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Abstract1

Non-invasive evaluation of functional connectivity, based on source-reconstructed estimates2

of phase-difference-based metrics, is notoriously non-robust. This is due to a combination of3

factors, ranging from a misspecification of seed regions to suboptimal baseline assumptions, and4

residual signal leakage. In this work, we propose a new analysis scheme of source level phase-5

difference-based connectivity, which is aimed at optimizing the detection of interacting brain6

regions. Our approach is based on the combined use of sensor subsampling and dual-source7

beamformer estimation of all-to-all connectivity on a prespecified dipolar grid. First, a pairwise8

two-dipole model, to account for reciprocal leakage in the estimation of the localized signals,9

allows for a usable approximation of the pairwise bias in connectivity due to residual leakage10

of ‘third party’ noise. Secondly, using sensor array subsampling, the recreation of multiple11

connectivity maps using different subsets of sensors allows for the identification of consistent12

spatially localized peaks in the 6-dimensional connectivity maps, indicative of true brain region13

interactions. These steps are combined with the subtraction of null coherence estimates to14

obtain the final coherence maps. With extensive simulations, we compared different analysis15

schemes for their detection rate of connected dipoles, as a function of signal-to-noise ratio,16
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phase difference and connection strength. We demonstrate superiority of the proposed analysis17

scheme in comparison to single-dipole models, or an approach that discards the zero phase18

difference component of the connectivity. We conclude that the proposed pipeline allows for19

a more robust identification of functional connectivity in experimental data, opening up new20

possibilities to study brain networks with mechanistically inspired connectivity measures in21

cognition and in the clinic.22

1 Introduction23

The brain is considered to operate as a network of interacting, functionally specialized regions.24

The development and application of analysis tools to probe those interactions in the healthy25

human brain from non-invasive electrophysiological measurements has been an active area of26

research in the past few decades. Part of that work is grounded in the notion that interre-27

gional interactions may be reflected by statistical dependencies between band-limited signal28

components that can be picked up from locally activated brain areas. One way to quantify this29

so-called functional connectivity is to estimate some measure of relative phase consistency or30

phase synchrony (Varela et al., 2001), for instance using the coherence coefficient, or a derived31

metric (Bastos and Schoffelen, 2016). From a mechanistic point of view it has been hypoth-32

esized that consistent phase differences of oscillatory processes facilitate neuronal interactions33

by virtue of a mutual temporal alignment of cycles of increased neuronal excitability (Fries,34

2005, 2015; Bonnefond et al., 2017). In sum, connectivity estimates based on phase synchrony35

are a valuable metric in cognitive neuroscience.36

It is commonly agreed that, for interpretability, connectivity estimates should be assessed37

at the source level. This is because connectivity estimates are invariably confounded by spatial38

leakage (Schoffelen and Gross, 2009). Promising work from the early 2000s developed (Gross et39

al., 2001) and successfully applied (e.g., Pollok et al., 2005; Schoffelen et al., 2005) the Dynamic40

Imaging of Coherent Sources (DICS) technique, a frequency domain version of a beamformer41

for source reconstruction, to identify networks of phase synchronized brain regions based on42

the strong physiological periodicities during smooth finger movements in healthy participants.43

Further studies focused on synchrony at the frequency of Parkinsonian or essential tremor in44

clinical populations (Timmermann et al., 2003; Pollok et al., 2004). In the decades following45
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this early work, the research community has also started studying envelope correlations of46

band-limited signals instead of phase synchrony. This latter metric has been successfully used47

to identify properties of networks predominantly during the brain’s resting state, yielding a48

body of literature with well interpretable and consistent findings (Brookes et al., 2011; Hipp et49

al., 2012; Baker et al., 2014; Colclough et al., 2016; de Pasquale et al., 2016). Despite ongoing50

methodological work to improve source reconstruction (Dalal et al., 2006; Woolrich et al., 2011;51

Hillebrand et al., 2012; Nunes et al., 2020; Kuznetsova et al., 2021) and novel phase synchrony52

based connectivity metrics (Aviyente et al., 2011; Vinck et al., 2011; Ghanbari and Moradi,53

2020), neuroscientific findings employing phase synchrony seem to be more scarce and less54

consistent (Colclough et al., 2016; O’Neill et al., 2018).55

Assuming that metrics based on phase differences tap into fundamental mechanisms of56

brain organization and communication (Fries, 2005, 2015; Bonnefond et al., 2017), then why57

is it seemingly so difficult to find converging evidence across studies? One reason for this58

might be that the methodological adversities are larger than commonly assumed (Bastos and59

Schoffelen, 2016; Palva et al., 2018; He et al., 2019). One of those difficulties is spatial leakage,60

both from second party and third party sources, which renders the lower bound of the true61

connectivity unknown. Proposed techniques for leakage correction, on the other hand, might62

be too aggressive and also compromise or even remove the signal of interest. Furthermore,63

data quality might further impede the reliable estimation of phase difference: low signal-to-64

noise ratio (SNR) might hinder the reliable identification of seed regions of interest, while SNR65

differences across conditions occlude the interpretation of connectivity, since the estimation of66

phase-based connectivity measures is sensitive to SNR changes.67

In this paper, we propose a new method that tackles these problems. We propose to address68

the issue of suboptimal region of interest (ROI) or seed selection through consideration of the full69

6-dimensional all-to-all connectivity source space, using a two-dipole constraint beamformer.70

We further propose an estimation of the null coherence which approximates the bias in the71

coherence estimate and can be used to correct the output. Finally, we reduce estimation bias72

by aggregating over the results of many source reconstructions using sensor array subsampling,73

thereby creating a more stable and robust estimate.74

In the following, we will first introduce beamforming for source reconstruction and explain75

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527279doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527279
http://creativecommons.org/licenses/by/4.0/


the problem of spatial leakage in more detail. Then we will line out the components of our76

proposed beamforming approach.77

1.1 Beamformers for source reconstruction78

Non-invasive electrophysiological measurements (electric potential differences for electroen-79

cephalography (EEG) or magnetic fields (gradients) for magnetoencephalography (MEG)) re-80

flect a mixture of the temporal activation profiles from neural and non-neural sources. To81

disentangle the individual contributions of each of those sources to the spatiotemporal mixture82

in the observed signals, source reconstruction techniques can be applied. These techniques83

have developed into a valuable tool for the analysis of non-invasive electrophysiological signals84

obtained during cognitive experiments. Solving the so-called inverse problem by combining85

a forward model with additional assumptions, source reconstruction techniques aim to build86

models of the spatiotemporal characteristics of the neural generators that underlie the mea-87

sured signals, unmixing the observed channel-level data. The biologically plausible forward88

model (or gain matrix) describes the spatial distribution of the observed signals, typically for89

a set of equivalent current dipole sources. The additional model assumptions are necessary90

to constrain the number of solutions to the inverse problem, which in principle are unlimited.91

Adaptive beamformers are a class of source reconstruction techniques that do not a priori make92

explicit assumptions with respect to the number or location of active sources, but rather assume93

the underlying sources to be temporally uncorrelated. Usually, for each of a set of predefined94

source locations, a spatial filter is constructed under two constraints: 1) a unit gain constraint,95

which means that it should pass on all of the activity that originates from that specific loca-96

tion, and 2) a minimum variance constraint, which minimizes the variance of the reconstructed97

activity at each location. Mathematically, this linearly constrained minimum variance (LCMV;98

Van Veen et al., 1997) spatial filter is computed as follows:99

w⊤(r) = [h⊤(r)C−1h(r)]−1h⊤(r)C−1 , (1)

where w(r) is the spatial filter at source location r and ⊤ refers to the transpose operation.100

h(r) is the source location-specific gain vector (which can be thought of as a spatial fingerprint),101

and C−1 is the mathematical inverse of the channel covariance matrix. As an alternative to102
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the channel level covariance matrix, one can use a complex-valued cross-spectral density (CSD)103

matrix, based on the channel Fourier coefficients for a given frequency bin, resulting in the104

DICS algorithm (Gross et al., 2001).105

Beamformers have gained prominence as one of the most popular source reconstruction106

techniques because they typically provide relatively robust reconstructions of neural activity107

without the need of sophisticated parameter tweaking (Westner et al., 2022). However, some108

limiting factors exist with respect to functional connectivity. In the following, we will present the109

typical distortions when source reconstructing functional connectivity, as well as our approach110

to mitigate these.111

1.2 The effect of signal leakage on source connectivity estimates112

In the context of connectivity estimation, an important concept is that of signal leakage. This113

refers to the fact that each location’s estimated activity reflects an unknown mixture of the114

true activity at this location and signal contributions from distant noise sources of both neural115

and non-neural origin. Mathematically, this can be shown as detailed below.116

Considering the generative model of the sensor-level data, the sensor signals reflect a sum-117

mation of the underlying source signals, each multiplied by their spatial fingerprint:118

X =
I∑

i=1

h(ri, qi)si + N . (2)

Here, X is a number-of-channels by number-of-observations matrix with complex-valued119

Fourier coefficients, h is the gain vector for a dipolar source at location ri and with orientation120

qi, and si is a 1 by number-of-observations source activity vector, here assumed to be complex-121

valued, i.e., to reflect both amplitude and phase for the observations. N is a number-of-channels122

by number-of-observations matrix, reflecting the non-brain noise in the measured data.123

Assume that we have computed a pair of spatial filters, w1 and w2, and we use these124

spatial filters to compute an estimate of the source level Fourier coefficients: ŝ1 = w⊤
1 X, and125

ŝ2 = w⊤
2 X. From these estimates one can compute a connectivity metric, for instance the126

coherence coefficient, for this dipole pair:127
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coh =
|ŝ1ŝH2 |√

(ŝ1ŝH1 )(ŝ2ŝH2 )
, (3)

where H denotes the conjugate transposition. Note that for simplicity of notation, we omit128

the scaling with the number of observations, which drops out of the equation anyhow. We129

also note that a non-zero numerator in the equation above suggests linear dependence between130

the estimated sources 1 and 2. Below, we inspect this quantity, i.e., the cross-spectral density131

estimate between the two sources, in more detail.132

For the given pair of dipoles, and considering the data model X = h1s1 + h2s2 +N with N133

now reflecting all signal contributions to the observed data that are not originating from the134

two dipole pairs-of-interest, we can express the cross-spectral density estimate between the two135

dipoles as:136

ŝ1ŝ
H
2 = (w⊤

1 X)(w⊤
2 X)H

= (w⊤
1 (h1s1 + h2s2 + N))(w⊤

2 (h1s1 + h2s2 + N))H .

(4)

Introducing gij as a scalar value that results from computing the inner product between137

spatial filter wi and gain vector hj and which reflects the filter’s gain at location i for a source138

originating from location j, we obtain:139

ŝ1ŝ
H
2 = (g11s1 + g12s2 + w⊤

1 N)(g21s1 + g22s2 + w⊤
2 N)H . (5)

When using an inverse algorithm with a typical unit-gain constraint, w⊤
i hi = gii = 1, the140

above further reduces to:141

ŝ1ŝ
H
2 = (s1 + g12s2 + w⊤

1 N)(g21s1 + s2 + w⊤
2 N)H

= (s1 + g12s2)(g21s1 + s2)
H + (s1 + g12s2)N

Hw2 + w⊤
1 N(g21s1 + s2)

H + w⊤
1 NNHw2 .

(6)

In other words, for a given dipole pair, the estimated cross-spectral density between two142

sources does not only depend on the sources’ true cross-spectral density, but is also affected by:143

1. signal leakage from the other dipole-of-interest, specifically when g12 and g21 are non-144

negligible, cf. the leftmost term in the above equation145
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2. the interaction between the noise, projected through the spatial filter, and the sources’146

activity, cf. the middle two terms in the above equation147

3. the interaction between the projected noise at the location of the dipoles, cf. the rightmost148

term in the above equation149

Note, that the above reasoning is independent of the exact inverse algorithm used. The150

different types of leakage will also affect the estimates of the individual dipoles’ power. Leakage151

will always cause misestimation of metrics that are derived from the estimated source level152

quantities. This also applies to spatial maps of connectivity, which are typically constructed153

using a limited number of predefined seed dipole locations. Local maxima in these spatial maps154

(which are either expressed as a difference between two experimental conditions or in relation155

to a baseline) are then interpreted as regions that are functionally connected to the seed dipole.156

Irrespective of the specific connectivity metric used, spatial structure in these maps due to157

leakage may lead to inference of false positive connections. Furthermore, true connections may158

be missed altogether, if the seed dipoles have been misspecified by the researcher.159

1.3 Alleviating the effect of leakage160

In order to address some of the problems associated with leakage, it has been proposed to use161

connectivity metrics that disregard the interaction along the real-valued axis (e.g., the imagi-162

nary part of coherency (Nolte et al., 2004) or the multivariate interaction measure (MIM, Ewald163

et al., 2012)), or to remove the instantaneous leakage originating from one or more dipoles prior164

to estimating the connectivity on the residuals (Brookes et al., 2012; Hipp et al., 2012; Col-165

clough et al., 2015; Wens et al., 2015). Although these adjustments avoid an overinterpretation166

of leakage-affected findings, the sensitivity to true signal interactions at small phase differences167

is diminished. In addition, these leakage correction schemes do not eliminate the necessity to168

statistically evaluate the estimated connectivity against a well-defined null hypothesis. This169

step is usually not straightforward since an appropriate baseline is not available: either because170

of differences in the signal specific to condition or subject group (see e.g., Bastos and Schof-171

felen, 2016), or because of the absence of a baseline condition altogether (e.g., in single group172

resting-state studies). Finally, in a context where seed-based connectivity maps are evaluated,173

there is no guarantee that the seed regions have been appropriately specified.174
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In this work, we propose an analysis scheme of source level connectivity (here expressed as175

the coherence coefficient), accounting as much as possible for the effects of leakage but without a176

reduction in sensitivity for true interactions at small phase differences. Moreover, we will derive177

estimates of a usable lower bound of the estimated coherence between dipole pairs, which can be178

used as a correction to more accurately evaluate spatial maps of connectivity, thus avoiding the179

issues associated with inappropriate or absent baseline conditions. Using extensive simulations,180

we show superiority of our analysis scheme in comparison to other approaches.181

1.4 Proposed analysis approach182

The analysis approach we outline in this paper consists of several elements: We make use of183

a two-dipole constraint beamformer (Dalal et al., 2006; Brookes et al., 2007; Schoffelen et al.,184

2008; Moiseev et al., 2011), approximate and correct for the estimated bias due to noise leakage,185

and embed the approach in a sensor array subsampling scheme. Below, we will discuss all those186

elements in more detail.187

Two-dipole constraint beamformer and bias estimate The approach is based on an all-188

to-all approach, where coherence is estimated between all pairs of beamformer reconstructed189

dipoles defined on an evenly spaced 3-dimensional grid, covering the entire brain. Using a190

two-dipole constraint in a beamformer formulation, we compute pairwise spatial filters that are191

not corrupted by zero lag correlations for the dipole pair under consideration. A beamformer192

with two dipoles in its spatial passband has an identity gain constraint:193

W⊤H =

w⊤
1

w⊤
2

 [h1h2] =

g11 g12

g21 g22

 =

1 0

0 1

 . (7)

As a consequence, the equation that expresses the estimated pairwise dipolar cross-spectral194

density reduces to the below equation, in analogy of the model formulation as used in the195

previous section:196

ŝ1ŝ
H
2 = s1s

H
2 + s1N

Hw2 + w⊤
1 NsH2 + w⊤

1 NNHw2 . (8)

Under the assumptions that the cross terms between the noise (i.e., the part of the measured197
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signal that does not originate from the locations of interest) and the considered sources is198

negligible, and if the noise covariance is assumed spatially white (a scaled identity matrix),199

then the above equation reduces to:200

ŝ1ŝ
H
2 = s1s

H
2 + σw⊤

1 w2 , (9)

where σ is a scalar parameter. Under the described (yet most likely often violated) assump-201

tions, if the true interaction strength between the two dipoles is zero, s1s
H
2 in eq. 9 will be202

zero. Thus, the estimated cross-spectral density between the two sources may be approximated203

with a scaled version of the spatial filters’ inner product, σw⊤
1 w2, where the scaling parameter204

is a function of the pair of source locations. From this follows, that the scaled spatial filter205

inner product can be used as an approximation of the bias in estimated connectivity under206

the assumption of no interaction between the considered sources. Pragmatically, we propose207

to assume the scaling parameter to be fixed for a given seed dipole (i.e., keeping one of the208

dipoles in the pair fixed, and scanning through the dipole grid for the other dipole of the pair),209

and thus allow for its estimation by fitting a regression line through a two-dimensional point210

cloud, which reflects on one dimension the estimated cross-spectral density between the seed211

dipole and all other dipoles, and on the other dimension the inner product between the seed212

dipole’s spatial filter and the other dipoles’ spatial filters. Repeating this fitting procedure for213

all dipoles and normalizing by the product of the estimated power yields a 6-dimensional vol-214

ume of null-coherence estimates, which can be used to subtract from the estimated coherence215

(cf. Fig. 1B). The resulting 6-dimensional differential map can subsequently be post-processed216

(e.g., thresholded) and inspected for local maxima, which might be indicative of truly interact-217

ing dipoles.218

Array subsampling As will become clear below, these difference maps may still be spatially219

noisy, resulting in false positive connections (i.e., local maxima that do not reflect interacting220

dipoles), and true connections being missed (i.e., reconstructed connectivity between locations221

close to interacting dipoles not presenting as local maxima). To further reduce the spatial222

noise in the images, we propose a sensor array subsampling approach (Schoffelen et al., 2012;223

Westner et al., 2015; Westner, 2017). We estimate the 6-dimensional differential connectivity224

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527279doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527279
http://creativecommons.org/licenses/by/4.0/


map multiple times, each time using a different random subset between 50 and 150 sensors for225

the reconstruction (cf. Fig. 1C). Although the reconstructions with fewer sensors may have a226

compromised spatial resolution, the spatial noise will be variable across reconstructions and227

thus average out, while the true interactions will show up more consistently. This scheme is228

akin to the idea of Ensemble Methods in machine learning, where the aggregation of many229

weak learners leads to a strong model with reduced variance (Breiman, 1996).230

2 Methods231

All simulations and reconstructions were performed in MATLAB (version 2021b) on a Linux232

operated High Performance Compute cluster, using FieldTrip (Oostenveld et al., 2011) and233

custom written code.234

2.1 MEG sensor data simulations235

MEG sensor space complex-valued data matrices were simulated from source space activity,236

based on a 275-channel axial gradiometer CTF system, as a combination of an ‘ideal’ sensor-237

level signal data matrix Xs and a noise data matrix Xn. These Nsensor × Nobservation matrices238

reflect the Fourier coefficients (i.e., amplitude and phase information) computed for a given239

frequency. For the noise matrix we used a multitaper spectral estimate of a frequency band240

centered around 10 Hz from a 50 second empty room measurement, recorded at the Donders241

Centre for Cognitive Neuroimaging. The empty room data were segmented into 1 second242

epochs and spectrally transformed, using a multitaper smoothing parameter of ± 4 Hz (7243

tapers per segment), which resulted in a 268 × 350 noise matrix. The number 268 reflects the244

number of active SQUIDs at the time of the empty room measurement, 350 the number of245

observations (Nepochs × Ntapers). The signal data matrix was constructed using the generative246

model Xs = HS, using a precomputed forward model H (see below), and an Nsource×Nobservation247

matrix S. The source signals were simulated using MATLAB’s mvnrnd function, generating248

multivariate Gaussian data, with a mean of 0, and a parametrized covariance (cross-spectral249

density) matrix, defined as:250
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A :  S E N S O R  D ATA  S I M U L AT I O N S

B :  S O U R C E  C O H E R E N C E  R E C O N S T R U C T I O N

locations of active sources
(n=20), forward model from
(Haufe & Ewald, 2019)

source interactions

+ =

ideal sensor cross-spectral
density (csd) emptyroom noise csd simulated sensor csd

(1−α)α

a2
1

a2
2

ρeiϕ

ρe-iϕ

ρ = coherence strength
ϕ = phase difference
a1,...,an = source amplitude
α = signal-to-noise ratio parameter
 

coherence 
estimated bias
‘null’ coherence 

- =

difference map

each column is a 
volume relative to
a seed dipole

high values around diagonal
reflect ‘seed blur’

bias estimate based on
volume-based scaling of
spatial filters’ correlation

local maximum,
true interaction

local maximum,
spurious interaction

beamformer
procedure

=)1/N ( +++

C :  S E N S O R  A R R AY  S U B S A M P L I N G

post processing of 6D maps according to
Schoffelen & Gross 2011

Figure 1: Simulation and algorithm details. A Setup of sensor data simulation, illustrating
the interacting and non-interacting sources and signal-to-noise ratio. B Estimation of the null
coherence across space and the computation of the difference maps. C Illustration of the sensor
array subsampling procedure with a varying number of sensors among realizations.
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diag(a, a, (1 − a), . . . , (1 − a))



1 ρ eiφ 0 · · · 0

ρ e− iφ 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


diag(a, a, (1 − a), . . . , (1 − a)) , (10)

where ρ reflects the intended coherence coefficient between the first 2 sources and φ re-251

flects the phase difference. a reflects a relative amplitude parameter, determining the rela-252

tive amplitude of the connected dipoles in relation to the other active sources such that the253

relative strength between connected dipoles and active sources can be computed as a/(1 −254

a), i.e., a relative amplitude of 0.8 yields the connected dipoles being four times stronger255

than the other active sources. The procedure for simulating the sensor space data is illus-256

trated in Figure 1A. For gain matrix H, we used a precomputed forward model, as described257

in Haufe and Ewald (2019) and the Biomag conference 2016 data analysis challenge (see258

https://bbci.de/supplementary/EEGconnectivity/BBCB.html). Briefly, source locations259

were sampled from a cortical segmentation based triangulated mesh, originally consisting of260

2004 positions. A three-shell boundary element method (BEM) had been used to compute the261

forward solution for the 2004 dipoles with an orientation perpendicular to the cortical sheet,262

using Brainstorm (Tadel et al., 2011). For the simulations presented here, sets of 20 positions263

were randomly selected from a subset of 820 positions. This subset was created based on the264

norm of the gain vectors for the orientation-constrained dipoles placed at those positions: We265

excluded candidate locations for which the sensor array was relatively insensitive, e.g., deep266

dipoles in the midline, or dipoles with an unfavorable orientation. The matrices Xn and Xs267

were scaled with the Frobenius norm of their respective cross-spectral densities (XXH) and268

linearly combined using:269

X = σXs + (1 − σ)Xn , (11)

where σ is a parameter that determines the signal-to-noise ratio. Table 1 summarizes the rel-270

evant parameters for the simulations and the values used to explore the different reconstruction271
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approaches.272

parameter values

# of active sources 20 in 100 different configurations
σ, signal-to-sensor-noise 0.5*, 0.6
a, amplitude relation 0.5*, 0.7, 0.8*
ρ, coherence coefficient 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
π, phase difference 0, (2/17)π, (4/17)π, (8/17)π, (16/17)π

Table 1: Simulation parameters. Values marked with asterisks denote values for which the
outcomes are reported in the supplementary material.

2.2 Beamformer source reconstruction and coherence estimation273

For source reconstruction we used a forward model defined on a regularly spaced 3-dimensional274

dipole grid (with a spacing of 8 mm). The brain compartment of this grid consisted of 4416275

dipoles and was defined by the same anatomical MRI as the one used for the simulations’ forward276

model. For the reconstructions’ forward model, we used a single shell model as implemented277

in FieldTrip (Nolte, 2003). Our detailed analysis required the computation of 44162 pairs278

of spatial filters for many iterations of sensor array subsamples (we used 100 subsamples per279

simulation) over 8000 parameter combinations. Thus, we had to estimate over 15 trillion spatial280

filters in total. We wrote custom code for the efficient computation of the spatial filters and281

the derived coherence. All beamformers were computed with FieldTrip’s fixedori constraint,282

which computes a fixed orientation forward model for each dipole, based on the maximization283

of the beamformer’s output power (Sekihara and Nagarajan, 2008).284

3 Results285

3.1 Illustrative example and null coherence estimation286

This section illustrates our proposed approach. Figure 2A shows the spatial configuration of287

one instantiation of the simulation, where 20 dipole locations were randomly selected to reflect288

the active sources. Two of these sources (the bigger, orange dots in the figure, here denoted as a289

medial superior frontal (MSF) and left occipital (LO) source) reflect the interacting dipoles. To290

illustrate the potential issues related to spatial leakage, we start by investigating different seed-291
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based maps. In this example, we simulated the interaction to be at a phase difference of (8/17)π292

and the coherence strength to be 0.5. For illustration purposes we computed these seed-based293

results on a 4 mm grid, but for the reconstruction of all pairwise interactions we used an 8294

mm grid. For this example, we also simulated data using identical source parameters as for the295

above simulations, apart from the coherence strength, which was set to zero. This simulation296

was intended to reflect a perfect baseline, where everything except the interaction strength297

was kept constant. We start the illustration using a traditional single dipole beamformer.298

Figure 2B shows the seed-based estimate of coherence for truly interacting sources, using as299

a seed the grid position that was closest to the MSF source (indicated with a white square).300

Figure 2C shows an estimate of the coherence for the scenario in which the dipoles were not301

connected. Both estimates are dominated by the well-known seed blur, but also show a small302

local maximum in the vicinity of the LO source (indicated with a red square) for the case of303

the true connectivity (Fig. 2B). The difference image (Fig. 2E) shows an effective suppression304

of the leakage close to the seed location. Yet, there is considerable spatial structure in the305

residual image, and although there is a local maximum in the vicinity of the LO source, there306

are also other maxima in this image that may be mistaken for interacting sources. In many307

practical situations, an appropriate baseline condition is not available. This motivated us to308

estimate the ‘null’ coherence based on the scaled inner product of the spatial filters (as described309

above), assuming this scaling to be fixed for a given seed dipole, and the noise to be spatially310

white and uncorrelated with the sources. Figure 2D shows the computed null coherence for311

our illustrative example. The null coherence map shows considerably more structure than the312

baseline condition in Figure 2C, and thus, the difference map between the coherence and null313

coherence (Fig. 2F) also exhibits more substantial structure than the difference map with the314

baseline condition (Fig. 2E). Specifically, the seed blur does not seem to be very well accounted315

for given the difference map’s local maximum in the vicinity of the MSF seed region. However,316

the local maximum in the vicinity of the LO source is more prominent in this figure than in317

Figure 2E.318

Before exploring the usage of different beamformer analysis schemes to improve the connec-319

tivity results from Figure 2, let us note that Figure 2 considered a situation in which the seed320

dipole for the connectivity estimation was well chosen, i.e., it coincided roughly with one of the321
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coherence

A Source configuration

E Difference map B-CD Null coherence estimate

coherence difference

F Difference map B-D

B True connectivity C No connectivity

coherence

A Source configuration

E Difference map B-CD Null coherence estimate

coherence diff

F Difference map B-D

B True connectivity C No connectivity

Figure 2: Illustrative example. A Spatial configuration for simulation. Shown are 20 ran-
domly selected dipole locations of active sources (small white dots) and the two truly interacting
sources (bigger orange dots). B Estimated coherence for true connectivity using a single dipole
beamformer. The white square denotes the seed, coinciding with one of the interacting sources.
The red square denotes the location of the connected dipole. C Same as B, but with no under-
lying interaction. D Estimate of null coherence for the same data. E Difference map of B and
C, black squares denote the interacting dipoles. F Difference map of B and D.
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truly interacting sources. In the analysis of experimental data, seed locations are not known a322

priori, thus one might happen to choose locations that are not truly interacting. In this case,323

the high spatial structure in the null coherence maps is replicated even for non-interacting324

seeds, which evidently would be problematic for real data analysis. This effect is illustrated in325

supplementary Figure S1.326

3.2 Two-dipole beamformer and array subsampling327

At this point, one may argue that the suggested null coherence estimate is impractical to use,328

given the large amount of residual noise in the difference images (cf. Figures 1 and S1). In329

other words, the spurious connectivity estimated between two locations is poorly approximated330

just by computing the spatial leakage of projected spatially white sensor noise, at least when331

using a single dipole beamformer formulation. As motivated in the introduction section, the332

use of a two dipole-constraint in the beamformer formulation may reduce some of the leakage333

terms in equation 6, leading to a null coherence estimate that is better behaved. In addition,334

sensor array subsampling allows for multiple (although possibly degraded) estimates of the335

true structure in the data, while unstructured noise is averaged out when aggregating those336

estimates. Let us further investigate if the scaled spatial filter inner product might be an337

appropriate estimate for spurious source interactions when using those alternative beamformer338

approaches. Figure 3A revisits the results from Figure 2F, plotting the estimated null coherence339

(x-axis) against the estimated coherence (y-axis) for all dipoles in the stimulation with the values340

for the interacting dipole pair highlighted with the yellow square. Figure 3B and C show the341

results for the same single dipole beamformer approach but with the other truly interacting342

source and a source between the two truly interacting sources as seeds, respectively. Ideally,343

for non-interacting dipoles, the data points should cluster on a line around the diagonal, while344

the data point(s) corresponding to the truly interacting dipoles should be clearly above the345

diagonal. Comparing the single dipole beamformer (Figure 3A and B) with the two-dipole346

beamformer (Figure 3D and E) for the truly interacting dipoles suggests that, overall, the347

data points cluster more nicely around the diagonal line in the two-dipole beamformer case.348

Figure 3G-I depict the results of the subsampling approach. To this end, the average across349

subsamples of the estimated coherence and null coherence was normalized with the standard350
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deviation of their difference. Here, the subsampling boosts the detectability of the interacting351

dipole pair, by making it stand out clearly from all other dipole pairs. Also, for seed dipoles in352

inactive and non-interacting locations (bottom row), the spread of the data points around the353

diagonal is much more comparable across the different seed dipoles for the subsampling-based354

reconstruction. In contrast, when no subsampling is used, the deviations from the diagonal355

are substantially larger for the inactive seed dipole as compared to the active and interacting356

seed dipoles. This suggests that the magnitude of the spatial noise in the difference images357

varies considerably, depending on the choice of the seed dipole, and that the approach of array358

subsampling mitigates this effect by aggregating the results of many different noise realizations.359

3.3 Evaluating all-to-all pairwise coherence360

To formally evaluate how the spurious spatial structure in the seed-based connectivity maps361

interacts with accurate detectability of the true interactions, we constructed and evaluated the362

all-to-all pairwise coherence matrix (Schoffelen and Gross, 2011). Here, each of the dipoles in363

the grid serves as a seed dipole to all other dipoles. After the subtraction of an estimate of364

the null coherence, the resulting 6-dimensional volume of difference in coherence is thresholded,365

using a relative threshold keeping the N% largest values. We explored the following values of N,366

with the corresponding number of unique supra threshold edges in parentheses: 5% (9.8×105),367

1% (1.95 × 105), 0.5% (9.8 × 104), 0.1% (1.95 × 104), 0.05% (9.8 × 103), 0.01% (1.95 × 103),368

0.005% (975), 0.001% (195), 0.0005% (98).369

The thresholded maps are subsequently analyzed for the presence of clusters of spatially370

connected dipoles in 6-dimensional space. Such clusters are considered to reflect a potential371

long-distance interaction if they consist of two dipole assemblies that are spatially distinct372

from each other. Clusters that contain auto-connections, i.e., dipoles that are present in both373

assemblies of the connection, are discarded from further inspection. If the simulated interacting374

dipoles fall within the identified clusters, it is considered a hit. All remaining clusters are375

considered false positives. It should be noted that the number of false positives evidently will376

increase with a decreasing threshold when using a relative thresholding scheme as we do here.377

The total number of false positives further depends on the blurriness of the spatial noise and378

the degree of auto-connectedness in the data.379
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C Seed: inactive, between LO and MSF F Seed: inactive, between LO and MSF I Seed: inactive, between LO and MSF

H Seed: Medial superior frontal 

G Seed: Left occipitalD Seed: Left occipital

E Seed: Medial superior frontal

A Seed: Left occipital

B Seed: Medial superior frontal 

Single dipole beamformer Two-dipole beamformer Two-dipole subsampling BF

Figure 3: Comparing different beamformer approaches. A-C Single dipole beamformer
with A seed close to truly interacting source in left occipital cortex (LO), B seed close to truly
interacting source in medial superior frontal cortex (MSF), and C seed in a non-active dipole
located on the line between interacting dipoles LO and MSF. D-F Two-dipole beamformer.
G-I Two-dipole beamformer with array subsampling. The values for the interacting dipole pair
highlighted with the yellow square.
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Figure 4 shows the clusters with the smallest distance to the simulated interacting dipole380

pair, and the number of distinct connections, for each of the different thresholds applied. Using381

a single dipole beamformer (Fig. 4A), the true connection can be correctly identified in three382

out of the nine thresholding schemes (marked with a red frame). This, however, comes at the383

expense of additional false positive connections, ranging in number from 70 to 128. Thus, in384

this relatively favorable context – where coherence is large and the phase of the interaction is385

close to 90 degrees, i.e., with only a minor instantaneous correlation between the two sources386

without the potential corresponding distortion of the beamformer due to correlated sources –387

the actual connection may be correctly identified, but one has to be prepared to accept an388

additional large number of false positives.389

A Single dipole beamformer B Two-dipole subsampling beamfomer

Figure 4: All-to-all pairwise coherence. Shown are the results at different cluster thresholds
for the single dipole beamformer (A) and the two-dipole beamformer with array subsampling
(B). Each result also lists the number of identified connections. Thresholds at which the truly
interacting dipole pair was successfully identified are marked by a red frame.

Figure 4B shows the spatial clusters closest to the interacting dipole pair for the subsampling-390

based reconstruction. Here, the interacting sources are correctly identified in the five highest391

thresholding schemes (marked with red frames), with a considerable reduction in the number of392

false positives as compared to the single dipole beamformer output in Figure 4A. The number393

of false positives drops to one or none for the highest two thresholds applied. As an alternative394

to analyzing the difference in coherence with an approximation of the estimated bias under the395
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assumption of no coherence, one can also investigate the magnitude of the imaginary part of396

the reconstructed coherency. Figure S2 in the supplementary material replicates the results397

from Figure 2A (using a single dipole beamformer) for the imaginary part of coherency. With398

increasing threshold, the true connection can still be reliably identified and the number of false399

positives drops to only two for the highest two thresholds tested. Importantly, however, the400

usefulness of the imaginary part of coherency is limited to situations in which the phase dif-401

ference of the interaction is pointing away from 0 or 180 degrees. Figure 5 shows the results402

for the same interacting dipole pair as in all previous examples, which are now interacting at a403

phase difference of zero. The subsampling approach (Fig. 5B) is still capable of detecting the404

interacting dipole pair at high thresholds, whereas the imaginary part of coherency approach405

(Fig. 5A) now fails at higher thresholds. Therefore, the subsampling approach with a two-dipole406

beamformer seems to work well regardless of the phase difference of the interacting dipole pair.407

A Single dipole beamformer, imaginary coh. B Two-dipole subsampling beamfomer

Figure 5: Impact of 0 degree phase shift. Results for interacting sources where the phase
of the interaction is 0 degrees for the beamformer with the geometric correction scheme, which
focuses on the imaginary part of coherency (A) and the two-dipole beamformer with array
subsampling (B). Each result also lists the number of identified connections. Thresholds at
which the truly interacting dipole pair was successfully identified are marked by a red frame.
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3.4 Full simulation results408

To test our proposed approach more thoroughly and to substantiate the illustrative results409

discussed so far, we employed an exhaustive simulation. Here, we compare the array subsam-410

pling two-dipole beamformer approach to three other approaches: the traditional single dipole411

beamformer, the two-dipole beamformer without subsampling, and a beamformer without sub-412

sampling, using a geometric correction scheme, proposed by Wens et al. (2015). This correction413

scheme uses a spatial projection heuristic to remove instantaneous leakage from a seed location’s414

estimated activity from all target locations’ estimated activity. In practice, this results in the415

real-valued component of the interaction between the seed and target dipoles to be suppressed,416

leading to a purely imaginary-valued coherency value. Therefore, in the below, we refer to this417

last strategy as the reconstruction of the imaginary part of coherency. We evaluate the source418

reconstruction results based on hit rate, i.e., how often the chosen approach correctly identified419

the true interacting dipole pair. Fig. 6 shows the simulation results for a relative amplitude of420

a = 0.7, thus, the interacting sources were 2.333 times stronger than the other active sources421

(for the results for a = 0.5 and a = 0.8, we refer the reader to supplementary Figures S3 and422

S4, respectively). The results reported in the paper are based on a signal-to-sensor-noise ratio423

of 0.6, the results for an SNR of 0.5 are reported in supplementary Figures S6-S8.424

Fig. 6 depicts the hit rate as a function of simulated coherence strength, and phase difference,425

for the different reconstruction strategies. We first considered the situation in which application426

of at least one of the thresholds < 0.01% resulted in the detection of the dipole pair that was427

chosen for the interaction (to define a hit, we allowed the summed distance of the simulated428

dipoles to the closest voxel in the suprathreshold clusters to be at most 2 cm). Overall, the429

performance of the single dipole approach (Fig. 6A) was quite poor, with the hit rate —430

as a function of coherence strength and phase difference — rarely exceeding 40%. Only at431

unrealistically high coherence strengths > 0.6 was the detection rate larger than 50%, and even432

then only at phase differences close to 90 degrees. The two-dipole approach (Fig. 6B) fared433

better, specifically for coherence values larger than 0.4. The single dipole beamformer using434

imaginary coherency (Fig. 6C) generally showed better performance, already at lower coherence435

values, but this performance was highly dependent on the phase difference of the interaction,436

where interactions with a phase difference close to 90 degrees were more readily detectable,437
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reaching a hit rate of > 90% in some situations. When the phase difference of the interaction438

was close to 0 (or 180) degrees, however, the detection rate at higher coherence values was439

only slightly higher than for low coherence strengths, compared with the single and two-dipole440

approach. The array subsampling beamformer (Fig. 6D) overall performed best. Even though441

the maximum detection rate was not as high as in some situations using the imaginary part of442

coherency (i.e., coherence > 0.5 and phase difference close to 90 degrees), the detection rate at443

a moderate coherence of 0.3 already exceeded 60%, independent of the phase difference. Thus,444

the array subsampling two-dipole beamformer outperforms the other approaches for almost all445

parameters, specifically considering the fact that physiologically realistic neuronal interactions446

are not constrained to phase differences close to 90 degrees, nor are those interactions restricted447

to high coherence values. The findings depicted in Fig. 6 are at large supported by the results448

of other amplitude and SNR values, as supplementary Figures S4 and S6-S8 illustrate.449

Notably, in the absence of simulated true coherence, the different reconstruction approaches450

resulted in a variable amount of false positive connections in the direct vicinity of a pair of ac-451

tivated dipoles (see the leftmost set of bars in each of the panels in Fig. 6). For the imaginary452

part of coherency this type of false positive connection was present in about 30% of the sim-453

ulations, and for the proposed subsampling approach the percentage of occurrence was about454

10%. In general, the occurrence of false positives is the consequence of the fact that we used a455

relative thresholding scheme to investigate the spatial structure of the reconstructed connectiv-456

ity maps. By construction, and irrespective of the numeric value of the connectivity estimates,457

the relative thresholding scheme always results in a collection of suprathreshold edges in the458

connectivity maps, which may be spatially clustered, and interpreted as interacting sources.459

Based on the spatial smoothness of the connectivity maps, and the number of suprathreshold460

edges, the number of false positive connections will vary as a function of the chosen thresh-461

old. Fig. 7 shows the number of false positives versus the hit rate in a so-called Free-response462

Receiver-Operating-Characteristic (FROC), as a function of the detection threshold and for a463

relative amplitude of a = 0.7. On each of the lines, the threshold is increasing from left to464

right. For all but the subsampling reconstruction method, the optimal — yet still quite low465

— sensitivity was reached at a threshold that yielded close to 100 false positive connections on466

average. For the subsampling reconstruction method, the highest sensitivity was compromised467
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Figure 6: Detection rate for interacting dipole pairs. Results from the full simulation,
showing the hit rates for the interacting dipole pair as a function of simulated coherence strength
and phase difference. The relative amplitude of the interacting sources and the other sources was
a = 0.7, i.e., the interacting sources were 2.333 times stronger than the other active sources.
The SNR was 0.6. A Traditional single dipole beamformer. B Two-dipole beamformer. C
Single dipole beamformer using imaginary coherence. D Two-dipole beamformer with array
subsampling.
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by about 10 to 20 false positive connections on average. Although this still may seem a rather468

high false positive rate, it is substantially lower than the false positive rate for the other ap-469

proaches tested. The FROC curves for relative amplitudes of a = 0.5 and a = 0.8 can be found470

in the supplementary material (Fig. S5) and show very similar patterns. For an SNR of 0.5, the471

results are reported in supplementary Figure S9 and at large support the findings for an SNR of472

0.6, except for at a low relative amplitude of a = 0.5, the only parameter combination for which473

the two-dipole subsampling beamformer does not clearly outperform the other algorithms.474
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Figure 7: Free-response Receiver-Operating-Characteristic. Hit rate plotted against the
number of false positive connections at a relative amplitude of a = 0.7.

4 Discussion and future directions475

Brain connectivity plays a central role in many prevalent hypotheses on brain functioning and476

organization (Fries, 2005; Jensen and Mazaheri, 2010; Fries, 2015; Bonnefond et al., 2017).477

Thus, the estimation of functional connectivity based on electrophysiological processes is a478

necessary tool for the experimental assessment of those theories. Over the years, many different479

measures of brain connectivity have been put forward (Aviyente et al., 2011; Vinck et al., 2011;480

Ghanbari and Moradi, 2020) and the methods to apply these have been refined (Dalal et al.,481

2006; Kuznetsova et al., 2021; Woolrich et al., 2011; Hillebrand et al., 2012; Nunes et al., 2020).482
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Despite these efforts, results from non-invasive recordings, especially phase synchrony measures,483

have stayed sparse and methodological challenges remain (Colclough et al., 2016; Bastos and484

Schoffelen, 2016; Palva et al., 2018; He et al., 2019; Schoffelen and Gross, 2009). In this paper,485

we aimed at addressing some of these challenges through a new beamformer-based connectivity486

estimation framework, which utilizes three key components: a two-dipole beamformer approach487

to estimate all-to-all connectivity, an estimation of the null coherence of the model under the488

assumption of no interaction, and a sensor array subsampling approach to further mitigate the489

influence of spatial noise. Our all-to-all approach is motivated by the fact that — even in an490

unrealistically well-controlled contrast — misspecification of the seed dipoles leads to spatial491

structure in connectivity difference maps that can be mistaken for true interactions. Moreover,492

because experimental contrasts almost invariably contain differences in source activations and493

SNR, difference maps of connectivity may show spatial structure that is not due to changes in494

actual interaction between sources. For this reason, it is desirable to estimate the spatial leakage495

of connectivity directly from the data. We explored the possibility to use such null coherence496

estimates, based on the weighted inner product between pairs of spatial filters. A two-dipole497

beamformer model is motivated by the notion that beamformer estimates are distorted in the498

presence of underlying correlations. Furthermore, we propose to use sensor array subsampling499

in order to smooth out the spatial noise at the benefit of the true interactions.500

Some of the key components of our approach have been proposed before, in one form or501

another, but mostly with a different intention, and were never combined for the assessment of502

connectivity. We compared the performance of our approach to other all-to-all reconstruction503

schemes, which used only a subset — or none — of the key components.504

Using an extensive set of simulations we showed that our approach outperforms the other,505

often more traditional, all-to-all approaches tested. The overall detection rate, specifically506

at physiologically meaningful interaction strengths and at a wide range of phase angles, was507

highest for the proposed subsampling based method. This high detection rate was accompanied508

by the overall lowest false positive rate. While performance was considerably affected when the509

relative source amplitude of competing, non-interacting sources was increased (supplementary510

Figure S3), our approach still showed the overall lowest false positive rate (Figure S5A). Based511

on these observations, we argue that the proposed reconstruction approach can be a promising512
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pipeline to be evaluated on real MEG data for the robust detection of phase synchronization513

in brain networks.514

Apart from the evaluation of the utility of the proposed approach on real experimental515

data, we foresee future work to explore in more detail certain aspects of the proposed analysis516

scheme. For instance, regarding the subsampling, we have settled on a fixed number of subsam-517

pled reconstructions, using a random number of sensors (between 50 and 150), and combined518

the reconstructions by means of averaging. Although those parameter choices were motivated519

by initial explorations, strategies to estimate the optimal number of sensors for the subsam-520

pling, and different combinatorial strategies (e.g., by also taking the variance structure across521

subsample based reconstructions into account) may further improve the performance of the522

subsampling based approach.523
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