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Abstract

Accurate computational identification of B-cell epitopes is crucial for
the development of vaccines, therapies, and diagnostic tools. Structure-
based prediction methods generally outperform sequence-based models,
but are limited by the availability of experimentally solved struc-
tures. Here, we present DiscoTope-3.0, a B-cell epitope prediction tool
that exploits inverse folding representations from solved or AlphaFold-
predicted structures. On independent datasets, the method demon-
strates improved performance on both linear and non-linear epitopes
with respect to current state-of-the-art algorithms. Most notably, our
tool maintains high predictive performance across solved and pre-
dicted structures, alleviating the need for experiments and extending
the general applicability of the tool by more than 4 orders of mag-
nitude. DiscoTope-3.0 is available as a web server and downloadable
package, processing up to 50 structures per submission. The web
server interfaces with RCSB and AlphaFoldDB, enabling large-scale
prediction on all currently cataloged proteins. DiscoTope-3.0 is avail-
able at: https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0.

Keywords: Structure-based, B-cell epitope prediction, AlphaFold,
inverse-folding, ESM-IF1, antigen
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1 Introduction

A key mechanism in humoral immunity is the precise binding of B-cell recep-
tors and antibodies to their molecular targets, named antigens. The antigen
regions that are involved in the binding are known as B-cell epitopes. B-cell
epitopes are found on the surface of antigens, and in the case of proteins they
can be classified as linear if the epitope residues are sequentially arranged along
the antigen sequence, or discontinuous if they are only proximal in the antigen
tertiary structure, but not in the primary structure. Identification of B-cell epi-
topes has large biotechnological applications, including rational development
of vaccines and immunotherapeutics. However, experimental mapping of epi-
topes remains expensive and resource intensive. Computational tools for B-cell
epitope prediction offer a viable alternative to experiments.

However, prediction of B-cell epitopes remains a challenging problem (Gala-
nis et al., 2019; Sun et al., 2019). Historically, in-silico prediction methods
have been either antigen sequence- or structure-based. Sequence-based meth-
ods such as BepiPred-2.0 (Clifford et al., 2022) are attractive given the high
availability of protein sequences. BepiPred-2.0 utilizes a random forest trained
on structural features predicted from the antigen sequence, but has limited
accuracy and struggles to predict non-linear epitopes (Klausen et al., 2019).
In a recent work, BepiPred-3.0 further improves the method, demonstrating
large gains by exploiting sequence representations from the protein language
model ESM-2 (Lin et al., 2022).

On the other hand, structure-based methods benefit from having direct
access to the antigen tertiary structure, and in particular, its surface topology.
DiscoTope-2.0 (Kringelum et al., 2012) was published in 2012, and it esti-
mates epitope propensity from the local geometry of each residue, taking into
consideration both its solvent accessibility and the direction of its side chain.
Newer methods such as SEMA (Shashkova et al., 2022), epitope3D (da Silva
et al., 2021), BeTop (Zhao et al., 2012), EPSVR, EPMeta (Liang et al., 2010),
and ElliPro (Ponomarenko et al., 2008) have shown marginal improvements
in the prediction accuracy. Recently, ScanNet demonstrated a new state of
the art with the use of a geometric deep-learning neural network (Tubiana
et al., 2022b), explicitly considering geometric details at both the resolution of
individual atoms and side-chains. However, while structure-based prediction
tools in general outperform sequence-based methods, they are limited by the
availability of antigen structures.

Data scarcity affects the accuracy of prediction tools in different ways.
Firstly, they constraint the amount of data on which such tools can be trained.
As of January 2023, less than 5500 antibody structures are available in the
antibody-specific structural database SabDab (Dunbar et al., 2013), which are
in complex with an antigen. After filtering this dataset for redundancy, one
is left with less than 1500 structures for training, which limits the complexity
of the models that can be reliably trained without incurring in overfitting
(Clifford et al., 2022).
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Secondly, the available data is a biased sampling of the possible antibody-
antigen complexes. We see that most of the antigens are found only once
in the dataset, while others, because of medical or biological interest, have
been resolved in complex with as many as 43 (Dunbar et al., 2013) different
antibodies. This means that one cannot confidently annotate negative residues;
they might be part of antibody-antigen complexes yet to be solved.

Lastly, undersampling will also result in imprecise assessment of the tools’
accuracy; predictions that appear as false positives might just be part of com-
plexes yet to be solved. The last two points are typical of a class of problems
known as Positive-Unlabeled (PU) training. In this scenario, we are only confi-
dent of positive annotations, while all remaining samples should be treated as
unlabeled. Several approaches have been proposed for increasing the accuracy
of methods and their estimated metrics in such cases (da Silva et al., 2021;
Ren et al., 2015; Li et al., 2021). A simple yet effective strategy is to train
ensemble predictors based on bootstrapping of samples in the Unlabelled class
(Mordelet and Vert, 2014), also known as PU bagging, which is the approach
that we propose in this work.

With recent advances in protein structure prediction, AlphaFold2 (Jumper
et al., 2021) has enabled accurate prediction of protein structures directly from
sequences. Currently, over 200 million pre-computed structures are available
in AlphaFold DB (Varadi et al., 2021), covering every currently cataloged
protein in UniProt (Consortium, 2022). The three-dimensional coordinate of
the proteins, together with the local quality reported as pLDDT scores, are
readily accessible from the database.

To fully exploit such dramatic advancement in the availability of accu-
rate models, we need to create informative yet robust numeric representations
of both predicted and solved structures. The ESM-IF1 inverse folding model
is an equivariant graph neural network pre-trained to recover native protein
sequences from protein backbones structures (Ca, C and N atoms). This model
has been shown to outperform sequence-based representations on tasks such
as predicting binding affinity and change in stability (Hsu et al., 2022). Cru-
cially, ESM-IF1 is explicitly trained on both solved and predicted structures,
enabling large-scale application on AlphaFold predicted structures.

In this work, we train DiscoTope-3.0, a structure-based B-cell epitope
prediction tool exploiting inverse folding embeddings generated from either
AlphaFold predicted or solved structures. DiscoTope-3.0 is explicitly trained
on both predicted and solved antigen structures using an ensemble approach,
enabling large-scale prediction of epitopes even when solved structures are
unavailable. We compare the impact in performance when using predicted
structures versus solved structures, in both cases showing unprecedented accu-
racy. DiscoTope-3.0 is implemented as a web server and downloadable package
interfacing with both RCSB and AlphaFoldDB.
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2 Results

Fig. 1 Overview of the DiscoTope-3.0 method. Created with BioRender.com

The final training strategy for DiscoTope-3.0 is shown in Figure 1. First, epi-
topes from solved antibody-antigen complexes are mapped onto the antigen
sequences (1). Using sequences as input, antigen structures are predicted using
AlphaFold2 (2). Next, per-residue structural representations are extracted
using the ESM-IF1 protein inverse folding model (3 and 4). During training,
random subsets of epitopes and unlabelled residues are sampled across the
dataset (5), before finally training an ensemble of XGBoost models on the indi-
vidual data subsets (6). The final DiscoTope-3.0 score is given as the ensemble
average (7).

Here, we present a quick overview of the training procedure. More details
are available in the Methods section. DiscoTope-3.0 training and validation is
based on the BepiPred-3.0 dataset of 582 antibody-antigens complexes, cov-
ering a total of 1466 antigen chains IEDB (Vita et al., 2018). Epitopes are
defined as the set of residues within 4 Å of any antibody heavy atom (see
Methods). The training is based on 2 different datasets: Training and Valida-
tion, while evaluation is performed on the Validation and External Test set.
Briefly, we first removed any sequences with more than 20 % similarity to the
BepiPred-3.0 test set, resulting in 1406 chains. After clustering the chains at
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Fig. 2 Effects of inverse folding and bagging. Ablation results on the validation set
of AlphaFold predicted structures, with less than 50 % sequence similarity to the training
set. The plot reports the AUC-ROC for a single XGboost model trained on representations
based on ESM-2 650M parameter (blue) and on ESM-IF1 (orange), for an ensemble of 20
XGboost models based on bootstraps of ESM-IF1 representations (purple), for models where
additional structural features are included (see methods) tested on both AlphaFold models
(green) and on the corresponding solved structures (red) (see Methods). Error bars indicate
95 % confidence interval.

50 % similarity, we selected 1125 chains for training and 281 for validation.
The external test set consists of 24 antigens collected from SAbDab (Dunbar
et al., 2013) and PDB (Berman et al., 2000) on October 20, 2022. These anti-
gens share at most 20 % similarity to both our own, BepiPred and ScanNet’s
training datasets (see Methods).

In addition to using experimentally solved antigens for training, all indi-
vidual antigen chains were predicted using AlphaFold2. Both the solved and
predicted chains were then embedded with ESM-IF1. Further we extract for
each residue its relative surface accessibility (RSA), AlphaFold local quality
score (pLDDT) as well as the antigen length and a one-hot encoding for the
antigen sequence (see Methods). These structural features (or subsets) were
used to train an ensemble of XGBoost models and the ensemble average is
used as the final prediction score.

Structure-based embeddings have been shown to be a powerful repre-
sentation in different downstream tasks. To see if this is also the case for
B-cell epitope prediction, we evaluated the results obtained using different
feature encoding schemes on our validation set of AlphaFold structures (for
details on this data set refer to Methods). First, we assess whether training
a single XGBoost model using structure representations from predicted struc-
tures outperforms a similar model based on the sequence representations from
ESM-2 (Figure 2). Here, we observe a marginal but consistent epitope predic-
tion performance using the structure (AUC-ROC 0.767 ± 0.003) vs sequence
representations (AUC-ROC 0.751 ± 0.003) (p < 0.0001).

As explained in the introduction, the B-cell epitope prediction problem can
be categorized in the broad class of PU training. Incorrectly labeled negative



6 DiscoTope-3.0

examples can negatively affect the training, by introducing frustration in the
learning process (Dietterich, 2000). We can observe that, by using an ensemble
learning strategy with a dataset bagging approach based on previous works
(Huang et al., 2009; Elkan and Noto, 2008; Dietterich, 2000) (see Methods),
we can further improve performance (AUC-ROC 0.791) and generalization.

2.1 Effect of using predicted versus solved structures

One of the risks in training models on either solved structures or AlphaFold
predictions is that the methods might over-specialize to one source and per-
form significantly worse on the other, or even be affected by data leakage. For
example, a model may learn to identify conformational changes in the side
chains of epitope residues in solved structures, remaining after the binding
antibody is removed.

By training on both predicted and solved structures, we obtain a final
model which performs well on both structure types, with an AUC-ROC 0.799
for predicted structures (Figure 2), and 0.807 when predicting solved struc-
tures (Supplementary Figure S1). We note that training separate models,
namely using only solved or only predicted structures, does indeed improve
performance slightly when tested on the same class (AUC-ROC 0.813 and
0.805 respectively), but comes at added complexity. To simplify comparison
with other tools, we therefore chose the DiscoTope-3.0 version trained on both
structure types for further analysis.

2.2 Benchmark comparison to state-of-the-art methods

To further test the effect of using predicted versus solved structures, we used
the external test set of 24 antigens. These antigens share at most 20 % sequence
similarity to both our own, BepiPredm and ScanNet’s training datasets (see
Methods). The three tools use the same definition for epitope residues, thus
ensuring a fair comparison.

The precision and recall scores of the tools were calculated on this test set,
both on experimentally solved structures and their AlphaFold predicted coun-
terparts for DiscoTope-3.0 and ScanNet. As a reference, we also benchmark
BepiPred-3.0, which is purely sequence-based and independent of the different
structural variations, and a näıve predictor using relative surface accessibility
as its score.

The results of this evaluation are displayed in Figure 3. Here, DiscoTope-
3.0 outperforms ScanNet, both on predicted (AUC-PR 0.232 ± 0.020 vs 0.127
±0.011) and solved structures (0.223 ± 0.018 vs 0.157 ± 0.012). Our tool
performance is largely unaffected by the type of structures used for prediction.
To further test the robustness of the tools to minor differences in the antigen
structures, we performed an energy minimization on the solved structures using
the software FoldX (Schymkowitz et al., 2005). This minimization only impacts
the side chain, thus leaving the backbone of the native structure unaltered.
The ESM-IF model does not use the side chain atoms in its predictions, and
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Fig. 3 Improved performance on solved and predicted structures. AUC-PR curve
plots for DiscoTope-3.0 (blue), BepiPred-3.0 (green) and ScanNet (orange) on the external
test set of 24 antigen chains, at most 20 % similar to the training set of all models. Structures
provided as AlphaFold predicted, experimentally solved, or sequence in the case of BepiPred-
3.0. Standard deviation calculated from bootstrapping 1000 times (see Methods).

consequently our tool should not be affected by the relaxation process. Indeed,
we see that the performance of DiscoTope-3.0 is almost identical when shifting
between solved (0.223), relaxed (0.221) and modeled (0.232) structures. On
the other hand, ScanNet, despite being structure-based, was outperformed by
the sequence-based BepiPred-3.0 in the case of predicted structures (0.177 ±
0.015). It demonstrates a large drop in performance when shifting from solved
to predicted structures (0.157 vs 0.127), and a smaller yet significant drop on
relaxed structures (0.143). Similar trends were observed on the external test
set as evaluated with AUC-ROC (Supplementary Figure SS2).

A typical real-case scenario would be for users to submit individual anti-
gens, and then to analyze the top scoring epitope residues, regardless of the
specific score. The epitope rank score is a metric highly relevant for this case.
It analyzes what is the rank of an epitope residue predicted score when com-
pared to all the scores for the same antigen. Here, an epitope rank score of
70 % would mean that epitopes on average score in the upper 70th percentile.
Using this metric, DiscoTope-3.0 consistently outperforms both ScanNet and
BepiPred-3.0 in the case of predicted structures, while performing similarly to
ScanNet on solved structures (Figure SS3)). We observe that after side-chain
relaxation in solved structures, ScanNet’s epitope rank scores are reduced by
∼3.1 percentile points, while swapping solved for predicted structures leads to
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Fig. 4 Improved performance on linear and non-linear epitopes. External test set
mean epitope rank scores across the following epitope subsets: All labeled epitopes, Exposed
(RSA > 20 % relative surface accessibility, Exposed Linear epitopes and exposed Non-linear
epitopes (see text and Methods). Mean values calculated after bootstrapping 1000 times,
with error bars indicating 95 % confidence interval.

a loss of ∼7.5 percentile points (see Methods). In contrast to this, DiscoTope-
3.0 only lost ∼0.1 and ∼0.6 percentile points respectively, again indicating
robustness to the modeling process (Supplementary Figure S3, S4).

These observations can be at least in part explained by how structural
features are processed by the two models. DiscoTope-3.0’s structure repre-
sentations are generated from the protein backbone using ESM-IF1, making
it robust to the quality of side-chain modeling. ScanNet, on the other hand,
explicitly processes side-chain atomic coordinates. This may suggest a loss of
signal if side-chains are perturbed away from their bound conformation, or
structures are modeled in an unbound state.

2.3 Improved prediction on exposed and non-linear
epitopes

We also investigated if the structural information available to DiscoTope-3.0
and ScanNet affects the prediction of different kinds of epitopes. To this aim,
epitopes were split into different sub-categories (Exposed, Buried, Linear and
Non-linear). Exposed and Buried epitope residues are defined depending on
whether their relative surface accessibility was above or below 20 %, respec-
tively. Linear epitopes are defined as any group of 3 or more epitope residues
found sequentially along the antigen sequence, allowing for a possible gap of
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up to 1 unlabeled residue in between. Finally non-linear epitopes were defined
as epitopes not satisfying the conditions of the linear group.

The result of this performance evaluation in the external test set reveals
a better performance of DiscoTope-3.0 across all epitope subsets (Figure 4).
DiscoTope-3.0 performance is remarkably good for non-linear epitopes, where
ScanNet performs similarly to BepiPred-3.0. In the case of buried epitopes
(relative surface accessibility ¡20 %), all models score poorly in the 30-37th
percentile. This low performance is likely an artifact of the epitope labeling
process (shared between all tools), erroneously labeling buried residues in the
structural proximity of an exposed epitope residue as part of an epitope patch,
even though they are not directly involved in molecular interactions with the
antibody.

2.4 Effect of predicted structural quality

Next, we investigate how the quality of the AlphaFold predicted structures
affects the scores of exposed epitopes. Overall, lower structural quality leads
to a decrease in predictive performance (Figure 5). High quality structures
(pLDDT 95-100) have a mean epitope rank score of 84.2 %. As the structural
quality gets worse, the score also decreases to 81.2 and 75.5 % for antigens with
pLDDTs between 85-95 and 60-85, respectively (Figure 5A). Fitting a linear
regression model for pLDDT versus mean epitope rank score, we observe a 5
percentile point drop in epitope scores for every 10 point decrease in pLDDT
(Figure 5B), but it’s worth noting that over 94 % of antigens exceed a quality
of pLDDT 80.
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Fig. 5 Effects of predicted structural quality. Validation set performance on
AlphaFold predicted antigens dependent on predicted structural quality, excluding buried
epitopes. a) Epitope rank score distribution for antigens split into increasing quality bins of
mean antigen pLDDT 60-85, 85-95 and 95-100. Median value for each distribution is shown,
with paired one-tailed t-test comparison (** = p < 0.005). b) Mean antigen pLDDT versus
mean epitope rank score, with a fitted linear model shown in black. Below, cumulative dis-
tribution of mean antigen pLDDT, with a 91 % proportion exceeding a pLDDT of 85, and
35 % exceeding 95 respectively.
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2.5 Lysozyme case study with collapsed epitopes
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Fig. 6 DiscoTope-3.0 score significantly correlates with antibody hit rate.
Lysozyme epitope propensity as predicted by DiscoTope-3.0, excluding all lysozyme chains
from training. Increasing epitope propensity shown in red. a) PDB antibody hit rate mapped
AlphaFold predicted structure (chain 1a2y C) b) DiscoTope-3.0 score c) Epitope propensity
visualized across the PDB amino-acid sequence. Normalized DiscoTope-3.0 score and PDB
epitope counts shown, as measured from aligning the 12 epitope mapped lysozyme sequences
(Spearman R = 0.59).

As a noteworthy test case, we evaluate the performance of DiscoTope-3.0 on
lysozyme, a well-studied antigen extensively mapped against different antibod-
ies. First, we identified all lysozyme chains at 90 % similarity to the chain C
of the PDB structure 1A2Y, finding 12 chains that are in complex with anti-
bodies. Next, DiscoTope-3.0 was re-trained excluding these chains. Finally,
we compared DiscoTope’s epitope propensity with the residue PDB antibody
hit rate, calculated as the relative ratio of observed epitopes for each residue
across all the aligned sequences. This analysis is shown in Figure 6.

The results showed that increasing DiscoTope-3.0 scores for a residue were
associated with a higher probability of observing a bound epitope, as indicated
by a Spearman correlation coefficient of 0.59 and a significant linear trend
(Supplementary Figure SS5). Additionally, there was a significant improve-
ment in the performance of the model, as measured by the PR-AUC and
ROC-AUC, when most of the antigen surface had been mapped for epitope
binding. This emphasizes the underestimation of performance caused by under
labeling of epitope residues for most antigen structures.

We note that the residues at positions ∼30-40 (Figure 6) score highly in
DiscoTope but have no observed epitopes. Upon further investigation into the
IEDB database, we found this region to be part of a discontinuous epitope
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patch (including K31, R32, G34, D36, G37, G40 . . . ) bound by a camelid
antibody deposited under the PDB id 4I0C.

2.6 DiscoTope-3.0 web server

Fig. 7 DiscoTope-3.0 web server interface. The web server provides an interactive
3D view for each predicted protein structure. DiscoTope-3.0 score on an example PDB,
with increasing epitope propensity from blue to red. DiscoTope-3.0 is accessible at: https:
//services.healthtech.dtu.dk/service.php?DiscoTope-3.0

The DiscoTope-3.0 web server allows for rapidly predicting epitopes on either
AlphaFold2 predicted or solved structures. The web server accepts batches of
up to 50 structures at a time. Users may upload structures directly as PDB
files, or automatically fetch existing structures submitted as lists of RCSB or
AlphaFoldDB IDs. Output predictions are easily visualized through an inter-
active 3D view directly on the web server using Molstar (Sehnal et al., 2021).
Predictions may be downloaded in both a CSV and PDB format.

3 Discussion

In this work, we present the DiscoTope- 3.0 method for prediction of B-cell epi-
topes. The method exploits structural information obtained from AlphaFold
predicted and/or experimentally solved antigen structures, utilizing informa-
tive representations extracted by the ESM-IF1 inverse folding model. Extensive
benchmarking of the tool demonstrated state of the art performance on both
solved and predicted structures. Importantly this performance, in contrast to
earlier proposed structure-based models, was found to be maintained when
shifting to predicted and relaxed structures. This observation is of critical
importance since it removes the need for experimentally solved structures
imposed in current structure-based models and allows for predicted structures

https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0
https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0
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to be applied for accurate B-cell epitope predictions. This extends the applica-
bility of the tool from the few thousand antigens for which a solved structure is
available, to potentially any pathogen protein that can be structurally modeled
using AlphaFold-2.0.

Our tool displays a remarkable robustness when applied to structural mod-
els, and it is, to the best of our knowledge, the first tool that presents highly
accurate results (>0.75 ROC-AUC) on protein structural models. Unlike other
structure-based methods such as ScanNet, we find that structure representa-
tions based on the protein backbone are robust towards minor modifications
such as relaxation of the input structure side chains, and only marginally
affected by the quality of the structural models.

Finally, DiscoTope-3.0 interfaces with AlphaFoldDB and RCSB, enabling
rapid batch processing across all currently cataloged proteins in UniProt and
deposited solved structures. In the case of predicted structures, confidence in
predictions can be assessed by the antigen predicted quality. The web server
is made freely available for academic use, accepting up to 50 input structures
at a time.

Our tool has been trained and evaluated on individual antigen chains. One
could envision that, for multimeric antigen structures, it would be possible to
further increase the tool performance by training and testing on the antigen
complex. At this time, AlphaFold2 modeling accuracy for complexes is not yet
on par with its accuracy on individual chains, and predicted complexes are
not yet available in the AlphaFoldDB. As the science and technology behind
the structural modeling progresses, it will be likely possible to further improve
B-cell epitope predictions.

On the other hand, the PU learning strategy based on ensemble and bag-
ging we use displays a remarkable boost in performance. We can imagine
that, given the large dimension of the potential antibody space, the large gap
between potential and observed epitopes will not be easily filled. An alternative
strategy, that could circumvent this problem and provide valuable informa-
tion to users, would be to perform antibody-specific epitope predictions. This
approach has been tested by us and others in the past (Jespersen et al.,
2019; Krawczyk et al., 2014), but the results are yet to provide a significant
improvement in accuracy.

In summary, DiscoTope-3.0 is the first structure-based B-cell epitope pre-
diction model that accepts and maintains state-of-the-art predictive power on
predicted antigen structures. We believe this advance will serve as an impor-
tant aid for the community in the quest for novel rational methods for the
design of novel immunotherapeutics.
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4 Data and code availability

DiscoTope-3.0 web server, downloadable package and training datasets are
freely available for academic use.

• Web server DTU: https://services.healthtech.dtu.dk/service.php?
DiscoTope-3.0

• Web server Biolib: https://biolib.com/DTU/DiscoTope-3/
• Code availability: https://github.com/Magnushhoie/discotope3 web

5 Conflict of interest

The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential
conflict of interest.

6 Author contributions

MH, PM, MN contributed to conception and design of the study. MH, FG, JJ,
CW implemented the methodology and software. FG, MH implemented the
web server. MH, JJ, CW performed the statistical analysis and visualization
of results. MH, MN, PM wrote sections of the manuscript. PM, MN, OW
provided supervision. All authors contributed to manuscript revision, read,
and approved the submitted version.

7 Funding

This work was in part funded by National Institute of Allergy and Infectious
Diseases (NIAID), under award number 75N93019C00001. M.H.H. acknowl-
edges the Sino-Danish Center [2021]. Funding for open access charge: Internal
Funding from the University. Conflict of interest statement. None declared.

8 Methods

8.1 Training and evaluation of DiscoTope-3.0

The antigen training dataset as presented in BepiPred-3.0 was used as the
starting point for our work. The dataset consists of 582 AbAg crystal struc-
tures from the PDB, filtered for a minimum resolution of 3.0 Å and R-factor
0.3. Epitopes are defined as any antigen residue containing at least 1 heavy
atom within 4 Å of an antibody heavy atom. From this dataset, using the
tool MMseqs2, we first remove any sequences with more than 20 % sequence
identity to the BepiPred-3.0 test set, resulting in 1406 chains. Next, the anti-
gen sequences are clustered at 50 % sequence identity. Each cluster has then
been selected to be part of the validation (281 chains) or the training set (1125
chains).

https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0
https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0
https://biolib.com/DTU/DiscoTope-3/
https://github.com/Magnushhoie/discotope3_web
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In the ablation study, single XGBoost models (Chen and Guestrin, 2016)
with default parameters were trained using representations from either the
predicted structure or antigen sequence respectively. When testing feature
combinations, ensemble size and effect of training on solved and predicted
structures, error bars were estimated from re-training 20 times.

Hyperparameters for the XGBoost models were manually optimized using
the validation dataset. We used the final parameters n estimators=200,
max depth=4, learning rate=0.3 and subsample=0.50. The gpu hist tree
method was used for faster training on a GPU.

8.2 Dataset bagging and ensemble training

When sampling residues for each model in the ensemble, we randomly select 70
% of available observed epitopes (positives) across the training dataset, then
sample unlabelled residues (negatives) with a ratio of 5:2. When using both
predicted and solved structures, these were sampled at a 1:1 ratio.

Ensembles were constructed by iteratively training independently trained
XGBoost models on the randomly sampled datasets. When training an
ensemble, we set a different random seed each time.

8.3 Feature calculation and data filtering

Each isolated chain was processed as a single PDB file with ESM-IF1, extract-
ing for each residue its latent representation from the ESM-IF1 encoder
output. pLDDT values were either extracted from the PDB files in the case of
AlphaFold structures, or set to 100 for solved structures. In the case of train-
ing on both solved and predicted structures, we include a binary input feature
set to 1 if the input is an AlphaFold2 model, and 0 for solved structures.

Residue solvent accessible surface area was calculated using the Shrake-
Rupley algorithm using Biotite (Kunzmann and Hamacher, 2018), with default
settings, and converted to relative surface accessibility using the Sander and
Rost 1994 (Rost and Sander, 1994) scale as available in Biopython (Cock et al.,
2009).

When training DiscoTope-3.0, we removed any antigen with less than 5 or
more than 75 epitope residues, as well as PDBs with a mean pLDDT score
below 85. Residues with a pLDDT below 75. No data filtering was performed
during evaluation on the validation and external test datasets.

8.4 External test set evaluation

The external test set, used for comparing our tool to ScanNet and BepiPred-
3.0, consists of antigens deposited in SAbDab and the PDB after April 2021.
Any antigen with more than 20 % sequence identity to the training datasets
used in this work, in ScanNet, or in BepiPred-3.0 were removed. We annotated
epitopes using the same approach as in BepiPred-3.0, which is common to all
the tools.
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We submitted either solved or AlphaFold2 predicted structures to the
ScanNet web server (Tubiana et al., 2022a), using the antibody-antigen bind-
ing mode and otherwise default parameters. BepiPred-3.0 predictions were
generated from its online web server using the antigen sequence and default
parameters.

When evaluating DiscoTope-3.0 on the external test set, we retrained the
final model with an ensemble size of 100, on the full training and validation
sets, including both solved and predicted chains at a 1:1 ratio.

8.5 AlphaFold2 modeling and structural relaxation

Sequences for each antigen chain containing at least 1 epitope were extracted
and modeled with the ColabFold implementation of AlphaFold2 at default
settings. We picked the top ranking PDB after 5 independent iterations of 3
recycles, as ranked by AlphaFold2’s internal quality measure.

For relaxation of the solved structures we used the foldx 20221231 version
of FoldX, with the RepairPDB command for relaxing residues with bad torsion
angles, van der Waals clashes or high total energy.

8.6 Data analysis

To calculate the mean epitope rank score, the predicted residue scores for an
antigen were first ranked in ascending order. Next, we calculated the average
of the rank scores for all epitope residues.

Exposed epitopes were defined as all epitopes with a relative surface
accessibility exceeding 20 %, while the remaining epitopes were defined as
buried.

When reported, significance testing was performed with a one-sided paired
t-test using scipy.stats.ttest rel (Virtanen et al., 2020). The linear model
on the mean antigen pLDDT vs mean epitope rank scores was fitted using
scipy.stats.linregress with default parameters.

For confidence estimation with bootstrapping, the dataset was sampled
fully with replacement 1000 times, with the bootstrapped datasets used to
calculate means, epitope rank scores and standard deviation values.
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Fig. S1 Effect of ensemble size. Validation set gain in AUC-ROC from ensembling
the full-feature model. Performance graphs are shown for training on either experimentally
solved, AlphaFold predicted or both structures, and then evaluated on either the solved or
predicted structure validation set.
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Fig. S2 External test set AUC-ROC. Test set AUC-ROC, as evaluated on 24 antigens
modeled with AlphaFold. For PR-AUC see Figure 3.
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Fig. S3 External test set PDB performances. Evaluation on 24 antigens modeled
with AlphaFold (left) or experimentally solved structures (right). BepiPred-3.0 performances
on antigen sequences only.
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Fig. S4 DiscoTope-3.0 is robust towards modeling and relaxation. External test
set change in mean epitope rank scores across PDBs, when (a) swapping predicted structures
with their original solved structure or (b) solved structures with the same structure after
FoldX relaxation (see Methods). Mean performance loss shown in percent.
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