RNA-seq data and prior knowledge on the ligands and 79 

receptors that can be secreted by given cell-types as input. We make use of a specifically 80 

designed random graph model as a statistical model for the potential configurations of the 81 

network that respects constraints from the input data and biology. We provide this data 82 

analysis pipeline as a general toolbox called the “Random Cell-cell Interaction Generator” 83 

(RaCInG) to study context-specific cell-cell interaction networks. To validate the pipeline, we 84 

reconstruct cell-cell interactions among relevant cell-types in the TME for 3310 cancer 85 

patients. In these case studies we show that we can extract consistent properties from 86 

individual patients that form predictors for their immune subtype and response to 87 

immunotherapy with immune checkpoint blockers (ICB). 88 

Results 89 

Reconstructing cell-cell communication networks through monte-carlo 90 
simulations 91 

RaCInG constructs directed networks where the nodes represent individual cells, and the arcs 92 

(i.e., the directed connections) represent ligand-receptor interactions between two cells. To 93 

generate networks, four types of input are needed (Fig. 1A): 1. A cell-type vector (C-94 

distribution), where each entry indicates the probability of an individual cell having a given 95 

type. 2. A ligand by receptor matrix (LR-distribution), where each entry indicates the probability 96 
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of an individual interaction involving a given ligand and receptor. 3 and 4. A ligand (or receptor) 97 

by cell-type binary matrix, where 0 indicates that a ligand (or receptor) cannot be expressed 98 

by a cell-type, and 1 indicates that it can. An example of how these input matrices can be 99 

derived from patient-specific bulk RNA-seq data and general prior knowledge is provided later 100 

in the case study. 101 

The network generation procedure (Fig. 1B) starts by generating a fixed number of individual 102 

cells whose types are assigned randomly based on the C-distribution. Then, a fixed number 103 

of random ligand-receptor interactions are generated based on the LR-distribution. Treating 104 

the C- and LR-distributions as probabilities rather than as exact numbers allows handling 105 

uncertainties in the input data.  106 

The procedure continues by attaching each ligand-receptor interaction as an arc in between 107 

two cells selected uniformly at random among the ones which can express the ligand and the 108 

receptor as defined through the L-matrix and R-matrix, respectively. This process of 109 

connecting cell-cell pairs based on ligand and receptors continues until all ligand-receptor 110 

pairs have been assigned. 111 

 112 
Fig. 1: Methodology of monte-carlo simulation. (A) Input matrices used by RaCInG including information on: 113 
cell-types and ligand-receptors relative quantification (C-distribution and LR-distribution respectively); which 114 
ligands and receptors can be expressed by specific cell types (L-matrix and R-matrix respectively). (B) Schematic 115 
depiction of the simulation steps for one network based on the input matrices including: random generation of cells 116 
and ligand-receptor interactions based on C-distribution and LR-distribution matrices respectively (Step 1-2); 117 
iterative assignment of ligand-receptor interactions to cell-pairs based on L-matrix and R-matrix (Step 3). (C) The 118 
types of features extracted from the simulated networks. (D) The global pipeline of the monte-carlo method 119 
including the generation of multiple possible realizations of random networks and the extraction of robust network 120 
features.  121 
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After this procedure, RaCInG has created one network instance for a given patient that 122 

adheres to the constraints from RNA-seq data. This is only one possible representation of the 123 

network and is not necessarily representative of the patient’s actual cell-cell communication 124 

network. Thus, RaCInG generates an ensemble of networks for the same patient and extracts 125 

statistical properties that remain consistent in the network ensemble17. We define these as 126 

network fingerprints which include information about high-level interactions between two or 127 

more cell-types (graphlets) and about low-level interactions between ligands and receptors. 128 

Currently, two types of fingerprints involving triplets of cells are extracted based on monte-129 

carlo simulations by RaCInG: wedges and triangles (Fig. 1C). Specific wedges and triangles 130 

are referred to hereafter as W_A_B_C and Tr_A_B_C, respectively, with letters indicating the 131 

cell types involved. The count of wedges and triangles for individual patient-specific networks 132 

is computed as the average over the ensemble to account for model randomness and derive 133 

close approximation of their abundance in the actual cell-cell communication network (Fig. 134 

1D, see Methods for the computation of the counts). The quantification of network fingerprints 135 

for individual patients are interpreted as features for further analysis. 136 

Kernel-based approach to derive network fingerprints 137 

Although monte-carlo simulation provides an intuitive method to extract features, RaCInG also 138 

allows to mathematically derive some features using random graph theory, based on kernels. 139 

This is a matrix that encodes the asymptotic probability that a ligand-receptor interaction exists 140 

between two individual cells with specific cell-types. It is based on the expected number of 141 

ligand-receptor interactions that connect these cells15,18–20 (see Methods for the exact 142 

expression). If we would generate networks using a kernel, then after generation of cells a 143 

coin flip determines whether a ligand-receptor interaction between each pair of individual cells 144 

appears. The success probability of this flip is determined by the cell-types of the pair and their 145 

kernel value (Fig. 2A).  146 

RaCInG allows quantifying the direct communication between individual cells with cell-type A 147 

and B (referred hereafter as Dir_A_B, Fig. 2B) using the kernel method. First the kernel is 148 

computed for each patient using all four input matrices, and then the kernels are transformed 149 

into the feature values (Fig. 2C). This approach uses a mathematical guarantee (see Methods 150 

for the derivation) and is faster than using the network generation procedure.  151 
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 152 
Fig. 2: Kernel method based on random graph theory. (A) The mathematical idea behind graph generation in 153 
the kernel method, which highlights the interpretation of the kernel. (B) The feature type extracted using the kernel 154 
method. (C) The general pipeline used to extract features from the graph using the kernel method.   155 
 156 
Normalization of network fingerprints to account for different 157 

cellular composition 158 

All methodologies in RaCInG to extract network features (i.e., the monte-carlo and kernel 159 

method) are biased through cell-type quantification. When assigning ligand-receptor pairs to 160 

cells, the model selects cells uniformly at random, so highly abundant cells-types have a larger 161 

probability of being selected, reflecting in the feature values. To account for this and allow 162 

comparison of network features between samples with different cellular composition, we 163 

implement a normalization procedure that corrects for the influence of the cell-type 164 

abundance. 165 

RaCInG recomputes the network features for each patient using the same input matrices 166 

except for the LR-distribution, which is made uniform (i.e., same probability for all ligand-167 

receptor interactions). This removes the influence of the ligand-receptor quantification, as the 168 

features extracted using the uniform LR-distribution are determined just by cell-type 169 

quantification. Finally, we compute the fold-change between the (average) feature values 170 

obtained using the data-derived versus uniform LR-distributions. The resulting feature values 171 

depend predominantly on ligand-receptor quantification. Moreover, the procedure ensures 172 

that all feature values have the same order of magnitude, regardless of their type.  173 
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Application to characterize the tumor microenvironment 174 

We used RaCInG to investigate the role of cell-cell communication by building patient-specific 175 

cell-cell interaction network models for 3213 patients from six solid cancers from The Cancer 176 

Genome Atlas (TCGA): bladder urothelial carcinoma (BLCA; N = 407), colon rectal cancer 177 

(CRC; N = 379), clear cell renal cell carcinoma (KIRC; N = 533), non-small cell lung cancer 178 

(NSCLC; N = 1012), skin cutaneous melanoma (SKCM; N = 467) and stomach 179 

adenocarcinoma (STAD; N = 415)  (Methods)21.  180 

We first derived the four input matrices required by RaCInG as follows (Fig. 3A; see Methods 181 

for more details): 1. The C-distribution table consists of nine cell-types present in the TME 182 

(names and abbreviations are summarized in Table 1).  The probability of each cell-type to 183 

appear in the network was defined specifically for each patient from RNA-seq data as their 184 

relative abundance quantified using an ensemble of deconvolution methods22. The LR-185 

distribution table was defined based on a list of 971 literature-curated LR interactions23 and 186 

quantified for each patient as the most limiting factor between the expression of the ligand and 187 

the receptor based on the RNA-seq data. 3-4. The L-matrix and the R-matrix were defined as 188 

(non patient-specific) prior knowledge that indicated which ligand and receptor can be 189 

expressed by a specific cell-type based on cell-type specific gene expression data24. 190 

Table 1: The cell-types included in our case studies.  191 

Cell name Abbreviation Cell name Abbreviation 

Tumor Tumor B-cell B 

Cancer associated fibroblast CAF Macrophage M 

Endothelial cell Endo Dendritic cell DC 

CD8+ T-cell CD8 Regulatory T-cell Treg 

Natural killer cell NK   
 192 
Using the monte-carlo simulations and the kernel method described above (Fig. 1D and 2C) 193 

we derived the three sets of network features consisting of: 81 direct communications, 729 194 

wedge communications and 978 triangle communications (Fig. 3B). Based on our first 195 

analysis of the results, showing a limited influence of the directionality of interactions, we 196 

decided to consider classes of undirected interactions (Methods). Additionally, due to the low 197 

and inconsistent quantification of NK cells, features involving this cell-type were discarded. 198 

These adjustments reduced the number of network features to 36, 288 and 120, respectively. 199 

Finally, we used the extracted features (Supplementary Table 1) to compare patients or 200 

patient groups (Fig. 3C) and look into the LR-pairs that make up specific features of interest 201 

(Fig. 3D).  202 
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 203 
Fig. 3: Modular structure of RaCInG for analysis of cell-cell interactions in the TME. (A) Cell- and interaction-204 
quantification from bulk RNA-seq data. (B) Feature extraction from patient specific graphs or kernel values. (C) 205 
Statistical analysis based on a list of extracted feature values in a batch of patients. (D) Extraction of LR-pair 206 
probabilities for given cell-type interactions. 207 
 208 
Network features correlate with immune response 209 

Cell-cell communication has shown to influence the orchestration of anti-cancer immune 210 

response25. Therefore, we have applied RaCInG to investigate how different graph features in 211 

our models correlate with an ensemble immune response score (Methods)26.  212 

We observed that 31-87 features out 444 (7-20% depending on cancer type) strongly 213 

correlated with immune response (absolute Spearman rho > 0.5; p-val < 0.01 after Bonferroni 214 

correction; Fig. 4). Generally, the more “complex” features (i.e., wedges and triangles) showed 215 

similar associations with immune response (6.6%–18.1% and 6.7%-21.7% highly correlated 216 

features respectively) as the “simple” fingerprints (i.e., direct communication; 8.3%-38.9% 217 

highly correlated features). However, if a direct communication feature appeared (e.g. 218 

Dir_CD8_M in NSCLC; rho = 0.652, p-val < 0.0001), then often a more complex feature, 219 

including this direct communication as a subset, showed a higher absolute correlation (e.g. 220 

W_CD8_M_M; rho = 0.754, p-val < 0.0001). Such more complex features are more informative 221 

as they describe intercellular communication paths rather than simple direct interactions and 222 

they can highlight which detailed interaction elicits the strong correlation with immune 223 

response. Following the example above, W_CAF_M_CD8 has lower correlation (rho = 0.590, 224 

p-val < 0.0001) meaning that the addition of CAFs to direct communication between 225 

macrophages and T-cells worsens the overall immune response. These observations highlight 226 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.03.526946doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.526946
http://creativecommons.org/licenses/by-nd/4.0/


10 

the importance of looking at more intricate communication mechanisms to study the 227 

coordination of anti-cancer immune responses. 228 

 229 

Fig. 4: Network features associated with immune response. The 25 features with the largest spearman rho 230 
correlation with immune response for each of the six cancer types. Features were only selected if their associated 231 
p-value was smaller than 0.01 after Bonferroni correction. 232 
 233 
When focusing on features that showed negative association with immune response, we 234 

mainly found communication structures consisting of tumor cells, endothelial cells and CAFs 235 

and absence of involvement of immune cells. One reason for that is the direct positive 236 

relationship between immune response and the presence of infiltrated immune cells in the 237 

tumor (e.g., through the formation of tertiary lymphoid structures)27,28. In this scenario, we 238 

expect the immune cells to drive the communication with the aforementioned three cell-types. 239 

Instead, in tumors with a less active immune response, the main remaining communication 240 

players will be tumor cells, CAFs and endothelial cells. 241 

Interestingly, we observed a different behavior in CRC, where endothelial cell and tumor 242 

communication as well as dendritic cell communication to CAFs and CD8+ T-cells were 243 

negatively correlated with the immune response score (Fig. 4; CRC panel). This can be 244 

explained by the fact that dendritic cells in CRC are mostly found in the tumor stroma and are 245 
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therefore likely to establish crosstalks with stromal cells like CAFs29. In agreement with the 246 

negative correlation, dendritic cells in the stroma have been shown to be associated with low 247 

infiltration of CD8+ T-cells29. 248 

Concerning positive associations with immune response, we observed a varied palette of 249 

features, with communication predominantly between immune cells or between immune cells 250 

and tumor cells found among the features with the largest, positive correlation. The specific 251 

set of features correlated with immune response varies between cancer types, confirming the 252 

well-established heterogeneity of the TME across cancer types30. This heterogeneity underlies 253 

the potential of deriving patient-specific models of intercellular communication, as we will 254 

further explore in the next sections. 255 

Network features as immune phenotype indicators 256 

To uncover the existent heterogeneity of cell-cell communication across patients, we used 257 

RaCInG to seek whether certain network features can explain differences between immune 258 

phenotypes. We considered four immune phenotypes previously defined in literature31: 259 

immune enriched (IE), immune enriched-fibrotic (IE/F), fibrotic (F) and immune deprived (D). 260 

The immune enriched groups (IE and IE/F) are characterized by high anti-tumor immune cell 261 

infiltration and activation in the tumor. The fibrotic groups (IE/F and F) are characterized by 262 

activation of stromal cells like CAFs. IE and F tumors are expected to have positive and 263 

negative correlation with response to ICB therapy respectively. Finally, the deprived group (D) 264 

is characterized by little immune or stromal cell activation. In the following sections we start 265 

from a pan-cancer analysis of patients from the six cancer types discussed above, and then 266 

focus on two cancer-specific analyses. 267 

Pan-cancer analysis 268 

When looking at comparison between immune subtypes at the pan-cancer level (Fig. 5) we 269 

identified that the D phenotype is mainly characterized by communication between tumor and 270 

endothelial cells. This is in agreement with the expected negative association with the immune 271 

response. The D group is likely to have minimal leukocyte or lymphocyte activity31, opening 272 

the door for high cellular communication between malignant and non-immune cell-types. 273 

As expected, we identified increased CAF activity in the fibrotic groups (IE/F and F) as well as 274 

CD8+ T-cell activity in the immune enriched groups (IE and IE/F). Interestingly, we see in the 275 

IE to F comparison that macrophages appear in both groups: communicating with CD8+ T-276 

cells in the IE group, or with CAFs in the F group. The dual importance of macrophages in 277 

both IE and F subtypes might be explained by macrophages playing different roles in the tumor 278 

depending on their phenotype. Anti-tumor macrophages (also called M1 macrophages) 279 
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recruits CD8+ T-cells to fight the tumor32, explaining its appearance in the IE group where we 280 

expect to have higher anti-tumor to pro-tumor macrophage ratio31. On the contrary, pro-tumor 281 

macrophages (also called M2 macrophages) are known to conspire with CAFs to boost tumor 282 

malignancy33,34, motivating why this interaction appears in the most hostile immune 283 

phenotype. Overall, these considerations show that the network features are able to capture 284 

general characteristics of immune phenotypes well and show potential to distinguish the 285 

functional role of cell-types based on their interactions.  286 

 287 

Fig. 5: Network-based characterization of microenvironment subtypes in pan-cancer settings. Volcano plots showing the 288 
statistical comparison of network-based features identified by RaCInG when doing pairwise comparisons of microenvironment 289 
subtypes across cancer types. The red line indicates the α = 0.05 significance threshold after Bonferroni correction. On the x-axis 290 
we show the fold change between the average feature values for each group, and on the y-axis the negative 10-log of the 291 
Wilcoxon rank sum test’s p-value. For each plot, the twenty features with lowest p-value have been highlighted. 292 

Cancer type-specific analysis 293 

Next, we focused our analysis on melanoma (SKCM) and gastric cancer (STAD) to show 294 

which additional insights RaCInG can provide at the cancer-specific level (Fig. 6; 295 

Supplementary Fig. 1-3). 296 

When comparing the IE versus non-IE (F and D) subtypes we observed that several features 297 

associated with immune activation are more prominent in SKCM compared to pan-cancer 298 
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(Fig. 6A). Examples are B-cells activating CD8+ T-cells (e.g. Tr_B_CD8_CD8, 2-log fold-299 

change 0.99 and 1.34 in IE vs D and IE vs F comparisons respectively), self-activation of 300 

CD8+ T-cells (e.g. Tr_CD8_CD8_CD8, fold-change 1.66 and 1.77 in IE vs D and IE vs F 301 

comparisons respectively) and CD8+ T-cells targeting tumor cells (Tr_CD8_CD8_Tumor, fold-302 

change 1.40 in the IE vs D comparison). These observations are in agreement with the strong 303 

immune response reported in SKCM31. This strong antitumor immune response can cause the 304 

recruitment of immunosuppressive Treg cells by CD8+ T-cells (Tr_CD8_CD8_Treg; fold-305 

change 1.08 and 1.14 in IE vs D and IE vs F comparisons respectively) and B-cells 306 

(Tr_B_B_Treg; fold-change 0.90 and 1.03 in IE vs D and IE vs F comparisons respectively)  307 

to counterbalance the high immunogenicity of these tumors and as a potential mechanism of 308 

immune evasion35–37. 309 

When comparing IE and IE/F groups we observed that the CD8+ T-cell communication with 310 

endothelial cells is stronger in IE/F patients for the SKCM dataset when compared to the pan-311 

cancer analysis (eight out of the top ten features that are more specific for SKCM involve this 312 

interaction, all with 2-log fold-change < 0; arrows pointing down in Fig. 6A for SKCM). Often, 313 

these features shifted from being more represented in IE patients to being enriched in IE/F 314 

patients (see e.g., W_CD8_Endo_CD8; going from red in the pancancer to blue in the SKCM 315 

comparison of IE vs IE/F in Fig. 6A).  316 

To delve deeper into what proteins contribute to this shift, we retrieved from RaCInG the top 317 

20 ligand-receptor interactions that are likely to drive this cell-cell communication (Fig. 6B). 318 

Three out of the five interactions with a higher probability of appearing in the IE/F subtype 319 

compared to the IE subtype involve a member of the family of thrombin receptors (F2R, 320 

F2RL1, and F2RL3) interacting with granzyme A (GZMA). Interestingly, GZMA interacting with 321 

thrombin receptors is usually associated with apoptosis in targeted cells3839, creating an anti-322 

tumor microenvironment that is more fitting for the IE subtype. However, in melanoma 323 

thrombin receptors stimulation has been associated with tumor progression, which is more 324 

common in IE/F patients40. 325 
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 326 
Fig. 6: Cancer specific analysis of SKCM and STAD. (A) List of top ten features for SKCM and STAD that changed the most 327 
in average fold-change when compared to the results of the pan-cancer analysis. The direction of the triangles indicates the 328 
direction of the fold-change shift when compared to the pan-cancer analysis. Dots indicate that the fingerprint is not part of the 329 
top ten features for the given cancer type. (B) The top twenty ligand-receptor pairs that are most likely to create a connection 330 
between CD8+ T-cells and endothelial cells in SKCM for the immune subtypes IE and IE/F. (C) The top twenty ligand-receptor 331 
pairs that are most likely to create a connection between dendritic cells and macrophages in STAD for the immune subtypes IE 332 
and D. 333 
 334 
Regarding STAD, we observed that interactions involving dendritic cells, especially with 335 

macrophages, are the most distinguishing features which are downregulated in the D subtype 336 

compared to pan-cancer (arrows going up in the IE vs D comparison Fig. 6A). Focusing on 337 

the interaction between macrophages and dendritic cells, we identified three ligand-receptor 338 

pairs which are particularly more abundant in the D than in the IE subtype in STAD (Fig. 6C). 339 
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These are the interactions between interleukin 1 beta (IL1B) and interleukin-1 receptor 340 

accessory protein (IL1RAP), between WNT family member 10A (WNT10A) and frizzled class 341 

receptor 5 (FZD5), and between secreted and transmembrane protein 1 (SECTM1) and CD7. 342 

By communicating through the IL1RAP and IL1B proteins, the macrophages and dendritic 343 

cells dampen the inflammatory process in the D subtype (if they communicate), inducing a 344 

poor prognosis41. This entails that in the D subtype immune cells interact less, explaining why 345 

globally we see macrophage interaction with dendritic cells more in the IE subtype, where 346 

inflammation is stronger. Similarly, overexpression of WNT10A has been shown to induce a 347 

poor prognosis42, and is known to interact with FZD543. Finally, there is also evidence of the 348 

secretion of SECTM1 by dendritic cells to attract monocytes to the TME via binding to CD7, 349 

promoting their differentiation into macrophages44. Taken together, pro- or anti-tumor immune 350 

infiltration through macrophage communication with dendritic cells is more likely to occur in 351 

patients from non-desert immune phenotypes31. 352 

Network features as indicators for response to ICBs 353 

As the graph features derived by RaCInG provided mechanistic understanding in terms of cell-354 

cell communication about patients’ immune phenotype, we were interested in extending the 355 

analysis into investigating patients’ response to anti-PD1 immunotherapy45–47 (Methods; 356 

Supplementary Tables 2). 357 

First, we analyzed two melanoma datasets (Gide-Aulander cohorts45,46) with known ICB 358 

response and RNAseq data from samples collected before (n = 51) and on (n = 26) treatment. 359 

We computed the average (theoretical) kernel-values (Methods) for the responder and non-360 

responder patients and used it as a measure of direct communication between cell-types in 361 

the TME (Fig. 7A).  362 

For the responding patients in the Gide-Auslander cohorts we observed a large increase of 363 

CD8+ T-cell communication during immunotherapy (sum of the kernel values 1.4576 vs 364 

2.8788 for before and on-treatment samples, respectively). When we zoomed into the types 365 

of communication this cell-type was involved in, we observed specifically that both the amount 366 

of communication from tumor to CD8+ T cells (kernel value 0.2930 before treatment vs 0.4510 367 

on treatment) and from macrophages to T-cells (0.1558 vs 0.3170) doubled. Moreover, the 368 

amount of communication in between T-cells almost quadrupled (0.1159 vs 0.4002). Overall, 369 

this suggests an increased activation of CD8+ T cells enabled by ICB therapy. 370 

 371 

 372 

 373 
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Fig. 7: Comparison of responders and non-responders to immunotherapy. (A) Circos plot of average kernel values in 374 
responder and non-responder groups of the Gide-Auslander cohorts. The size of each ribbon indicates the fraction 375 
of total communication each cell-type is part of. The thickness of the lines in between two cell-types indicates how 376 
much these cell-types communicate. Circos plots were produced using the online tool “circos”50 . (B) Protein 377 
communication scores between CD8+ T-cells and macrophages in the Gide-Auslander cohorts on treatment. (C) 378 
Circos plot of average kernel values in responder and non-responder groups of the Kim cohort. (D) Comparison of 379 
responders and non-responders in the Kim cohor 380 
 381 
These results are in agreement with the increased CD8+ T cell communication in the IE 382 

subtype (associated with ICB response31) with respect to the F subtype (associated with lack 383 

of ICB response31) that we previously observed in the pan-cancer analysis (Fig. 5). For ICB 384 

to be effective, T-cell activation is important31,48. This means that T-cells communicate more 385 

with tumor cells (for direct killing and additive cytotoxicity49) or with each other (for self-386 

activation), explaining why these two fingerprints increased in responders upon ICBs 387 

treatment. 388 

Interestingly, when we subsequently compared non-responders before and on treatment in 389 

the same cohort, we still saw an increase in T-cell communication (the sum of all kernel values 390 

involving T-cells is 0.8212 before treatment versus 1.7490 on treatment), but not in tumor 391 
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communication (5.4529 versus 5.2310). We also noted that macrophage communication to T-392 

cells tripled (0.0924 versus 0.3398). Taken together with increased T-cell activity, this hinted 393 

at non-responders having a high activity of pro-tumor macrophages after treatment, which 394 

could not solely be explained by increased pro-tumor macrophage abundance 395 

(Supplementary Fig. 4). The pro-tumor macrophages possibly suppress the anti-tumor 396 

activity of CD8+ T-cells and cause resistance to ICB treatment. 397 

To better understand the dual role that macrophages to CD8+ T cells communication have in 398 

responders and in non-responders we compared the ligand-receptor interactions driving this 399 

cell-cell interaction in the on-treatment samples between these two patient groups (Fig. 7B). 400 

Here, we observed that non-responders had a higher expression of the macrophage 401 

inflammatory protein 1β (CCL4), which is linked to suppression of CD8+ T-cells and 402 

recruitment of pro-tumor macrophages51. Moreover, we also saw increased activity of the 403 

S100 calcium-binding protein A8 and A9 (S100A8/-A9), which is a biomarker of tumor 404 

progression also in response to ICB therapy in melanoma patients, in agreement with their 405 

appearance in non-responders52. Additionally, non-responders showed higher expression of 406 

major histocompatibility complex class I-B (HLA-B) binding to CD8(A and B) T cell receptors, 407 

which is linked to downregulation of CD8+ T-cell activity53 and T-cell exhaustion54 mediated 408 

by pro-tumor macrophages. Interestingly, major histocompatibility complex class II (HLA-DM, 409 

-DP, -DQ, -DR) interaction with cluster for differentiation 4 (CD4), which is normally related to 410 

antigen presentation, is also slightly higher in non-responders. This could be linked to an 411 

aberrant expression of HLA class II molecules that have been linked in melanoma to 412 

recruitment of dampened CD8+ T-cells55. Finally, some other minor proteins that are more 413 

expressed in non-responders are also linked to pro-tumor macrophage activity (e.g., 414 

macrophage migration inhibitory factor; MIF56). Overall, these results suggest that 415 

macrophages to CD8+ T cells regulation in non-responders is associated with pro-tumor 416 

macrophages which provide alternative ways to inhibit immune response and therefore resist 417 

anti-PD1 treatment.  418 

Next, we analyzed responder and non-responder gastric cancer patients treated with anti-PD1 419 

(Kim cohort, n = 45; Fig. 7C)47. We observed that features involving CAFs and endothelial 420 

cells were indicative of non-response (e.g. Dir_CAF_Endo in Fig. 7D; p-value < 0.0001 and 421 

2-log fold-change -0.34) while the W_CD8_Tumor_M feature was indicative of response (p-422 

value < 0.0001 and fold-change 0.36). Communication of CAFs and endothelial cells could be 423 

expected for the non-response group, given their known association with angiogenesis and a 424 

pro-tumor microenvironment57. The appearance of CD8+ T-cell communication with tumor 425 

cells was in line with the general behavior for responders we observed when analyzing the 426 

melanoma cohorts. 427 
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Since macrophages made an appearance in both the non-responder and responder groups, 428 

we further looked at direct cell-cell communications (Fig. 7C). We observed that macrophages 429 

communicate more with CD8+ T-cells in the responder (kernel of 0.4483) than in the non-430 

responder group (kernel of 0.2462). This is in agreement with previous observations that, in 431 

gastric cancer, interactions between CD8+ T-cells and macrophages create an immune 432 

inflamed TME that is associated with better prognosis and survival58. Additionally, in the non-433 

responder group the protein interaction profile showed that the macrophages exhibited a pro-434 

tumor phenotype (Supplementary Fig. 5). 435 

Finally, we observed that B-cells tend to preferentially appear in features associated with non-436 

response (Fig. 7D) and that they are in general more active in non-responders (sum of kernel 437 

values involving B-cells is 0.5221 in responders versus 0.7593 in non-responders; Fig. 7C). A 438 

possible explanation to this behavior is the formation of regulatory B-cells. This phenotype of 439 

B-cells plays a role in tumor progression and immune system suppression in gastric cancer59. 440 

To test this hypothesis, we compared the ligand-receptor interactions for B-cell to CD8+ T-cell 441 

communication between responders and non-responders (Supplementary Fig. 6). This 442 

showed that especially the lymphocyte-specific protein tyrosine kinase (Lck) was more active 443 

in the non-response group. This protein is known to hinder T-cell activation60, providing a 444 

pathway exploited by B-cells other than PD-L1 to allow tumor cells to evade the immune 445 

system, hinting at the regulatory B-cell phenotype59.    446 

Discussion 447 

RaCInG is a new computational tool to construct patient-specific cell-cell interaction models 448 

based predominantly on bulk RNA-seq. This methodology leverages techniques from the 449 

mathematical field of random graphs and provides a way to build cell-cell interaction networks 450 

at the level of individual cells. Moreover, since the networks are built based on well-studied17 451 

models, theoretical guarantees can be derived about the patient’s networks. Our method 452 

extends previous research efforts since it captures the unknown features in a patient’s TME 453 

through stochasticity. It assumes the input data as given but does not infer a deterministic 454 

network based on this data. Rather, it builds a network ensemble of admissible networks which 455 

adhere to the provided input data and searches for features that remain (statistically) 456 

consistent over the entire ensemble. Moreover, RaCInG allows us to go beyond 457 

communication of individual cell-types: it can consider features for which more than two cell-458 

types come into play (wedges and triangles). Finally, RaCInG removes the bias introduced 459 

through cell-type quantification and places all network features on the same footing by 460 
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considering the fold-change between feature values in two network settings: one with “normal” 461 

input data, and one with input data that only considers cell-type quantification. 462 

We have applied RaCInG to study the role of cell-cell interactions in the TME. We have shown 463 

that RaCInG is able to extract network fingerprints for individual patient’s TME that correlate 464 

well with immune response, TME subtypes and response to ICB therapy. Intracellular 465 

communication regulates cellular phenotypes possibly explaining the dual role that certain 466 

cell-types can have in different contexts27,61. For example, using RaCInG in a pan-cancer 467 

analysis of six cancer types from the TCGA, we have observed that macrophages can be 468 

associated with an anti-tumor or a pro-tumor TME subtype depending if they preferably 469 

interact with CD8+ T-cells or with CAFs, respectively. In agreement with this observation, 470 

macrophages interaction with CD8+ T-cells is also positively associated with better response 471 

to ICB therapy in gastric cancer.   472 

RaCInG allows us to dive deeper into which ligand-receptor pairs characterize specific cell-473 

cell interactions, providing a better understanding of their potential role in regulating immune 474 

cell phenotypes. In this way we can link network fingerprints with their corresponding 475 

proteomic landscape. For example, we used this approach to look into ligand-receptor 476 

interactions driving communication between macrophages and CD8+ T cells in melanoma 477 

patients treated with ICB therapy. In this way we identified a potential role of pro-tumor 478 

macrophages in downregulating immune response in non-responders, which could justify their 479 

lack of response to anti-PD1 therapy. If this is the case, combining anti-PD1 therapy with 480 

macrophage-targeting treatment could provide a better treatment strategy. 481 

It is worth noticing that more “complex” features (i.e., wedges and triangles, involving triplets 482 

of cell-types) are often better associated with tumor characterization than the "simpler" direct 483 

communication features between pairs of cell-types. Although cellular communications 484 

involving more than two cell-types are more difficult to interpret, this observation highlights the 485 

importance of studying cell-cell communication networks rather than focusing only on direct 486 

cell-cell interactions pairs. 487 

In the TCGA case study we are not using the model to its full potential: we are extracting 488 

undirected features from the graph while we are constructing models that consider 489 

directionality. This choice was made based on the observation that directed features involving 490 

the same cell-types often had similar relevance, e.g., in the pan-cancer analysis comparing 491 

different TME subtypes. A possible explanation for this in the context of the TME, is the 492 

observation that ligand-receptor interactions are not a one-way street. When a ligand-receptor 493 

interaction occurs, often this elicits a reaction in both the ligand cell-type, and the receptor cell-494 

type10, partially masking the directionality of the interaction. 495 
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RaCInG does not perform well with very rare cell-types like the NK cells in our case study, 496 

possibly because they cannot be accurately estimated with current deconvolution methods. In 497 

practice, this meant that NK cells might not appear in any of the networks for some patients, 498 

rendering features including NK cells unstable. To overcome this issue, we did not include NK 499 

cells in our statistical analysis for the features computed with the monte-carlo method. 500 

For direct communication we overcame this issue by resorting to the kernel method. Kernels 501 

are derived from random graph theory and capture the limiting behavior of the networks when 502 

the amount of cells tends to infinity. Since RaCInG’s kernel is determined by a relatively simple 503 

equation, this allows us to derive feature values much quicker and more precisely than in the 504 

monte-carlo method. However, we can only apply the kernel method in cases where the exact 505 

feature values are theoretically known. When no theoretical results exist, one needs to rely on 506 

the monte-carlo method. 507 

Although we have shown the potential of RaCInG when applied to some case studies, we 508 

provide RaCInG as a flexible and modular tool that can be adapted to different research needs. 509 

For example, we currently implemented the extraction of three types of network fingerprints 510 

(direct communication features, wedges, and triangles), however other graph fingerprints (e.g, 511 

the size of the giant strongly connected component, or more intricate graphlets like stars) can 512 

be integrated in the pipeline. RaCInG can also be adapted to using different input data, for 513 

example when cell quantification in a sample is directly measured (e.g., by flow cytometry). 514 

This information can be provided as input to RaCInG without having to rely on deconvolution 515 

methods. Similarly, when more context specific information on the expression of ligands and 516 

receptors are available for individual cell-types, this information can be directly used to 517 

compute the LR distribution matrix. Random graph methods could be expanded in the future 518 

to include geometry20 to leverage the increasing availability of spatial data (e.g. spatial 519 

transcriptomics62 or immunohistochemistry63). 520 

To conclude, we envision that RaCInG will be a useful tool to study how cell-cell 521 

communication characterizes the observed tissue phenotypes in different contexts. This can 522 

extend to the investigation of intercellular communication in different physiological (e.g. cell 523 

development64–67 or tissue homeostasis68) and pathological contexts69.   524 
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Methods 525 

Cancer specific data acquisition and transformation 526 

In the context of modeling the TME, RaCInG requires different types of biological information. 527 

We first annotated which ligand-receptors are specific for the different cell-types of interest by 528 

leveraging curated literature resources23 and cell-type specific RNA-seq data24. And then, we 529 

used bulk RNA-seq data to quantify cell type fractions and ligand-receptor bindings for each 530 

individual patient.  531 

To better characterize the cell-cell communication network produced by RaCInG, we gathered 532 

information about the TME subtype of patients (from literature) and their anti-cancer immune 533 

response (inferred from bulk RNA-seq). 534 

Bulk RNA-sequencing data 535 

The Cancer Genome Atlas (TCGA) 536 

Gene expression data for six solid tumors: BLCA, CRC, NSCLC, KIRC, SKCM and STAD 537 

were downloaded via the Firehose tool from the BROAD Institute 538 

(https://gdac.broadinstitute.org), released January 28, 2016. We selected primary tumor or 539 

metastatic (only in the case of melanoma) samples, resulting in a total of 3213 patients. 540 

We extracted the gene expression data from “illuminahiseq_rnaseqv2-RSEM_genes” files. 541 

From these data, we used “raw_count” values as counts, and we calculated transcripts per 542 

million (TPM) from “scaled_estimate” values multiplied by 1,000,000. We first removed those 543 

genes with a non-valid HGNC symbol and then we averaged the expression of those genes 544 

with identical HGNC symbols. 545 

Datasets of patients treated with immunotherapy 546 

Gene expression data for melanoma (Gide45 and Auslander46 cohort) and gastric cancer 547 

(Kim47 cohort) was available from published datasets of patients treated with anti-PD1 therapy, 548 

which also include information about patients’ best overall response (Supplementary Table 549 

3 for more details and accession numbers). 550 

For each cohort, we downloaded FASTQ files of RNA-seq reads from the Sequence Read 551 

Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/). We used quanTIseq to process the data70. 552 

First, Trimmomatic 71 is used to remove adapter sequences and read ends with Phred quality 553 

scores lower than 20, discard reads shorter than 36 bp, and trim long reads to a maximum 554 

length of 50 bp (quanTIseq preprocessing module). Then, Kallisto72 is applied on the pre-555 

processed RNA-seq reads to generate gene counts and TPM using the “hg19_M_rCRS” 556 

human reference (quanTIseq gene-expression quantification module). 557 
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TME subtypes 558 

We used a previously defined classification of the TME to assign patients into different 559 

subtypes: Immune-Enriched Fibrotic (IE/F), Immune-Enriched Non-Fibrotic, Fibrotic (F) and 560 

Desert (D)31. The TME subtype associated with each patient was provided by the original work 561 

for TCGA datasets as well as for Gide-Auslander cohorts. 562 

Transformation of RNA-seq into RaCInG input data 563 

Quantification of individual cell-type abundance 564 

We used in silico deconvolution73 to estimate cell fractions from bulk-tumor RNA-seq data. In 565 

order to obtain robust cell fraction estimates, we used a consensus approach based on six 566 

deconvolution methods accessible through the immunedeconv74 R package v2.1.0: 567 

quanTIseq70, EPIC75, ConsensusTME76, xCell77, TIMER78, and MCP-counter79. quanTIseq and 568 

EPIC were selected for their capability of estimating cell fractions referred to the overall 569 

composition of the tumor sample (not possible for the other methods), whereas the remaining 570 

methods were used to confirm and/or refine the estimates as explained in the following. 571 

quanTIseq was used to estimate cell fractions for CD8+ T cells, B cells, Tregs, M1 and M2 572 

macrophages, which showed high correlation with the other deconvolution methods 573 

(Supplementary Fig. 7). Since M1 and M2 signatures do not recapitulate their diversity in the 574 

tumor and given the limited availability of methods to derive a consensus we decided to sum 575 

them and consider macrophages as a unique cell type. EPIC was used to estimate CAFs 576 

(absent in quanTIseq signature), NK cells (low consensus agreement for quanTIseq), and 577 

tumor cells (high agreement with quanTIseq estimates, but more accurate as they do not 578 

include endothelial and epithelial cells), and normal cells (endothelial cells). Treg and NK cell 579 

fractions that were given a null score by xCell, were set to zero. Given the low agreement of 580 

EPIC and quanTIseq on DC fractions compared to other methods, we used a three-step 581 

consensus approach: 1) we scaled in the 0-1 range DC scores obtained with xCell, MCP-582 

counter, and TIMER; 2) we took their median; and 3) we rescale it to span the range of values 583 

covered by quanTIseq, after correction of absent cells according to xCell. Finally, cell fractions 584 

in each sample were rescaled to sum up to 1. 585 

Cell-type compatibility of ligands and receptors 586 

Using the LIANA80 R package v0.1.10 and the OmnipathR R package v3.7.0, we retrieved a 587 

customized set of intercellular interactions from OmniPath23, which consisted of interactions 588 

curated in the context of cell-cell communication available from six resources: CellphoneDB81, 589 

CellChat82, ICELLNET83, connectomeDB202084, CellTalkDB85 and Cellinker86. Then, we 590 

filtered for direct cell-cell communication interactions by excluding proteins related to the 591 
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extracellular matrix. Additionally, protein complexes were splitted into individual subunits. This 592 

resulted in a total of 3081 LR interactions. 593 

From the database of Ramilowski et al.24, the gene expression of 144 human cell-types based 594 

on cap analysis of gene expression (CAGE) from the FANTOM5 project is available. We kept 595 

only the cell-types for which we could quantify their abundance based on deconvolution 596 

methods. The agreement was not perfect and certain “deconvolution” cell-types matched more 597 

than one “ramilowski” cell type, thus we aggregated them by averaging their expression 598 

because they showed high correlation between the expression of their ligands and receptors. 599 

We additionally included a pan-cancer cell type derived by using data from the Cancer Cell 600 

Line Encyclopedia (CCLE)87 as described in our previous study26. Based on gene expression 601 

data of 583 cell lines (from 18 solid cancer types), the median expression of each gene was 602 

considered as the gene expression of the pan-cancer cell type.  603 

!"#$%&'($%&()*+*,-.)'(/*)*(0")'-('*1*+-*&(2$'*&(.%(-3*")(*4,)*''".%(5678(9:;(-3)*'3.1&<("%(604 

$-( 1*$'-( .%*( .0( -3*( 78( cell-types considered, and then based on the presence of the 605 

corresponding ligand or receptor pair in the network. The 10 TPM threshold was initially used 606 

in the Ramilowski paper for the CAGE data, and it was based on known expression data from 607 

B-cells. We have previously described that this cutoff value was suitable for the CCLE RNA-608 

seq data26. 609 

The compatibility of ligand and receptors was specific for each cell type, comprising a total of 610 

971 LR pairs.  611 

Quantification of ligand-receptor pair activation 612 

Patient-specific LR pair weights were defined as the minimum of the log2(TPM+1) expression 613 

of the ligand and the receptor, hypothesizing that the expression of the gene at the lower level 614 

limits the LR binding affinity. 615 

Computation of immune response score 616 

We used our "easier" R/Bioconductor package26,88 to compute a score of immune response 617 

based on the median of the z-score values of 10 published transcriptomics signatures of the 618 

immune response. All these signatures were calculated according to the methodology 619 

reported by the original studies.  620 

Random graph generation (monte-carlo simulation) 621 

The process in which RaCInG created graphs and extracted features is independent of the 622 

application domain. Four different facets are important in this pipeline: 623 

1. Generation of nodes and arcs based on input data. 624 
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2. Assignment of arcs to node-pairs. 625 

3. Feature extraction. 626 

4. Normalization. 627 

Generating nodes and arcs 628 

An overview of the variables and distributions used for the random graph model is presented 629 

in Table 2. These variables correspond to (elements of) the input matrices in Fig. 1A. 630 

Table 2. Symbols used to describe the random graph model. 631 

Symbol Type Interpretation Notes 

𝑁 Number Number of cells in one network 
instance. 

 

𝜆 Number Average number of interactions per 
cell. 

 

𝑄 Probability 
distribution 

Probability of cells having a given 
type, i.e. the cell-type quantification in 
the C-matrix of Fig. 1A. 

𝑞! is the probability of one cell 
having type 𝑘. 

𝑷 Probability 
distribution 

Probability of an interaction consisting 
of a given ligand and receptor, i.e. the 
ligand-receptor quantification in the 
LR-matrix of Fig. 1A. 

𝑝"# is the probability of one 
interaction consisting of ligand 𝑖 
and receptor 𝑗. 

𝐿 Matrix Compatibility of specific cell-types with 
specific ligands. 

𝐿(𝑘, 𝑖) is the indicator that cell-
type 𝑘 can secrete ligand 𝑖. 

𝑅 Matrix Compatibility of specific cell-types with 
specific receptors. 

𝑅(𝑘, 𝑖) is the indicator that cell-
type 𝑘 can secrete receptor 𝑗. 

 632 
To create the nodes for one instance of the network, RaCInG creates a list of length 𝑁 with 633 

independent realizations from 𝑄. In this list entry 𝑙 corresponds to the cell-type of node 𝑙. 634 

Similarly, to create the (unpaired) arcs for one instance of the network, RaCInG creates a list 635 

of length 𝜆𝑁 (rounded down) with independent realizations from 𝑃. Here, entry 𝑙 of the list 636 

corresponds to a tuple that encodes both the ligand and the receptor of interaction 𝑙. 637 

Pairing nodes and arcs 638 

To pair nodes and arcs, RaCInG iterates over the list of interactions in the following way: 639 

1. It reads the type of the interaction’s ligand. Suppose it had type 𝑖. 640 

2. It highlights all nodes that have a type 𝑘 such that 𝐿(𝑘, 𝑖) = 1. 641 

3. It chooses one of these nodes uniformly at random with replacement. 642 

4. It reads the type of the interaction’s receptor. Suppose it had type 𝑗. 643 
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5. It highlights all nodes that have a type 𝑘 such that 𝑅(𝑘, 𝑗) = 1. 644 

6. Independently of the previous choice, it chooses one of these nodes uniformly at 645 

random with replacement. 646 

After this procedure is executed for all interaction pairs, we obtain a complete network. To 647 

generate an ensemble of networks for one patient, RaCInG repeats the node/interaction 648 

procedure and pairing procedure a predetermined number of runs. Each run is generated 649 

independently from the previous runs. 650 

Feature extraction 651 

Wedges and triangles (monte-carlo method) 652 

For wedges and triangles the feature extraction is based on a network’s adjacency matrix 𝐴. 653 

In this matrix the entry 𝑎"# indicates the number of arcs from node 𝑖 to node 𝑗. For each 654 

network, RaCInG outputs a list of paired arcs, which is transformed into an adjacency matrix. 655 

Features are then extracted from this matrix. 656 

For example, for the wedges this is done by iterating over all rows in the matrix, recording the 657 

neighbors a given vertex connects to (together with the multiplicity of the connection) and then 658 

recording these neighbors’ subsequent neighbors. This yields a list of triplets of vertices that 659 

form wedges. The types of these wedges can subsequently be extracted and tallied for each 660 

combination of cell-types. Triangles counts are computed in a similar way.  661 

Once this procedure is executed for each individual network in the ensemble, the average is 662 

computed over all the tallies. This provides the value of one feature for a given patient. The 663 

standard deviation is also recorded as a check to ensure the average expression value 664 

concentrates around the actual measured feature values from each network. 665 

Direct communication (kernel method) 666 

For direct communication values an asymptotic count is implemented based on the law of total 667 

probability and the law of large numbers89. To derive this count, we first note that the expected 668 

fraction of cells a fixed ligand 𝑖 can connect to, is given by ∑ 𝑞$𝐿(𝑠, 𝑖)$ .	Similarly, the expected 669 

fraction of cells a fixed receptor 𝑗 can connect to is given by ∑ 𝑞%𝑅(𝑟, 𝑗)% . Together, 670 
∑ 𝑞$𝐿(𝑠, 𝑖)𝑞%𝑅(𝑟, 𝑗)$,%  is the fraction of cells an LR-pair (𝑖, 𝑗) can connect to. 671 

An arc from cell-type 𝑘 to 𝑙 is only formed if cells of these types are chosen in the arc 672 

assignment step. Since the fraction of cells with these types is given by 	𝑞! and 𝑞', respectively, 673 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.03.526946doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.526946
http://creativecommons.org/licenses/by-nd/4.0/


26 

and since only one pair of (admissible) cells is chosen uniformly at random, the probability that 674 

LR-pair (𝑖, 𝑗) formed an arc from cell-type 𝑘 to 𝑙 is given by 675 

𝑞! 	𝑞' 	𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗)
∑ 𝑞$𝐿(𝑠, 𝑖)𝑞%𝑅(𝑟, 𝑗)$,%

. 676 

Here, multiplication with 𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗) is needed since the probability can only be nonzero when 677 

the LR-pair is allowed to connect cells with type 𝑘 and 𝑙. This probability is built on the 678 

assumption that LR-pair (𝑖, 𝑗) is chosen to connect two cells. In reality, RaCInG can generate 679 

all possible LR-pairs to connect cells, hence it is not known a-priori. Thus, to find the a-priori 680 

probability of an arc being formed from cell-type 𝑘 to 𝑙, a weighted sum needs to be taken over 681 

the above probability for all possible LR-interactions. The weight for each probability is given 682 

by the LR-pair’s quantification 𝑝"#. Mathematically, this means the law of total probability is 683 

applied, and it yielded the following a-priori probability 𝜋!' of generating a connection from 684 

cell-type 𝑘 to 𝑙: 685 

𝜋!' = 𝑞! 	𝑞';𝑝"# ⋅
𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗)

∑ 𝑞$𝐿(𝑠, 𝑖)𝑞%𝑅(𝑟, 𝑗)$,%"#

.	 686 

With this probability 𝜋!', an asymptotic count can be computed. If 𝑁!' denotes the total number 687 

of arcs from cells of type 𝑘 to 𝑙, then it is known due to independence of the various arc 688 

placements in RaCInG’s network generation algorithm that 𝑁!' is a binomial distribution with 689 

𝜆𝑁 trials and success probability 𝜋!'. From this fact, together with the (weak) law of large 690 

numbers, we subsequently conclude that  691 

𝑁!'
𝜆𝑛

→	𝜋!' 692 

in probability. These were the theoretical feature values used for direct communication. 693 

Moreover, the expression 694 

𝜅(𝑘, 𝑙) =;𝑝"# ⋅
𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗)

∑ 𝑞$𝐿(𝑠, 𝑖)𝑞%𝑅(𝑟, 𝑗)$,%"#

 695 

within the expression of 𝜋!' is called the kernel of RaCInG. It could be interpreted as the direct 696 

communication feature with the explicit cell-type quantification bias (the product 𝑞! 	𝑞') 697 

removed.  698 
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From directed to undirected features 699 

Features from both the monte-carlo and kernel method are directed. For the TCGA case study 700 

it was decided to use undirected features instead of directed features. To compute these from 701 

the directed features, all directed counts with the same cell-types were accumulated. For 702 

example, in the case of direct communication the undirected feature Dir_A_B was obtained 703 

by computing 𝜋() + 𝜋)(. A visual overview of all directed features to accumulate to get the 704 

corresponding undirected feature is presented in Supplementary Fig. 8.  705 

Normalization 706 

To normalize, the pipelines for network generation and feature extraction were executed 707 

again, but this time in a setting where the distribution 𝑃 was made uniform over its support. 708 

Hence, if one sets 709 

𝑐 =;1{𝑝"# > 0}
"#

, 710 

where 1{⋅} indicates the indicator function, then in the uniform runs a new probability 711 

distribution 𝑃F was used for the ligand-receptor interactions. In this distribution, the probability 712 

of an interaction between ligand 𝑖 and receptor 𝑗 occurring was given by 713 

𝑝G"# = (1/𝑐)1{𝑝"# > 0}.  714 

All other parameters were kept the same as in the previous “standard” runs. Finally, if 𝑓*+ is 715 

the (average) feature value in the “standard” run and 𝑓,-./ is the same (average) feature value 716 

in the uniform run, then the normalized feature value was given by the fold change between 717 

these two runs, i.e. 718 

𝑓-012 =	
𝑓*+
𝑓,-./

. 719 

One can identify 𝑓-012 as the number of times a feature would appear more often in the 720 

networks generated with the actual input data compared to the networks generated with input 721 

data that disregarded the LR-quantification. A big advantage of this normalization procedure 722 

is its ability to place all feature values on the same footing regardless of the method they were 723 

computed by. No matter if 𝑓-012 is computed through the monte-carlo method or the kernel 724 

method, its interpretation and value range stay the same.       725 
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Analyzing the extracted features 726 

Statistical analysis methods 727 

We used the Spearman rho correlation coefficient to assess correlations between two 728 

samples. This metric was applied, since limited prior knowledge was available on the joint 729 

distribution of the two samples. Moreover, since some features extracted from the networks 730 

(especially ones with small cell-type or ligand-receptor quantifications) were prone to 731 

producing outliers, a metric is used that is more robust against these outliers. To calculate it 732 

the scipy.stats.spearmanr function in Python was used based on the 1.9.2 version of the Scipy 733 

package. 734 

The two-sided Wilcoxon rank sum test at significance level 𝛼 = 0.05 was applied to test for 735 

differences between two groups of patients in the case studies. It was chosen for similar 736 

considerations as the spearman rho metric. To apply the test the function scipy.stats.ranksums 737 

from the 1.9.2 version of the Scipy package in Python was used. If a statistical difference 738 

between two groups was observed for a feature, the fold-change between the average feature 739 

values of the groups was used to infer how much the empirical distributions of the two groups 740 

overlap. 741 

To correct for multiple hypothesis testing we applied Bonferroni correction by lowering the 742 

significance level for individual tests. Specifically, when we tested at significance level 𝛼 for 𝑛 743 

features, the null-hypothesis was rejected whenever the test’s p-value dropped below 𝛼/𝑛. 744 

Bayesian computation of ligand-receptor probability for given cell-types 745 

To compute the conditional probability that a certain LR-pair caused the formation of an 746 

interaction, given the interaction is between two given cell-types we only used the LR-747 

distribution 𝑃 and the compatibility matrices 𝐿 and 𝑅. The unconditional probability of LR-pair 748 

(𝑖, 𝑗) appearing is given by 𝑝"# . To infer its contribution to a direct interaction between cell-type 749 

𝑘 and 𝑙, one first needs to know whether it connects these cell-types. The indicator of this 750 

event is given by 𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗). 751 

Now, since all interactions were sampled and paired independently, and uniformly at random, 752 

the conditional probability of LR-pair (𝑖, 𝑗) connecting cell-types 𝑘 and 𝑙 was given by the LR-753 

pair’s relative (probabilistic) weight when compared to the weights of all LR-pairs that can 754 

connect cell-types 𝑘 and 𝑙. Thus, the conditional probability that LR-pair (𝑖, 𝑗) formed a 755 

connection, given that it is a connection between cell-types 𝑘 and 𝑙, is given by 756 
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𝑝"#
(!') =

𝑝"#𝐿(𝑘, 𝑖)𝑅(𝑙, 𝑗)
∑ 𝑝56𝐿(𝑘, 𝑎)𝑅(𝑙, 𝑏)56

. 757 

To compute the LR-probability for given cell-types over an entire group, these probabilities 758 

were taken for all patients in the group and averaged. The largest of the resulting averages 759 

were depicted in the LR-interaction bar charts. 760 

Data and code availability 761 

All the datasets used are publicly available (Supplementary Table 3).  762 

The code used for generating the random graphs is available at 763 

https://github.com/SysBioOncology/RaCInG. A step-by-step reproducible report (i.e., 764 

RMarkdown notebook) on how this knowledge can be extracted is made available in github. 765 

A demo that showcases RaCInG’s functionalities is also made available in github. 766 
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