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Abstract

The complex activity of neural populations in the Prefrontal Cortex (PFC) is a hallmark of high-order

cognitive processes. How these rich cortical dynamics emerge and give rise to neural computations is largely

unknown. Here, we infer models of neural population dynamics that explain how PFC circuits of monkeys

may select and integrate relevant sensory inputs during context-dependent perceptual decisions. A class of

models implementing linear dynamics accurately captured the rich features of the recorded PFC responses.

These models fitted the neural activity nearly as well as a factorization of population responses that had the

flexibility to capture non-linear temporal patterns, suggesting that linear dynamics is sufficient to recapitulate

the complex PFC responses in each context. Two distinct mechanisms of input selection and integration

were consistent with the PFC data. One mechanism implemented recurrent dynamics that differed between

contexts, the other a subtle modulation of the inputs across contexts. The two mechanisms made different

predictions about the contribution of non-normal recurrent dynamics in transiently amplifying and selectively

integrating the inputs. In both mechanisms the inputs were inferred directly from the data and spanned multi-

dimensional input subspaces. Input integration likewise consistently involved high-dimensional dynamics

that unfolded in two distinct phases, corresponding to integration on fast and slow time-scales. Our study

offers a principled framework to link the activity of neural populations to computation and to find mechanistic

descriptions of neural processes that are consistent with the rich dynamics implemented by neural circuits.
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Introduction

A fascinating aspect of our daily existence is that, in a blink of an eye, we can effortlessly change our course

of action, switch between tasks or wander in between lines of thought. To achieve this flexibility, brain

circuits must be endowed with mechanisms to perform context-dependent computations, so that behavior is

quickly adapted to each situation and the correct decisions can be taken. The mechanisms underlying this

flexibility are still poorly understood.

A brain structure known to mediate flexible computations is the Prefrontal Cortex (PFC)1. PFC is part of an

extensive and highly distributed network of cortical and subcortical areas comprising the decision-making

circuitry of the brain2. It is involved in the generation of complex behaviors such as planning, selective

attention and executive control3,4. PFC is thought to hold the representation of goals, contexts and task

rules5,6 and in primates is required to switch behaviors according to different task instructions7. Finally,

PFC’s crucial role in ignoring task distractors suggests that it actively filters out irrelevant information8,9.

This makes PFC of special importance for studying contextual decision-making.

Previous work suggested that flexible prefrontal computations emerge from the concerted interaction of large,

interacting neural populations1. Surprisingly, during contextual decisions requiring monkeys to integrate

noisy sensory information towards a choice, irrelevant information did not appear to be gated at the level of

inputs into PFC. Instead, irrelevant inputs may be dynamically discarded through recurrent computations

occurring within PFC. A possible mechanism for such dynamical gating was revealed by reverse-engineering

recurrent neural networks (RNNs) trained to solve the same contextual decision-making task as the monkeys.

Remarkably, the trained RNNs reproduced key features of the PFC population activity, even though the

networks were not explicitly designed to match the dynamics of the data. The match with the recorded data,

however, was only qualitative, as the networks failed to reproduce many aspects of the rich and heterogeneous

responses of individual PFC neurons. This raises the question of whether a model that captured the complex

PFC dynamics would rely on the same contextual decision-making mechanism as the RNNs.

In this study, we took the approach of fitting linear dynamical system models (LDS) directly to the PFC

data, allowing us to infer interpretable linear systems that approximate the neural population activity in

each context. We characterized the nature of computations implemented in each context by analysing the

properties of such models, whose dynamics closely matched those of the PFC population. To validate our

assumption of linear dynamics, we compared the LDS to a novel low-rank factorization of the data, Tensor

Factor Regression (TFR), which can capture non-linear dynamics. Both models performed comparably,
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implying that a linear model is sufficient to explain the PFC activity in a given context.

We fitted different LDS model classes corresponding to different hypotheses about the nature of context-

dependent computations in PFC. One class could implement context-dependent recurrent dynamics but

received fixed inputs, mimicking the design of RNNs developed in past work1. Another class had fixed

recurrent dynamics, but could implement context-dependent inputs. In both models, we inferred external

input signals directly from the data. Surprisingly, these two model classes explained the PFC responses

similarly well, meaning that both contextual decision-making mechanisms are consistent with the data. Both

mechanisms shared some features with the RNN solution, but also differed from it in important ways, thus

revealing previously unknown properties of contextual decision-making computations in PFC.

Our data-driven approach to analyzing neural dynamics, based on fitting LDS models to neural population

responses, can be applied across different brain areas, neural data sets, and computational mechanisms,

providing a general tool to test specific hypothesis about the nature of computations implemented by neural

circuits.

Results

We analysed PFC recordings from two monkeys performing a contextual version of the classic random

dots motion task1,10. The monkeys had to report the overall color or motion of the dots, depending on

context (Fig. 1a). Since both types of sensory evidence were simultaneously presented, the monkeys had to

actively ignore the irrelevant sensory input in order to form a decision based only on the relevant input. We

analysed only correct trials and focused on the random dots presentation period, during which the motion and

color evidence needed for a correct decision were presented1. In the next sections, we present an in-depth

analysis of the PFC data from one of the monkeys (monkey A). Findings from monkey F are presented in the

supplementary material, and confirm the key insights gained from monkey A (Supplementary Figs. 6 to 10).

PFC dynamics in each context are well approximated by a linear system

In order to infer the mechanisms underlying PFC population dynamics, we fitted several LDS models to

the PFC responses (Fig. 1b). Each LDS was parameterised by three distinct components: a dynamics

matrix A, which determined the recurrent contribution to the evolution of the low-dimensional (low-d) latent

activity state x(t); by external motion and color inputs um(t) and um(t); and by motion and color input

subspaces Bm and Bm, which specified the dimensions along which the external inputs modulated the state

dynamics. The dynamics matrix and the input subspaces were fixed over time, whereas the external inputs
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could be time-varying. An orthonormal ”loading” matrix C mapped the low-d latent activity x(t) to the

high-dimensional (high-d) ”observations” ŷPFC(t), i.e. the condition-averaged z-scored peri-stimulus-time-

histograms (PSTHs) of individual units in PFC. Therefore, the observations were reconstructed based on a

linear combination of low-d latent activity, which approximated the dynamics of the high-d neural population.

We captured the observed changes in activity across contexts1 by fitting an LDS model jointly to the PFC

data from the two contexts. Some of the model parameters varied across contexts, while the remainder were

shared across contexts. We implemented several distinct classes of LDS, which differed with respect to their

context-dependent parameters. In a first class, the dynamics matrix Acx could differ across contexts (Fig. 1b,

cx = mot/col context), whereas the input parameters were fixed. In a second class, the dynamics matrix was

fixed, but the motion and color subspaces Bcx
m,c were allowed to vary across contexts. Both model classes can

process inputs flexibly, but do so based on different mechanisms.

The Acx, B model class retains some of the key properties of previously proposed RNNs1. As in the RNNs,

the motion and color inputs are fixed across contexts, meaning that any context-dependent computations

must be achieved by the recurrent dynamics (Fig. 1c). The A,Bcx model class instead relies on contextually

modulated inputs, a mechanism that appeared unlikely based on past analyses of the PFC responses1. Both

model classes differ from the RNNs in several ways. First, in the LDS all parameters were learned from the

data (Fig. 1b, grey boxes), including the external, time-varying inputs um(t) and um(t). The RNN instead

was trained on the task, with hand-crafted external inputs that were constant over time. Second, the LDS

could learn multi-dimensional input subspaces Bm,c. Such subspaces could capture rich activity patterns

arising under direct influence of the external inputs, which may be required to explain some aspects of the

data11,12. In the RNNs, the inputs instead were one-dimensional. Importantly, we fitted the LDS models

with a regularization favoring weak inputs, to avoid solutions that relied entirely on input driven activity.

Activity patterns that do not directly represent the motion and color coherence, such as the integrated relevant

evidence or activity related to the passage of time, would then have to emerge through the transformation of

the inputs by the recurrent dynamics in all LDS models.

Surprisingly, we found that the two LDS model classes could explain the PFC responses similarly well

(Fig. 2a, Acx, B and A,Bcx; cold color lines), implying that two very different mechanisms could explain

the observed activity. A third model class that had contextual flexibility in both the recurrent dynamics

and the inputs (referred to as Acx, Bcx) did not improve the fits. A model that could change only the initial

conditions across contexts (Methods), but not the recurrent dynamics or the inputs (referred to as A,B)

instead performed significantly worse. We estimated the dimensionality of the latent dynamics and inputs
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based on generalization performance using leave-one-condition-out cross-validation (LOOCV13, Fig. 2b).

All models performed substantially better for input dimensionality higher than 1D (Fig. 2a), meaning that

they required multi-dimensional input signals. The best performing LDS models required three dimensions

for both the color and motion inputs. The LDS models needed between 13 and 18 latent dimensions to best

fit the data (Supplementary Table 1), many more than the 4 dimensions required to describe the task (motion,

color, context, and decision).

Several lines of evidence show that the two best LDS model classes provide accurate descriptions of the

PFC responses. First, the two LDS models closely approximated the highly heterogeneous responses of

individual PFC neurons (Extended Data Fig. 1). The fits captured a substantial fraction of the data variance

(27%, corresponding to MSE=0.73 on z-scored responses, Fig. 2b) even though we did not smooth nor

”de-noise” the data1. We included all neurons in the fits, even those with weak, sparse responses that could

only be poorly captured by the models (Extended Data Fig. 1a,b, firing rates < 1Hz). Furthermore, we did

not optimize our models to match the noise statistics of the data, since the fitted responses were trial-averaged.

Second, the best LDS model classes performed comparably to a more powerful model class that we refer to

as Tensor Factor Regression (TFR). TFR is based on a new low-rank factorization of the data that partitions

the data tensor into several low-d tensors, including a core tensor and an input tensor (Fig. 2c). The core

tensor can be learned with independent parameters at each point in time, which provides TFR with a greater

flexibility to capture temporal patterns compared to the LDS models, which are constrained to generate linear

dynamics. The LDS classes are nested within the TFR model class (Methods), which places the two types of

models on an equal footing and avoids potential pitfalls that can arise when performing model comparison

across different model classes14.

The observation that the LDS and TFR models performed comparably implies that the additional flexibility

of the TFR model was not necessary to explain the data. PFC activity in each context thus appears to be

well approximated by linear dynamical system models. The TFR model incorporated input parameters

and contextual constraints equivalent to those of the LDS (Fig. 2c, Methods) and achieved comparable

performance for a wide range of input and latent dimensionalities (Fig. 2a,b, warm color lines). The TFR

model required a similar range of latent dimensionality than the LDS (13-18, Supplementary Table 2). For

the TFR model, however, the optimal inputs were 2-dimensional, compared to the 3-dimensional inputs

required by the LDS. This difference could imply that the LDS needs an extra input dimension to overcome

the limitations of the linear dynamical constraints, a possibility that should be taken into account when
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interpreting the parameters of the LDS model.

Third, the best LDS models qualitatively captured salient features of the population dynamics equally well. In

particular, both the A,Bcx and the Acx, B models reproduced the rich PFC dynamics revealed by population

trajectories in the low-d activity subspace capturing most variance due to motion, color and choice1 (Fig. 3).

The TFR model resulted in comparable fits, both at the population (Extended Data Fig. 2a) and single neuron

level (Extended Data Fig. 1).

The good qualitative match between the low-d PFC trajectories and the fits of the A,Bcx model are somewhat

surprising. By design, the task-related activity subspace capturing most variance due to motion, color,

and choice can distinguish between computations that rely on inputs that are stable across contexts from

computations implementing a strong suppression of the irrelevant input1. Computations relying on stable

inputs result in characteristic features in the trajectories, in particular how they depend on the strength of

the motion and color inputs (Fig. 3a). These features approximately occur in the measured PFC trajectories

(Fig. 3b), and indeed are reproduced by the Acx, B model (Fig. 3d). However, the same features are also

reproduced by the A,Bcx model (Fig. 3c), which by construction must rely on inputs that are variable across

contexts.

One conclusion from these analyses is that the properties of population trajectories in the considered low-d

activity subspace are not sufficient to rule out computations that rely on variable inputs across contexts.

The very close similarity between trajectories for the two LDS models suggests that the strength of input

modulation required to explain the PFC responses is likely small. To understand how such small input

modulations may support context-dependent integration in PFC, below we first separately characterize the

inputs and recurrent dynamics in the A,Bcx and the Acx, B models, and then ask how their combined effects

can account for contextual integration in PFC.

Input signals span curved manifolds and are largely stable across contexts

To better understand the mechanism of contextual integration implemented by the two LDS model classes,

we fitted 100 models for each class, with random initialization and with latent and input dimensionality set

by cross-validation (Fig. 2a, 3D inputs and latent dims 18 and 16). As we found similar model parameters

across random initializations, we report parameter averages across the 100 models.

The context-dependent nature of computations in these models can be easily appreciated by considering the

time-dependent norm of the latent activity, ||xcxm (t)|| and ||xcxc (t)||. For each context, we computed this norm
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for activity in response to only one of the inferred inputs, with the other input set to zero (Fig. 4a). Here

we refer to the resulting activity as the ”output” of the LDS. In both models, the norm of the output activity

increases over time within the trial and is much larger for the relevant compared to the irrelevant input,

reflecting context-dependent integration (Fig. 4b,c, bottom panels, thick dotted vs. thin lines; significance,

Wilcoxon rank-sum test, p<0.001 across 100 models, green bars; with 91± 2% increase for mot, 95± 3%

for col in the A,Bcx model, and 94± 3% increase for mot, 93± 3% for col in the Acx, B model, mean ±
std across 100 models). The predicted norms are essentially identical across the two models, in agreement

with the similarity of the low-d trajectories they produce (Fig. 3c,d). In the Acx, B model this context

dependence is entirely due to differences in the recurrent dynamics across contexts. In the A,Bcx model, the

difference must entirely reflect contextual modulation of the overall input strength, of the input direction, or

a combination of the two.

We first considered the time and context-dependence of the input strength, which we defined as ||Bcx
mum(t)||

and ||Bcx
c uc(t)|| (motion and color strengths, respectively). Input strength is subtly different across the

two models (Fig. 4b,c, top panels). After their initial rise at stimulus onset, the inputs were approximately

sustained in the A,Bcx model, but somewhat transient in the Acx, B model. The strength of the motion and

color inputs was similar, but both were overall weaker in the Acx, B compared to the A,Bcx model. The

finding that the inputs differ across models, whereas the output norm does not, implies that the recurrent

dynamics must also operate differently in the two models. In the Acx, B model, input strength was the same

across contexts, by definition. In the A,Bcx model, input strength was different across contexts (Fig. 4b, top

panels, thick dotted vs. thin lines, Wilcoxon rank-sum test, p<0.001, green bars), but only modestly, with

the irrelevant inputs being slightly weaker than the relevant ones (38± 14% decrease for mot, 22± 8% for

col, averaged across all time points starting at t=200ms, mean ± std across 100 models).

Next, we considered the input direction, by characterizing the structure of coherence representations within

the inferred input subspaces. Even though our cross-validation procedure consistently inferred 3-dimensional

input subspaces, we found that most of the inferred input variance was contained in a 2D plane (Extended

Data Fig. 3a). This plane was spanned by dimensions that captured, respectively, variance related to input

coherence (mot, col) and coherence magnitude (|mot|, |col|). As a result, input coherence was represented

along a curved 1D-manifold within the input plane15. Similar curved representations were found by the

two models (Fig. 4d,e) and for both contexts in the A,Bcx model (Fig. 4d). Analogous 2D coherence

representations were present also in the PFC data (Extended Data Fig. 3b), whereas the 3rd input dimension

contained very little input and data variance (Extended Data Fig. 4c,f). In fact, the LDS models with 2D

inputs were very close in performance to the 3D models (Fig. 2a) and captured the population trajectories
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nearly as well (Extended Data Fig. 2c,d). 1D input models, on the contrary, performed worse (Fig. 2a) and

did not capture the trajectories along the input dimensions as well (Extended Data Fig. 2e,f).

The 2D input planes identified across the two model classes were highly aligned (16-31◦, for averaged

dimensions across 100 models from each model class, Extended Data Fig. 3c), an effect not expected by

chance (Extended Data Fig. 3d). In the A,Bcx model, the motion and color planes varied across contexts, but

only modestly (33◦± 10 mot, 46◦± 16 |mot|, 25◦± 5 col, 27◦± 9 |col| dims, mean ± std across 100 models,

Fig. 4d cartoons, Extended Data Fig. 3c) and less than expected by chance (Extended Data Fig. 3d). These

relatively small changes in input direction across contexts, together with the concurrent, modest change in

input strength (Fig. 4b, top), are entirely responsible for the context-dependent changes in the output of the

A,Bcx model (Fig. 4b, bottom).

In both models, the time-course (Fig. 4b,c, top) and structure of the inputs (Fig. 4d,e) is thus relatively simple,

with most of the variance captured by a 2D-input subspace. This finding alleviates a possible confound

inherent in fitting an LDS with time-dependent inputs. In principle, the fitted inputs could be very rich,

and effectively approximate on their own the dynamics of a very complex, non-linear dynamical system.

Considering that we retrieved inputs that are of much lower dimensionality than the recurrent dynamics (3D

vs. 16-18D), such a scenario appears unlikely. Indeed, we find that the same classes of LDS models can be

refit to the data with only a small drop in performance when their inputs are constrained to be fixed over

time (Extended Data Fig. 5a, Supplementary Note 1). The observed complexity of PFC responses thus need

not be inherited from the external inputs, but rather can be explained as resulting from approximately linear,

time-dependent recurrent dynamics.

Input integration relies on high-dimensional linear dynamics

To reveal the contributions of the recurrent dynamics to selective integration, we follow an approach moti-

vated by the original analysis of RNNs trained to solve the same task as the monkeys1. The computation

implemented by the RNNs can be fully understood at the level of local linear approximations of the dynamics

(Fig. 5a, left panel). Specifically, selective integration reflects four key features of the linear approximations.

First, the largest eigenvalue of the dynamics is close to one, with the rest of the eigenvalues being much

smaller than one, implying that input integration is implemented as movement along a line-attractor16.

Second, inputs are selected for integration based on their alignment with the leading left-eigenvector of the

dynamics (the ”input-mode” associated with the largest eigenvalue, i.e. slowest dynamics). The direction

of this left-eigenvector is context-dependent, such that it is orthogonal to the contextually irrelevant input

direction. Third, the direction of the leading right-eigenvector of the dynamics (the ”output-mode” associated
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with the largest eigenvalue), which determines the direction of the line-attractor, is fixed across contexts.

Fourth, the dynamics is non-normal, as the leading right and left eigenvectors have different directions. We

collectively refer to these features of the linear approximations as the ”RNN-mechanism” and below compare

them to the dynamics of the fitted models.

We computed the eigenspectrum of the dynamics matrices, and in both models found multiple slow dimen-

sions associated with time-constants that were relatively long compared to the duration of a trial (eigenvalues

with norm |λ| > 0.8, or decay time-constant τ > 224ms, while the trial lasts 750 ms, Methods, Fig. 5b).

The A,Bcx model had a larger fraction of slow modes than the Acx, B model (55± 7% vs. 35± 8% mot

cx/ 41 ± 8% col cx, mean±std across 100 models). Many of the eigenvalues were imaginary, implying

that the inferred recurrent dynamics was rotational17 (Extended Data Fig. 6a,b). The largest eigenvalue was

0.98 ± 0.02 for the A,Bcx model and 0.96 ± 0.03 / 0.99 ± 0.03 (mot/col cx) for the Acx, B model (mean

norm±std across 100 models), corresponding to average decay time-constants of 2.5 and 1.2 / 5 seconds.

While not strictly compatible with a line-attractor (an eigenvalue of 1), these time-constants are much longer

than the duration of the trial. Additionally, the LDS models implemented many other slow modes, some

with time-constants comparable to the duration of the trial (Fig. 5b). The large number of slow modes

provides a first indication that PFC dynamics may be higher-dimensional than would be predicted by the

RNN-mechanism.

We assessed context-dependent relations between the recurrent dynamics and the inputs by focusing on the

coherence component of each input, while ignoring the absolute-coherence component (Fig. 4d,e). In the

considered linear models, only the coherence component of the input can contribute to choice-dependent

responses. We first examined the ”load” (the non-normalized projection, Methods) of the coherence input

onto each left-eigenvector, computed separately at each time instant and then averaged over the entire trial

(Fig. 5c). Consistent with the RNN mechanism, the input load onto the left-eigenvectors was overall larger

for the relevant vs. the irrelevant input, in both types of models (Fig. 5c, green bars, Wilcoxon rank-sum test,

p<0.05). Furthermore, the load was close to zero for the irrelevant input along the slowest mode, implying

an orthogonal arrangement of the irrelevant input directions with respect to the slowest left eigenvectors,

as in the RNN mechanism. However, this difference in load across contexts resulted from very different

mechanisms in the two models: in the A,Bcx model it entirely reflects changes in the inputs, whereas in

the Acx, B model it entirely reflects changes in the recurrent dynamics. Unlike in the RNN mechanism, in

both models the coherence input does not preferentially load onto the left-eigenvectors associated with the

largest eigenvalues (|λ| > 0.9, time-constant τ > 475ms). Rather, the largest loads are consistently obtained
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for eigenvectors with intermediate eigenvalues (|λ| = 0.7− 0.8, τ = 140− 224ms), and thus relatively fast

decay time-constants (Fig. 5b,c).

Non-normal dynamics makes model-specific contributions to selective integration

The qualitative similarities in the eigenspectra (Fig. 5b) and the input loads (Fig. 5c) of the A,Bcx and

Acx, B models masks a key difference in the recurrent dynamics implemented by these models. Specifically,

we find that the two models implement dynamics with very different degrees of non-normality. We assess

the strength of non-normality through one of its possible consequences, namely the transient amplification

of perturbations of the activity18,19 (Supplementary Note 2, Extended Data Fig. 7). We simulated the effect

of injecting a short pulse of activity at trial onset, along random state-space directions. For the A,Bcx

model, these perturbations gradually decay over the course of the trial (Fig. 6a, top, dashed lines, average

across pulses in random directions). For the Acx, B model, on the other hand, activity following a pulse is

transiently amplified, i.e. the gradual decay is preceded by a transient increase in activity (Fig. 6a, bottom,

dashed lines). When perturbations are applied selectively along the left-eigenvectors, transient amplification

is even more pronounced in the Acx, B model, but still largely absent in the A,Bcx model (Fig. 6a, doted

lines). Dynamics is thus strongly non-normal in the Acx, B model, as in the RNN mechanism, but less so in

the A,Bcx model (Fig. 6c).

When dynamics is non-normal, the activity in response to a short pulse of input can reflect the combined

effects of two processes operating at different time-scales: first, the transient, non-normal amplification of

the input pulse; and second, its long-term integration towards a choice. The relative contributions from

these processes differ across the two models, due to the different degree of non-normality of the underlying

dynamics. In the A,Bcx model, coherence input pulses are not transiently amplified, but rather immediately

decay, whether they are relevant or not (Fig. 6b, top, thick doted and thin lines). In the Acx, B model, the

relevant input is transiently ”persistent”, due to non-normal dynamics (Supplementary Note 2), whereas

the irrelevant input quickly decays (bottom). Also at longer time-scales, the decay of a relevant input pulse

is faster in the A,Bcx model compared to the Acx, B model, indicating less accurate input integration. At

both fast and slow time-scales, the recurrent dynamics of the A,Bcx model thus cannot sustain information

provided along relevant input dimensions as well as the dynamics in the the A,Bcx model (Fig. 6b, top vs.

bottom thick doted lines). As a consequence, the A,Bcx model must instead rely on inputs that do not decay

towards the end of the trial (Fig. 4b, top) to explain the observed persistent activity in PFC, whereas the

Acx, B infers inputs that are more transient (Fig. 4c, top).
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The pulse responses in Fig. 6b also illustrate that changes in the direction of the inputs across contexts are

not sufficient to explain the differences in the representation of the relevant and irrelevant inputs in PFC.

The employed pulses have unitary strength, and thus isolate the contribution of the input direction to the

responses. The change in input direction across contexts in the A,Bcx model lead to only relatively small

differences in the amount of integration between the relevant and irrelevant inputs (compare late responses).

To explain context-dependent integration in the PFC data, the A,Bcx model in addition must thus rely on

contextual modulation of the strength of the inputs throughout the duration of the trial (Fig. 4b, top; relevant

input is stronger than irrelevant input).

The features of the dynamics considered so far imply that the two LDS models implemented mechanisms of

selection and integration that share some key properties of the RNN mechanism. Like the RNN, all LDS

models ultimately relied on a context-dependent realignment of the inputs and a subset of the modes of the

recurrent dynamics, either through a change of the inputs (A,Bcx) or of the recurrent dynamics (Acx, B).

Like the RNN mechanism, the Acx, B model (but not the A,Bcx model) implements strongly non-normal

recurrent dynamics. However, while the RNN mechanism relies on a single or few slow modes that are well

aligned with the relevant input (an approximate ”line attractor”1), both LDS models instead implemented a

large number of modes with different degrees of persistence, whereby the the inputs are not preferentially

aligned with the slowest modes.

Input integration occurs in two distinct phases

The above analyses provide insights into two mechanisms of context-dependent selection and integration that

can account for population dynamics in PFC. However, these analyses alone do not explain how the neural

trajectories predicted by the models emerge from the interaction of the inputs and the recurrent dynamics.

Such an explanation must include also the properties of the right eigenvectors of the dynamics matrix, which

amount to the ”output” dimensions of the LDS models. The right eigenvectors influence both ”where” in

activity space the inputs are mapped onto and ”how” they are transformed over time.

To establish how the trajectories emerge from the two LDS mechanisms, here we separately consider

condition-dependent (CD) and condition-independent (CI) components of the neural trajectories. CD com-

ponents were the primary focus of past accounts of this data1 and, particularly late in the trial, primarily

capture choice-related activity. CI components, on the other hand, capture prominent structure in the neural

responses that is related to the passage of time during a trial, and is common to all conditions and choices.

To identify the modes of the dynamics that mostly account for CD or CI variance at a particular time in

the trial, we computed the alignment between the right eigenvectors of the dynamics and the dimensions
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capturing most CD and CI variance at different times in the trial (Fig. 7, for the Acx, B model in the motion

context, Extended Data Fig. 8, for all models and contexts). Only right eigenvectors that are well aligned

with a given CD or CI dimension can contribute to the responses variance along that dimension.

The alignment between CD dimensions and right eigenvectors suggests that input integration occurs in two

distinct phases, each dominated by distinct dynamics. Early in the trial, the CD responses occur primarily

along right-eigenvectors corresponding to modes implementing relatively fast decay and fast rotations

(|λ| = 0.7−0.8, decay time constant τ = 140−224ms, rotation frequency f > 1Hz, Fig. 7a,b, yellow lines).

Late in the trial, the CD responses instead occur along right-eigenvectors with very slow decay and weak

or no rotations (|λ| > 0.9, τ > 475ms, f < 0.25Hz, red lines). This transition was consistently observed

across model classes (A,Bcx and Acx, B), contexts and model initializations (Extended Data Fig. 8). The

differences in decay constants and rotational frequencies of the best aligned modes early vs. late in the

trial are highly significant (Fig. 7b, Extended Data Fig. 8b, Wilcoxon rank-sum test, p<0.001). These

observations imply that the relevant input is initially integrated along multiple decaying and rotational modes,

consistent with the fact that the relevant inputs are strongly loaded onto left eigenvectors with intermediate

eigenvalues (Fig. 5c). Later in the trial, the input is further integrated and maintained along at set of different,

persistent and non-rotational modes.

The CI variance in the responses, on the other hand, appears to be mediated by largely different dynamic

modes compared to the CD variance (Fig. 7c,d, Extended Data Fig. 8c,d). Unlike for the CD variance, the

alignment between the leading CI direction and the right-eigenvectors is largely preserved across the trial. At

all times in the trial, the leading CI variance occurs along directions associated with modes decaying more

slowly than the early CD-aligned modes, but more quickly than the late CD-aligned modes (|λ| = 0.8− 0.9,

τ = 224− 475ms). Likewise, these CI directions are associated with rotational frequencies that are smaller

than those in early CD-aligned modes, but faster than late CD-aligned modes (f = 0.25− 1Hz).

Overall, the inferred modes of the dynamics can thus be grouped into three distinct, non-overlapping sets,

accounting for different components in the trajectories. The first and second set of modes account for

early and late choice-related activity, while the third set accounts for choice-independent activity. The exis-

tence of these three different components of the PFC responses presumably explains why both models infer

dynamics that is relatively high-dimensional and involving many modes associated with relatively slow decay.

To further validate the existence of multiple phases of the dynamics, we examined the activity trajectories

along directions aligned with the relevant CD and CI components. Specifically, we defined an early and a
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late CD direction, which are primarily aligned with the first and second set of dynamics modes, respectively

(yellow and red lines in Fig. 7a), and a single CI direction, which is primarily aligned with the third set of

modes (green line in Fig. 7a), and then averaged these across contexts. To simplify the comparison with

trajectories in Fig. 3, we projected the trajectories into two-dimensional subspaces spanned by the late CD

direction and one of the other task-related directions.

We find that subspaces that include the early CD direction and the CI direction reveal prominent features

in the population trajectories that are not apparent in other subspaces (Fig. 8a), confirming their potential

importance in explaining the observed dynamics. The late CD direction closely matched the choice axis

identified by Mante et al. (average angular difference of 18◦ across contexts, much more than expected by

chance, Extended Data Fig. 6b) and captured a steady build-up of decision signals in both contexts over time1

(Fig. 8b, top panel, red dimension, dec). The early CD direction, on the other hand, captures an additional

component of choice-related activity, which emerges early in the trial, but later decays (Fig. 8b, top panel,

yellow dimension, dec 2). This decay is consistent with the above observation that early CD-directions are

aligned with relatively fast decaying modes (Fig. 7b,c).

Together, the two CD directions thus capture decision-related activity evolving on different time-scales,

whereby one component is transient and the other persistent. Notably, the projections along the early CD

direction differ from those along the input directions (Fig. 8a,b, middle panels, black and blue mot and col

dimensions, here the LDS-identified coherence input dimensions, averaged across models and contexts).

Indeed, while activity along a given input dimension reflects the sign of a single input regardless of context,

activity along the early CD dimension instead only reflects the sign of the contextually relevant input, and is

not modulated by the irrelevant input (Fig. 8a,b, middle vs. top panels). Projections onto the CI direction

likewise reveal additional components of the responses that are common to both choices (Fig. 8a,b, bottom

panels). Finally, additional input-related dimensions can be defined based on the LDS fit, by considering

variance due to coherence magnitude (|col| and |mot| in Fig. 4d,e, Extended Data Fig. 9a,b). All the inferred

dimensions explained substantial fractions of the data variance (1-9%, Extended Data Fig. 9c) that are

comparable to those captured by previously found task-related dimensions1 (Extended Data Fig. 9d).

Overall, these low-dimensional projections of the activity support the existence of the two phases of

integration inferred from the analysis of the right eigenvectors. Moreover, these projections illustrate how the

fits of the LDS models can be used to define a novel set of dimensions that appear to isolate the meaningful

components of the computations implemented by the neural population.
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Trained RNNs do not capture all features of the PFC data

The properties of the inputs and dynamics inferred by the two LDS classes appear to differ in several ways

from those expected by a simple line attractor mechanism, of the kind previously shown to be implemented by

RNNs trained to solve the contextual integration task. In particular, both LDS models implement a decision

process that unfolds in two phases (early vs. late choice dimensions), rely on the contextual modulation of

a large number of dynamics modes across a wide range of decay constants, and infer multi-dimensional

inputs modulated both by signed and unsigned input coherence. However, it is not immediately clear that

these features reflect meaningful differences between the mechanisms implemented by the LDS models and

the RNN. While the RNN are non-linear, the LDS are linear, meaning that some LDS features may simply

reflect somewhat trivial consequences of approximating non-linear dynamics with a linear system.

To evaluate this possibility, we repeated all the analyses we performed on the PFC responses also on

simulated responses of a trained RNN, and then directly compared the two (Supplementary Figs. 1 to 5).

This comparison shows that the features of the PFC responses highlighted above are not captured by the

trained RNN. First, contextual modulation of the dynamics in the RNN is most pronounced in modes that are

persistent or slowly decaying (Supplementary Fig. 3b), whereas in PFC it is strongest in relatively quickly

decaying modes (Fig. 5c). In the RNN, as in PFC, the inferred slow dynamics is not limited to a single mode,

unlike in a perfect line attractor (Supplementary Fig. 3a and Fig. 5b). This observation is expected, as the

RNN tend to implement integration along a one-dimensional manifold that is curved, rather than perfectly

straight, and thus cannot be approximated by a single linear mode. Second, the LDS fits do not provide any

evidence of multiple phases of input integration in the RNN (Supplementary Fig. 4), whereas they reveal

distinct early and late phases in the PFC responses (Extended Data Fig. 8). Finally, the LDS fits of the RNN

responses learn inputs that are largely one-dimensional, whereby input signals are modulated by absolute

input strength only weakly or not at all (Supplementary Fig. 2c-e). This finding contrasts with the robust

encoding of absolute input strength in PFC (Fig. 4d,e).

The analyses of the RNN responses also reiterate the challenges in establishing which of the two mechanisms

implemented by the LDS models is more likely to be implemented by PFC. Indeed, as for the PFC data, also

the RNN data can be well fit by both model classes (Supplementary Fig. 1), even though arguably only one

of the two classes matches the RNN in how it selects and integrates the sensory inputs. In the trained RNN,

the inputs are not modulated by context, and input-related responses in the network are likewise largely

constant across contexts. This property matches the design of the Acx, B model, but not the A,Bcx models,

and yet both models fit the RNN data equally well. However, the A,Bcx fits of the RNN responses do display

some idiosyncratic properties suggestive of a very precise fine-tuning of parameters. In particular, the A,Bcx
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model required many more dimensions than the Acx, B model to fit the data (Supplementary Table 5) and

presented extreme levels of amplification for dimensions other than the input dimensions (Supplementary

Fig. 3c-e). Such a fine-tuning may reflect the mismatch between the underlying mechanisms of integration.

Notably, we did not find such evidence of precise fine-tuning in the fits of the PFC responses, meaning that

also in this respect both model classes are equally valid descriptions of the PFC data.

Discussion

The complex and highly heterogeneous activity patterns observed in prefrontal areas are thought to reflect the

specific computations implemented in these regions20. In this study, we inferred candidate mechanisms for

one of such computation, contextual decision-making, directly from PFC responses. By fitting several LDS

models to the PFC data, we inferred interpretable dynamics that linearly approximate the neural activity in

each context. We found that two distinct mechanism of contextual-integration were consistent with the PFC

activity: a switch in recurrent dynamics and a modulation of inputs. The key features of these mechanisms

were consistently found across the motion and color inputs in monkey A, and the motion input in monkey F

(Supplementary Figs. 6 to 10). As previously reported12, representations of color inputs were instead weak

or absent in monkey F.

The first LDS mechanism is broadly consistent with past accounts of PFC responses in this task1, in that

the input selection relies on non-normal, context-dependent recurrent dynamics. In addition to this role in

inputs selection, our analysis revealed that non-normal dynamics might additionally result in the transient

amplification of relevant inputs in PFC. Non-normal transient amplification had previously been proposed to

play a role in the processing of external inputs21–23, as well as computations as varied as maintaining inputs

in working-memory24, generating the transient neural activations required for generating movements25 and

mediating robustness to perturbations26. Our observation of two distinct stages in PFC dynamics during

decision formation is evocative of a recently proposed mechanisms relying on transient amplification to

optimally load information onto an attractor22. In contrast to the predictions of such optimal loading, how-

ever, we found that the inputs where not preferentially aligned with the most amplifying dimensions of the

dynamics (Extended Data Fig. 6e-g).

The second LDS mechanism relies on modulation of the inputs, and could be implemented via top-down

influences on sensory areas. Our LDS fits reveal how strong such top-down modulation would have to be to

explain context-dependent responses in PFC. The inferred modulation strengths (38± 14% mot, 22± 8% col,

Fig. 4b) are in the range of some attentional effects observed in sensory areas27,28, although other studies have
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reported substantially weaker or stronger feature-based modulation29–33, potentially reflecting differences in

task design, cognitive demands, sensory features, and areas. In particular, our findings differ from recent

modeling of sensory and prefrontal responses during auditory, contextual-decision making33, in that the

irrelevant input is not completely gated out before reaching PFC, and the relevant input is integrated entirely

within PFC. Notably, we inferred not just a modulation of the input strength, but also of its direction. Such

a change in direction could be achieved with top-down modulation if each input was multi-dimensional

(i.e. originated in multiple neural populations or areas; Supplementary Note 3) and individual dimensions

were modulated independently. Alternatively, input amplitude and direction could both be modulated by

non-linear dynamics occurring within PFC,34, a possibility that we did not explicitly model here.

Our fits revealed novel features of the population responses in PFC that were consistent across both LDS

mechanisms. Both models implemented input integration in two distinct phases, whereby choice-related sig-

nals first emerged along relatively fast decaying dimensions with rotational dynamics, and then transitioned

towards orthogonal dimensions with slower, non-rotational dynamics. As a result, individual task-related

signals were encoded dynamically along multiple dimensions at different time-scales, consistent with pre-

vious analyses of this data12. Beyond describing the structure of these signals, here we show how they

could emerge dynamically from the interaction of inputs and recurrent dynamics. The dynamics we inferred

differs in several ways from that implemented by previously proposed one-dimensional line-attractors1,16.

Nonetheless, in agreement with such simpler models, we found that at longer time-scales decision signals

emerged predominantly along a single integration dimension that was common across contexts1 (Extended

Data Fig. 10).

The LDS models provide several insights into the properties of potential inputs into PFC, beyond their

contextual modulation. Both mechanisms inferred multi-dimensional inputs carrying information about

both signed coherence and coherence magnitude. As a result, the inputs defined curved manifolds with

respect to coherence, in agreement with findings in parietal and frontal areas11,12,15. Our results strengthen

these previous findings, as in our models the different input components were inferred entirely from the

data, rather than being hand-designed12. Second, both models inferred inputs that were somewhat transient,

even though the fits penalized large magnitude inputs. The fits inferred inputs that became weaker (A,Bcx

mechanism) or progressively decayed (Acx, B mechanism) late in the trial (Fig. 4b,c). However, models

with time-invariant inputs cannot be ruled out, as they resulted in comparable performance (Extended Data

Fig. 5b) and captured the neural trajectories nearly as well (Extended Data Fig. 2g,h). Critically, these models

relied on mechanisms that were analogous to those described above (data not shown), confirming that the

complexity of the PFC responses is well approximated by linear dynamics and not necessarily inherited from
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inputs with rich dynamics.

Our models provide an alternative to previously proposed approaches to inferring the properties of inputs

into an area. One advantage over past approaches35,36 is that we make minimal assumption about the

properties of the inputs, and in particular about their dimensionality. While several studies have emphasized

the importance of inferring inputs to understand cortical dynamics and function11,35,37–39 such efforts are

complicated by unavoidable model degeneracies that arise when attempting to distinguish inputs from

recurrent contributions without access to the upstream areas from which the inputs originate35,40,41. Our

finding that two fundamentally different mechanisms of input selection explain PFC responses equally well

is a reflection of such degeneracy. Indeed, both the inputs and the choice-related signals inferred from PFC

activity may reflect computations distributed across several cortical areas2.

Our modeling approach has the advantage of decomposing the dynamics of a complex system into simpler

linear parts that are amenable to analysis and interpretation, similar to switching LDS models42. A previous

application of such models has led to the discovery of line attractor dynamics in the hypothalamus of mice

during decisions underlying aggression43. In combination with methods from control theory, LDS can also

be used to infer inputs that are optimal for a given task, like bringing brain activity into healthy regimes

in biomedical applications44 or optimally configuring cortical dynamics during movement preparation37–39.

Here, we found that our fitted LDS models are fully controllable37 (data not shown), and applied methods

from control theory to identify the most amplifying dimensions of the dynamics22, but an exhaustive analysis

of this type is beyond the scope of our study.

We validated the assumption of linear dynamics by comparing the LDS fits to the fits from our novel TFR

model. The LDS models explained the data essentially as well as TFR, which sets an upper bound to the

goodness of fit achievable by an LDS. The success of the LDS models imply that, in PFC, intuitive linear

descriptions apply to all regions of state space, and not only to local regions around fixed points1. While

here we fitted activity from only a relatively short time window from each trial (the 750ms of random dots

presentation), recent findings suggests that linear models may not be outperformed by non-linear models in

capturing cortical dynamics even over longer time-windows45. Nonetheless, analyses based on non-linear

models are becoming increasingly common, given their flexibility in capturing very complex neural data35

and the interest in modeling biological constraints that cannot be captured by linear models46 (but see26).

A crucial aspect of our data-driven modeling approach is that we tested multiple model designs corresponding

to specific computations underlying the measured activity. No single model can be expected to perfectly
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explain the rich dynamics observed in areas like PFC. Thus, it is important to test multiple alternatives

hypotheses and identify all models that are plausible explanations of the data, rather than committing to

the best model as the ”correct” one14,47. Indeed, we found that several LDS mechanisms explained the data

similarly well (A,Bcx and Acx, B models with time-varying 3D inputs, Fig. 2a, Fig. 3c,d, and 2D inputs

Extended Data Fig. 2c,d; and time-constant 3D inputs, Extended Data Fig. 5b, Extended Data Fig. 2g,h),

whereas others explained the data less well (models with time-varying 1D inputs, Fig. 2a, Extended Data

Fig. 2e,f) or only poorly (a A,B model, fully constrained across contexts, with time-varying 3D inputs,

Fig. 2a, Extended Data Fig. 2b). The mechanisms we identified as plausible explanations of the PFC

responses share key features with mechanisms of context-dependent integration that were recently described

in rats48. Notably, that study demonstrated the advantage of pulsatile inputs in distinguishing between

different mechanisms of input selection and integration. Similarly, one approach for distinguishing between

the two candidate mechanisms we identified would rely on studying the dynamics following perturbations

along random state-space directions, which would evolve differently under the two mechanisms due to the

different degree of non-normality in the dynamics (Fig. 6a). Alternatively, in simultaneous recordings from

large groups of neurons, input and recurrent contributions to the dynamics may sometimes be distinguished

based on the properties of trial-by-trial variability of the population responses40.

Methods for inferring neural population dynamics of the kind proposed here will likely play a key role in

uncovering the neural computations underlying behavior. While abstract mental processes were originally

hypothesized to reflect structural changes at the level of single neurons (Santiago Ramón y Cajal, see49), more

recent evidence suggest that cognitive functions arise at the neural population level and depend critically on

the ability of neural circuits to flexibly switch between dynamical regimes17,50–52. Ultimately, a complete

description of neural computations will also explain how neural dynamics emerges from the rich and dynamic

structural components of biological circuits53–55. The lawful characterization of population level dynamics

amounts to a theoretical abstraction of the neural computations emerging from such a rich neural circuit, and

provides a key bridge in linking lower-level biological structure to behavior.
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Figure 1 . Linear dynamical systems (LDS) model-fitting approach to study contextual decision-making com-
putations. a, Task. Monkeys where trained to choose the target indicated by either the motion or the color of a random

dots display depending on context, cued by the fixation point (blue cross, yellow square). The sensory evidence could

point towards (choice 1, filled circles/positive values) or away from (choice 2, hollow circles/negative values) one of

the two choice targets, placed on the receptive field of the recorded neurons (white circles). The evidence strength was

modified by changing the color/motion coherence level of the random dots (3 levels, color shades), yielding 6 coherence

conditions in total. Here, strong color and motion evidence were simultaneously presented and pointed at opposite

targets (positive color, negative motion). In the color context, the monkey should choose the target matching the overall

color of the dots, the green right target (choose 1), while in the motion context it should choose the target indicated by

the overall direction of motion of the dots (left arrow), the left red target (choose 2). b, An LDS model is fitted to the

PFC data from both contexts learning either joint or context-dependent linear dynamics Acx and input dimensions Bcx
m,c.

The external inputs are also learned, are fixed across contexts and can vary in time um,c(t), and so capture motion

and color coherence-related signals throughout the trial. A different um,c(t) is learned for each coherence level and

direction (6 total, see a), and are paired across motion and color coherence conditions to recreate the 36 task conditions

(Methods). These parameters define a low-d latent process x(t) that approximates the dynamics of the high-d PFC

data ŷPFC(t). The orthonormal mapping C from latents x to observations y is assumed fixed across contexts. c, The

non-linear RNN was trained by Mante et al. on the same task as the monkeys. Motion and color sensory evidence were

modeled as noisy input signals with mean um,c constant over time and proportional to the strength of the coherence

evidence. Input signals reached the circuit through two fixed input directions across contexts bm,c. The model had the

flexibility to learn different contextual input vectors bcx, which changed the dynamics of a fixed, non-linear recurrent

network (bottom left equation) between two approximately linear regimes Acxapp. A linear readout pooled network

responses to generate a decision signal. Network population responses yRNN (t) were qualitatively compared to the

PFC responses. Grey shadings: learned parameters due to training or data fitting.
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Figure 2 . Several LDS model classes capture the data equally well, and comparably to a more flexible Tensor
Factor Regression (TFR) model. a, Leave-one-condition-out cross-validation performance (LOOCV)13 for LDS and

TFR models with different input dimensionalies and contextual constraints (36 task conditions, Methods). We report

the minimum cross-validation mean squared errors (MSE) across all latent dimensionalities, shown relative to the best

performing model (A,Bcx model with 3D inputs). The latent dimensionality for which the minimum was attained

is documented in Supplementary Table 1. Error bars indicate the standard error mean (sem) across LOOCV folds.

Acx, Bcx line is below Acx, B’s. b, Best LDS and TFR models training and LOOCV performance for different latent

dimensionalities (TFR 2D ABcx and LDS 3D A,Bcx, min LOOCV latent dim = 14 and 18). Data is from monkey A. c,
TFR model (top). The data tensor Y is factorized into 3 low-rank tensors, all learned. The loadings C (an orthonormal

matrix) sets the rank of the factorization and maps the low-d core tensor AB into the high-d neural space. The low-d

latents x(t) are generated by multiplying the core tensor and the input tensor U , which captures motion, color and

condition independent (CI) signals. For clarity, we omitted two indicator tensors, one recreating an LDS-like temporal

convolution of the core tensor and inputs, and another one used to repeat the inputs across the 36 task conditions

(Methods). To generate context-dependent activity Y cx the core tensor can change across contexts ABcx. The LDS

model (bottom) is nested within the class of TFR models (Methods). The core tensor AB is replaced by a smaller set of

parameters, A and B. The data temporal structure is restricted to be captured by powers of A over time. The latents are

recreated by convolving (asterisk symbol) the dynamics matrix powers with the inputs and adding the initial conditions

(Methods). Inputs are also repeated across task conditions.
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Figure 3 . LDS model classes with both fixed and context-dependent input dimensions can capture the PFC
trajectories in a stable task-related subspace. a, Expected trajectories in a task-related subspace that is stable across

contexts. Trajectories are sorted by choice and coherence conditions (as in Fig. 1a). The same trajectories in each

context are sorted twice, by either motion or color, and then plotted along different task-related dimensions (top, motion

and choice, bottom, color and choice). A stable input dimension is expected to reflect the sign and the strength of a

specific input regardless of context, but not of other inputs (top, motion dimension encodes motion coherence, in black,

but not color coherence, in blue; bottom, the reverse); i.e., stable input dimensions should reflect the input signals

regardless of whether these are relevant or irrelevant in a given context (thick doted vs. thin lines). In contrast, a stable

decision-related dimension should reflect the sign (and the integrated strength1) of the relevant input in each context,

but not the irrelevant one—a signature of selective integration (decision axes separate filled vs. hollow circles, the

relevant input sign, but not filled vs. dashed lines, the irrelevant; corresponding to motion in the motion context, left,

and color in the color context, right); Thus, the movement of the trajectories along the choice axis is coupled to the

behavior along the relevant input axis, but not the irrelevant. This suggests that choice-related activity emerges from

the relevant evidence signal. Input signals are assumed transient along the input dimensions. b, PFC trajectories in

the task-related subspace found by Mante et al.1 using targeted dimensionality reduction (TDR), for monkey A. The

subspace captures motion, color and choice-related variance along a set of orthonormal axes that are stable across

contexts. Colored thick bars indicate the angle between the found TDR axes before orthogonalization. Numbers on

bars are a scaling factor, to ease visualization as in1. Trajectories are sorted by choice and motion/color coherence

conditions, with color/motion conditions averaged out1. c Cross-validated model trajectories (LOOCV) for the LDS

ABcx model. d Same for the Acx, B model. All trajectories have been smoothed with a Gaussian filter for visualization

(sliding window size, 5-bins). This step did not change the LDS trajectories much, since they are inherently smooth.
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Figure 4 . LDS inputs are integrated selectively by both models, are largely stable across contexts and span
curved manifolds. a, Schematic illustrating the input and output LDS signals. The strength of the external inputs

over time is defined as the norm of the input vectors at each time step ||Bu(t)||, which accounts for the norm of B.

Input vectors live in the subspace spanned by the columns of B, and hence, the input signals are confined within

the input subspaces (left, here a 2D subspace for illustration). The latents live in the full low-d LDS subspace (right,

here 3D) and can be seen as the output of the LDS model, since they result from the convolution of the inputs with

the dynamics. b Top, external input strength over time inferred for the A,Bcx model across contexts (relevant vs.

irrelevant), here shown for the strongest positive coherence. Bottom, same but for the output signals (latents’ norm).

Mean across 100 models. Shades = sem (not visible in the outputs). Green bars indicate times when relevant and

irrelevant inputs/outputs are significantly different (Wilcoxon rank-sum test, p<0.001). c Same but for the Acx, B

model. d,e, Orthonormal 2D subspaces that demix coherence and coherence magnitude variance (coh and |coh|). These

dimensions are found within each 3D input subspace from both models by linearly regressing the inferred external

input values against the experimental coherence values and their magnitudes. Shown are inputs inferred at t=250ms

(after input norm pick strength, Fig. 4b, means over 100 models) for all coherences, projected onto the 2D coh-|coh|
planes, which form a curved representation of coherence information. Lines are drawn to ease visualization. For

the A,Bcx model input projections are shown onto the plane bisecting the two input planes found for each context,

which were highly aligned (angles between dashed and filled lines). Color and motion planes were nearly orthogonal

within each context for both models. For all input values the mean across conditions has been subtracted out to remove

condition independent signals (CI). The latents are computed running through the dynamics the CI subtracted motion

and color inputs independently. Monkey A data.
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Figure 5 . Selective integration requires multiple linear dynamics modes. a, The RNN (left) was build with fixed

input directions across contexts bm,c. The dynamics in each context switched between two approximately linear

regimes, represented by the linearized dynamics matrices Am and Ac. The leading left eigenvector of Am,c was

realigned towards the relevant inputs in each context, loading them onto the slowest output mode of the dynamics

(the leading right eigenvector, with associated eigenvalue close to 1), which defined a one-dimensional integrator or

line-attractor system1. The two LDS models (right) performed a realignment of either the inputs (A,Bcx) or the left

eigenvectors (Acx, B) across contexts, which loaded the inputs onto multiple modes. The A,Bcx model also increased

the relevant input’s norm (Fig. 4b, bigger input arrows in cartoon). b Average eigenvalues norm across 100 models

initialized at random (shades=std). The norm sets the rate of decay of each mode (time constant τ ), and determines

the stability of the dynamics (|λ| > 1 expanding mode, |λ| < 1 decaying mode, |λ| = 1 integration mode). Slow

modes have norms close to one (0.8 < |λ| ≤ 1, τ > 224ms, green bars, see Methods). The Acx, B model learns

similar eigenvalues across contexts. c Average coherence input loads onto the eigenmodes of the dynamics across 100

models (shades=sem). The loads were defined by the non-normalized projection of the coherence inputs onto the left

eigenvectors, averaged across all time steps (Methods), here shown for the strongest positive coherence inputs only.

For each context, the two models significantly increases the relevant input load onto multiple eigenmodes (green bars,

Wilcoxon rank-sum test, p<0.05). Monkey A data.
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Figure 6 . Non-normal transient dynamics contributes to selective integration in the Acx, B model. a, Models

Acx, B and A,Bcx mean impulse response for perturbations along random directions (dashed lines) and along the left

eigenvectors (dotted lines), averaged across 100 models and across left eigenvectors or perturbations (num pert. = num

left eigv. = 16/18). This measure shows how the dynamics matrix transforms a perturbation (or input) of unit norm, by

tracking the state norm of the system ||x(t)|| over time. Note that the Acx, B system has a different impulse response

for each context, since the dynamics matrix A changes in each context. Shades, sem across 100 models. b, Impulse

response for unit norm perturbations along the motion and color coherence input dimensions. For the A,Bcx model the

dynamics matrix is the same across contexts, and thus, the difference in the impulse response between perturbations

along the relevant and the irrelevant input dimensions arises due to the fact that these input dimensions subtly change

across contexts. For the A,Bcx, the perturbations are applied along the same input directions across contexts, since

these are fixed, but the dynamics matrix changes, which causes a different transformation of the same input pulse in

each context. Note that the impulse response along the input directions is different from the average impulse response

along random directions (dashed lines, same as in a), which indicates processing selectivity of the dynamics along the

input directions. Shades, sem across 100 models. c, Degree of non-normality of the two model classes (Henrici’s index,

Methods). Error bars, std across 100 models. Monkey A data.
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Figure 7 . Integration of the relevant inputs occurs in two separate phases of the dynamics. a, Largest variance

dimension of the condition dependent (CD) data in the motion context (1st leading singular vector of the CD data, with

condition independent CI effects subtracted) at each time step projected onto the right eigenvectors of the dynamics

from the Acx, B model (dot products for real eigenvectors, cosines of minimum subspace angles for complex conjugate

pairs of eigenvectors, see Methods, averaged across 100 random models). Left/right panel shows dot products sorted

by increasing eigenvalue norm/rotation frequency of the associated right eigenvectors (averaged across 100 models,

see Methods). Yellow lines mark the early phase of the integration process, t=350ms, the time at which the integrated

motion signal in Fig. 4b picks and saturates. Red lines indicate the late phase of the integration process (the last time

step of the trial) where decision signals are the strongest1. b, Mean distribution of alignments across 100 random

models at the early and late phases (at times marked in a). Shades = std. Green bars indicate the eigenvalues along

which the early and late alignment distributions significantly differ (Wilcoxon rank-sum test, p<0.001). c,d Same as

panel a,b but for the CI data vector (condition-averaged data vector). Green/purple lines mark the same periods as

yellow/red lines. Monkey A data.
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Figure 8 . The LDS models help discover novel computational dimensions in PFC. a, Expected trajectories along

a novel secondary decision dimension (top), that might reflect transient decision signals, and a dimension that captures

CI signals (bottom), plotted against the evolution along a persistent decision dimension (same plotting conventions

as in Fig. 3a). Contrast them with known dimensions that reflect motion and color inputs (middle), as in Fig. 3a.

The new dimensions capture novel features of the population trajectories. b, PFC data trajectories from monkey A

along the early integration (secondary decision), decision and CI dimensions averaged across contexts. Same plotting

conventions as in Fig. 3b. Middle panels show the trajectories along the LDS-identified input coherence dimensions,

also averaged across contexts, and models from each LDS class. The data projections along them resembled the

input projections found by TDR (Fig. 3b; TDR-LDS input alignments: A,Bcx, mot = 55◦, col = 42◦, for mean input

coherence dimensions across contexts and across 100 models; Acx, B, mot = 44◦, col = 31◦, for mean input coherence

dimensions across 100 models; the alignments are higher than expected by chance, Extended Data Fig. 6b). CI variance

has been subtracted to the trajectories in the middle panels to emphasise input-related variance. The dimensions have

been orthogonalized with a QR-decomposition1 (starting with decision, and then dec 2, motion, color and CI). Colored

bars show the alignment between dimensions before the orthogonalization step. Trajectories have been smoothed with

a Gaussian filter for visualization (sliding window size, 5-bins).

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527389
http://creativecommons.org/licenses/by-nc/4.0/


End Notes

Acknowledgements. We thank Renate Krause for providing the RNN data and for valuable discussions.

We thank Lea Duncker, Asma Motiwala, Saray Soldado Magraner and Gabriela Michel for providing

feedback on the manuscript and for valuable discussions. This work was supported by the Gatsby Charitable

Foundation.

Author Contributions. J.S.M. and M.S. conceptualized the methodological approach, developed the

models and performed data analysis. V.M. conceived the experiments, collected the data and conceptualized

data analysis. All authors actively participated in the interpretation of the data. J.S.M and V.M wrote the

paper.

Code Availability. The code will be made publicly available on GitHub upon peer-reviewed publica-

tion.

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527389
http://creativecommons.org/licenses/by-nc/4.0/


1 Methods

1.1 Experimental procedures and data

1.1.1 Subjects and task

Two adult male rhesus monkeys were trained in a contextual two-alternative forced-choice visual discrimina-

tion task. The monkeys had to discriminate either the color or the motion of a random dots display based on

context, which was indicated by the fixation cue. The presentation of the random dots lasted for 750ms, after

which the monkeys had to wait for a variable delay and report their decision. This was done by saccading to

one of two diametrically opposite targets, as indicated by the color or motion evidence. The strength of the

evidence was modified by varying the motion and color coherence of the random dots. This was determined

by the percentage of dots moving coherently or that were colored the same. Six different coherence settings

were used: three strength levels and two directions. The later indicated whether the evidence was pointing

towards or away from one of two choice targets—placed at the receptive field (RF) location of the recorded

neurons. When the evidence pointed towards the RF of the neurons, their FRs typically increased above

baseline. Therefore, positive values were used to define the in-RF evidence. On the contrary, when the

evidence pointed away from the RF of neurons, their FRs typically decreased, and hence negative values were

used to define the out-RF evidence. Considering all possible motion and color coherence value pairings (6x6),

36 different random dots configurations were presented, which defined the 36 task conditions. Importantly,

the motion and color evidence in a given trial could be congruent or incongruent. When incongruent, it was

necessary for the monkey to ignore the irrelevant signals in order to perform the correct decision. For further

details on the animal procedures and task we refer to the original study1.

1.1.2 Neural data

Electrophysiological recordings were performed during the task in PFC regions, likely comprising the frontal

eye fields (FEF) and surroundings. Both single-unit and multi-unit activity was isolated from the recordings.

We referred to them as neurons, for simplicity. Only a few neurons were recorded simultaneously in each

trial, but their activity was collected for multiple trials under the 36 different task conditions. Population

responses were then constructed by pooling the condition-averaged activity of all neurons. For that, the

firing rate of the neurons was computed in each trial using a 50ms sliding square window from spike trains

sampled at 1ms. Activity was then averaged across trials under the same condition and z-scored, as in1.

However, we did not apply any smoothing to the data prior to fitting the models (only in the analysis, for

visualization purposes). Thus, the data consisted of a pseudo-population of per-condition averaged PSTHs.

The population size was N=727 for monkey A and N=574 for monkey F. We included only neurons which
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had recorded activity under all conditions and for all times. As in the original study, we focused our analysis

on the period of random dots presentation (750ms, from 100ms after dots onset to 100ms after dots offset)

and we analysed only correct trials.

1.2 Models

1.2.1 Linear Dynamical System (LDS) model

The linear dynamical system model considered was a non-probabilistic version of a standard LDS or state

space model, with equations

xk(t) = Axk(t− 1) +Buk(t)

yk(t) = Cxk(t) + d
(1)

where the vector xk(t) represents the latent state at time step t and task condition k, yk(t) are the observations

(a vector containing the PFC condition-averaged PSTHs) and uk(t) the external input vector. The dynamics

matrix A determines the transition between subsequent latent states. The matrix B defines the input dimen-

sions. The external inputs drive the dynamical system at each time step and define input vectors (Bu(t))

that live in the latent subspace spanned by the columns of B. Therefore, the external inputs are assumed

linearly mixed in the population at each time step. Note that the input vectors (Bu(t)) can point in different

directions over time, but these changes are always confined within the input subspaces. The input term in

equation (1) can be decomposed to make explicit its color and motion components Bmum(t) + Bcuc(t).

The loading matrix C maps the low-dimensional latent state onto the high-dimensional neural space. The

constant vector d acts as a bias. This LDS model can be seen as a low-dimensional RNN that reads-out onto

a high-dimensional output space.

To capture changes in activity across contexts ycxk (t), we fitted an LDS model jointly to the PFC data from

each context. The model could learn independent parameters for each context (based on the data from

each context) or a single parameter across contexts (using the joint data from both contexts). Both the

dynamics matrix Acx and the motion and color subspaces Bcx
m,c could be context-dependent (cx = mot or col

context). The Bcx
m,c matrices could have different norms, and hence, contextual modulation of inputs could

be implemented through changes in both input subspace orientation and norm. The external input signals

um,c(t) and the mapping C were assumed fixed across contexts.

For each motion and color input dimension, 6 external input time courses were learned, corresponding

to the 6 different coherence values in the task (3 strength levels and 2 directions). These were inferred

pooling data from all task conditions were a particular coherence level was presented, and therefore, were
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shared across task conditions (36 task conditions). The model incorporated additional input constraints,

which simplified their temporal structure and were found to improve generalization performance. Time

courses were constrained to be the same for all coherence levels of the same direction. That is, a single

time course was shared for positive coherences (in-RF evidence) and another one for negative coherences

(out-RF evidence). The coherence strength level was learned as a scalar value that multiplied the time

course u(t) = Tin,out(t) coh1,...,6. We also fitted a model constrained to learn fixed inputs in time, with

Tin,out(1, ..., t) = 1. The resulting input vectors (Bu) also lived in the input subspace defined by the input

matrices B, but unlike the input vectors for the time varying input model (Bu(t)), these do not move within

the input subspaces over time, and remain fixed throughout the trial both in strength and direction.

A different vector of initial conditions was also learned for each context xcx0 . This parameter helped the

model recreate the separation of trajectories in state space found across contexts (contextual axis in the

Mante et al. study1). Note that this feature cannot account for the contextual differences in input integration,

since the model is linear, so the relationship between inputs and dynamics modes is the same everywhere in

state space. Indeed, a fully constrained model across contexts, with flexibility only in the initial conditions,

fails to selectively integrate and poorly reproduces the data (Fig. 2a A,B model, Extended Data Fig. 2b).

The initial conditions simply add a shift to the overall dynamics in an input independent manner, since x0 is

the same across all task conditions, so it could only capture baseline changes across contexts. This can be

seen in the next equation, which illustrates the unfolding of the dynamics from the initial state and makes the

dynamics and inputs convolution explicit

x(t) = Atx0 +
t∑

t′=1

At−t
′
Bu(t′) (2)

This equation also illustrates the presence of a summation degeneracy in the model. The first term defines

condition independent (CI) effects, but these can also be captured by the input term. For this reason, in figure

Fig. 4, Fig. 8, Extended Data Fig. 3b, Extended Data Fig. 4, Extended Data Fig. 9 and associated Supplemen-

tary Figures, we subtracted out CI effects from the input/data trajectories along the input dimensions.

The model was implemented in Python and optimized using gradient descent (ADAM algorithm) to minimize

the data reconstruction mean squared error (MSE), with learning rate of 0.009, and the rest of parameters

set to the default. The convergence criteria was set to ∆MSE < 10−5, maximum iterations to 10,000 and

minimum iterations to 5,000. The cost function incorporated an input norm penalty to constrain the space

of possible solutions and to favour learning small inputs. This encouraged that task-related variables in

the data other than the inputs, in particular integration signals, were generated dynamically by the model.

Incorporating the penalty minimally impacted performance and helped provide consistent solutions across
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fits even when parameters were initialized at random. Therefore, we incorporated such penalty in all our

model fits and randomly initialized all parameters. The resulting objective function was:

MSE =
1

NTKC

∑
t,k,cx

||ycxt,k − ŷcxt,k||22 +
∑
t,k,cx

||Bcxucxt,k||22 (3)

Where N = number of neurons, T = trial duration, K = number of conditions and C = number of contexts.

Since the data was z-scored, the MSE captured the fraction of unexplained variance in the data by the model.

Note that the LDS was simply optimized to minimize the MSE of the condition-averaged PSTHs. We did

not learn any observations noise model or inferred a latent state distribution, contrary to more standard

formulations of the LDS, which are fully probabilistic (and typically infer Gaussian latents, or Gaussian

latents combined with Poisson observations56). We considered this simpler case given that our data was

trial-averaged. Furthermore, our focus was to analyse the parameters of the dynamical model, which are

part of the prior distribution over the latents in the probabilistic LDS, and not the data-corrected posterior

distribution.

1.2.2 Tensor Factor Regression (TFR) model

The model consists of a factorization of the data tensor structure into three main low-rank tensors

Yntk ≈ CnlABltu Uutk (4)

where n = number of neurons, t = time steps, k = conditions, l = latent dimensionality, u = input

dimensionality + 1D baseline. The tensor C (an orthonormal matrix) sets the rank of the factorization and

maps the low-dimensional core tensor AB into the high-dimensional neural space. The inputs tensor U

captures the condition-dependent effects in the data and acts as a regressor, when this is known. When

learned, as it is the case here, it is used to capture task-related variables, such as motion and color input

signals. Note that similar to the LDS, these signals are assumed linearly mixed in the population at each time

step.

In the previous equation, for clarity (as in Fig. 2c), we omitted an indicator tensor T that emulates the

LDS-like convolution of inputs and dynamics

Yntk ≈ CnlABlt′′u Ttt′t′′ Uut′k (5)

where Ttt′t′′ = δ(t− t′ = t′′). One can see how this model encompasses the LDS by writing

ABlt′′u Ttt′t′′ =

{
At−t

′

ll Blu t ≥ t′

0 otherwise
(6)
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where A and B correspond to the LDS dynamics and input subspace matrices, respectively.

The inputs incorporated constraints analogous to the LDS. First, inputs were repeated across conditions with

an additional indicator tensor Q

Yntk ≈ CnlABlt′′u Ttt′t′′ Qukc Uct′ (7)

where c = (6 × u) + 1 indexes the six coherence conditions, plus baseline (that captures CI effects). In

this way, the tensor U is designed to extract common task-related variables across conditions. Second, the

temporal structure of the inputs was constrained to be the same for coherences of the same direction. For

that, the input tensor U was factorized further as follows

Yntk ≈ CnlABlt′′u Ttt′t′′ Qukcd PcRdt′ (8)

where d = 2 indexed the two possible coherence directions.

The parameters of the TFR model can be computed by alternating the estimation of the tensors W = CAB

and U . For that, one can consider the tensor unfolding Y(n)(tk) and compute C and AB via reduced rank

regression, with fixed U . Then, knowing W , the least squares estimate of U can be computed. In practice, we

estimated the parameters following the same optimization procedure we used for the LDS, which provided

identical results. That is, the model was implemented in Python and optimized using ADAM, with objective

given by the data reconstruction MSE.

The TFR model is related to existing regression-based methods that discover task-related variance in the

data1,12,57, but with the difference that TFR incorporates task regressors that are themselves learned from the

data. Another key distinction is that TFR considers a joint factorization of the whole data tensor structure,

similar to other studies58, but the tensor components relate to the parameters of the task and are themselves

low-dimensional.

1.2.3 Recurrent Neural Network (RNN) model

We generated data from a RNN model of the same type as used by Mante and colleagues1.

y(t) = A tanh(y(t− 1)) + bmum + bcuc + bcx (9)

Briefly, the model was a non-linear RNN trained using back-propagation to solve the same contextual

decision-making task as the monkeys. Contrary to the LDS, the RNN was not optimized to reproduce

the complex and heterogeneous responses of PFC neurons, i.e. to match PFC’s dynamics. This network
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was designed with the same built-in assumptions as in the original model (Fig. 1c). Namely, that the

external coherence input signals um and uc were noisy but constant in time, with mean proportional to the

strength of the coherence evidence, and that these reached the circuit through two fixed input dimensions

across contexts bm and bc. The model had the flexibility to learn different contextual input vectors bcx,

whose activation changed the dynamics of a fixed, non-linear recurrent network (with connectivity A).

This allowed the model to switch its state between two approximately linear regimes (Acxapp=A
mot
app /Acolapp),

performing different computations in each context. Namely, selecting the contextually-relevant input signals

for integration towards a choice and dynamically discarding the irrelevant ones. In the original study, the

RNN population activity ycxRNN was analysed and qualitatively compared with the PFC activity, revealing

some shared features that were suggestive of a common contextual-integration mechanism between PFC and

the network. The network could be ”reverse-engineered” in order to understand the mechanism underlying

such computation, by linearizing the dynamics around the identified fixed points of the system (obtaining

different local Amot/colapp , which however were similar in dynamics and could be averaged1). In this work, we

instead focused on analysing the properties of LDS models fit to the RNN population activity ycxRNN (the

z-scored condition-averaged responses, as in the PFC data, from a 100 RNN units). For further details on the

RNN training and analysis we refer to the original study1.

1.3 Dynamics analysis

1.3.1 Eigenspectrum and time constants

The eigenspectrum of the dynamics matrix contains both real and imaginary eigenvalues, which come in

complex-conjugate pairs

λ = λre + λimi

λ† = λre − λimi
(10)

The absolute value of the eigenvalues determines the rate of decay or growth of each dynamic mode59. Modes

are stable if they either decay or persist

λ ≤ 1 ∀λ real

|λ| =
√
λ2re + λ2im ≤ 1 ∀λ complex

(11)

The slower the decay, the slower or more persistent a given mode is, and the greater input information is

preserved along it. The time constant measures the time at which the initial state will have decayed by 37%
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(1/e=0.37) along a given mode. Considering that each time step is 50ms (the data binning size)

xt = |λ|tx0
(1/e)x0 = |λ|tx0

τ =
log(1/e)

log |λ|
50

(12)

We consider that a mode is slow if it has a norm close to one, that is, if |λ| > 0.8. This corresponds to a

decay time constant of τ > 224ms, which encompasses approximately a third of the trial duration. Given

that the inferred external inputs in the two models are strong for the first third of the trial (Fig. 4a,b), inputs

mapped onto such slow modes largely persist until the end of the trial, albeit with some decay for modes

|λ| = 0.8−0.9. In particular, by the second third of the trial, inputs would have decayed by at most 37%. We

consider the slowest modes to have |λ| > 0.9 and time constant τ > 475ms. These are strongly persistent and

preserve most input information until the end of the trial. The relatively fast decaying modes (|λ| = 0.7−0.8,

τ = 140− 224ms) are somewhat persistent, but loose most input information by the end of the trial.

Many of the eigenvalues were imaginary, indicating the presence of rotational dynamics in the data17. Some

of the eigenvalues were negative, which also indicate the presence of oscillations44. A few models identified

slightly unstable eigenmodes (with eigenvalue norm slightly bigger than 1), but this is expected when learning

from finite trial lengths and limited data samples60. However, the models inferred from monkey F data, in

particular for the A,Bcx model, seemed to use instability properties of the dynamics in order to capture

specific features of the data (Supplementary Fig. 8a,d).

1.3.2 Rotational dynamics measure

The existence of complex eigenvalues indicates the presence of rotational dynamics in the data. Rotations

are confined to the planes defined by pairs of complex-conjugate eigenvectors, with directions spanned by

the real and imaginary components of the vectors59. Considering first the phase plane representation of a

complex-conjugate pair of eigenvalues in polar coordinates

λre = |λ| cosω

λim = |λ| sinω
(13)

where

ω = arctan(
λim
λre

) ∀λ complex (14)

Rotations on each plane are determined by the rotation matrix J , which derives from the dynamics matrix

expressed in the Jordan normal form59. As an example, for a 2D system with two distinct complex eigenvalues
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J =

[
λre −λim
λim λre

]
= |λ|

[
cosω − sinω

sinω cosω

]
(15)

Rotations evolve in time following powers of J , with amplitude over time (the rate of decay or growth) given

by the absolute value of the eigenvalues

J t =

(
|λ|

[
cosω − sinω

sinω cosω

])t

= |λ|t
[

cosωt − sinωt

sinωt cosωt

]
(16)

Therefore, ω is the rotation frequency in the complex plane. Note that the frequency increases when the

ratio λim
λre

is big. The rotation frequency ω is given in rad/s and f = ω/(2π) in Hz. Since the data was

down-sampled at 20Hz (50ms bins), the frequency is given by f = 20ω/(2π) in Hz. For real modes, the

rotation frequency is zero.

1.3.3 Non-normality measure

The Henrici’s index measures the degree of non-normality of the the dynamics, and is given by61

H =

√
||A||2F −

∑
i |λi|2

||A||F
(17)

This is a normalized metric with values between 0 and 1, with 0 indicating that the system is normal, and 1

that is maximally non-normal. A system is normal when its dynamics can be described with an orthonormal

eigenvector basis. A system is non-normal when its eigenvectors do not necessarily form an orthonormal

basis, and the transformation to eigenvector coordinates may involve a strong distortion of the phase space61.

Importantly, in normal linear networks, the network responses are explained with a linear combination

of exponentially decaying modes (if the system is stable), with timescales defined by the corresponding

eigenvalue (equation (12)). In non-normal stable networks, however, more complex patterns can emerge,

which often involve transient responses where the network activity temporarily grows, but eventually decays

as in normal systems.

A crucial property of non-normal systems is that they have different left and right eigenvectors.

A = RΛL (18)

with L = R−1, whereas for normal systems L = R† (†=conjugate transpose). This non-normal property

allowed the RNN to change the leading left eigenvectors across contexts, while keeping the right eigenvectors

pointing in the same direction.
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1.3.4 Input loads

To compute the input load onto the modes of the dynamics, we start by expressing the latents in the left

eigenvectors basis.

x(t) = Ax(t− 1) +Bu(t)

x(t) = (RΛL)x(t− 1) +Bu(t)

Lx(t) = ΛLx(t− 1) + LBu(t)

(19)

where we have taken the eigendecomposition of the matrix A, with R containing the right eigenvectors in

its columns and L = R−1 the left eigenvectors in its rows. We have then left-multiplied by L. Defining

α(t) = Lx(t) we obtain

α(t) = Λα(t− 1) + LBu(t) (20)

The evolution of the latents in this basis is independent, that is, decoupled from one another—given that the

matrix Λ is diagonal. Unrolling this equation in time we obtain

α(t) = ΛtLx0 +
t∑

t′=1

Λt−t′LBu(t′) (21)

As the eigenmodes are independent, we can write down a set of uncoupled equations that describe the

evolution of each eigenmode, one for each entry of the vector α, given by αl with l indexing the latent

variable dimension

αl(t) = λtl l
ᵀ
l x(0) +

t∑
t′=1

λt−t
′

l lᵀlBu(t′) (22)

and ll being the lth left eigenvector. The input ”loads” are defined by the last term of the summation, which

correspond to the non-normalized projection of the inputs onto the left eigenvectors (note that neither the

input vectors nor the left eigenvectors are unit norm).

loadl(t) = lᵀlBu(t) (23)

This term specifies how strongly the inputs are mapped onto the dynamic modes, at each time step t, before

being processed by the dynamics (i.e., in this basis, before being scaled by λ). The extend to which the

inputs are mapped or ”loaded” onto each mode depends on the alignment between the input vectors and each

left eigenvector, as well as the norm of both vectors. For each pair of complex modes, the load is given by

loadl−l†(t) = 2|| <{lᵀl }Bu(t)<{rl} − ={lᵀl }Bu(t)={rl} || (24)

Where <{.} and ={.} take the real and imaginary components of their arguments. The rationale for the

expression above comes from the following. For complex modes, equation (23) contains imaginary numbers,
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since the left eigenvectors are complex, so we cannot interpret the loads in this basis. However, we can do it

in the original state vector basis x(t), which is real. To change basis, we use α(t) = Lx(t) and express x(t)

as a linear combination of the state along each right eigenvector dimension. The coefficients of the linear

combination are given by αl(t), which contains the input loads

x(t) = Rα(t) =
∑
l

αl(t)rl (25)

We can now make explicit the contribution due to real eigenmodes and complex eigenmodes, which come in

complex conjugate pairs (l − l†).

x(t) =
∑

l−l†, img

(αl(t)r
l + α†l (t)r

l†) +
∑
l, real

αl(t)rl (26)

Due to the complex conjugacy, the imaginary numbers end up cancelling out in the summation, and only real

terms survive. This is why in this basis, the state vector x(t) is real. In particular, the way the complex roots

end up contributing to the state dynamics is given by their real and imaginary parts. This is because for each

pair of complex conjugate roots, two complementary real solutions exist, which are given by the sum and

difference modes αl±(t)

αl+(t) =
1

2
(αl(t) + α†l (t)) = <{αl(t)}

αl−(t) =
1

2i
(αl(t)− α†l (t)) = ={αl(t)}

(27)

This can be seen by expanding the complex term in the state equation

αl(t)rl + α†l (t)rl† = (<{αl(t)}+ i={αl(t)})(<{rl}+ i={rl})

+ (<{αl(t)} − i={αl(t)})(<{rl} − i={rl})

= 2<{αl(t)}<{rl} − 2={αl(t)}={rl}

= 2(αl+(t)<{rl} − αl−(t)={rl})

(28)

Thus

x(t) =
∑

l−l†, img

2(<{αl(t)}<{rl} − ={αl(t)}={rl}) +
∑
l, real

αl(t)rl (29)

To understand how the inputs are loaded at each time step t into the dynamic modes to affect the latent state,

we focus on the last term of the summation in the αl(t) equation (22), as we did before

x(t)input =
∑

l−l†, img

2(<{lᵀl }Bu(t)<{rl} − ={lᵀl }Bu(t)={rl}) +
∑
l, real

lᵀlBu(t)rl (30)

The last term contains the input loads along each real mode, lᵀlBu(t), which gives equation (23). This value

indicates how much of the input is mapped along each right eigenvector direction rl. Thus, considering only
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this term, the latent state vector is reconstructed with a linear combination of real right eigenvectors, weighted

by the input loads. Note however, that the right eigenvectors are not orthogonal, so the result of the sum could

be non-trivial, if for instance some of this vectors cancel out, or give rise to amplification (Supplementary

Notes, Extended Data Fig. 7). The total input contribution or load along each direction rl is thus given by

the norm of the vector lᵀlBu(t)rl. Since the real right eigenvectors are normalized, this is equal to lᵀlBu(t),

which gives equation (23). Similarly, the load for each complex conjugate pair of modes is given by the norm

of the vector 2(<{lᵀl }Bu(t)<{rl}−={lᵀl }Bu(t)={rl}), which gives equation (24). This vector lives within

the 2D plane spanned by the real and imaginary components of the complex-conjugate right eigenvector pairs.

To compute the loads in Fig. 5c, we use the inferred inputs for the largest motion and color positive coherence

values, and project them along the coherence dimension. So the loads are computed using the coherence

component of Bu(t), for all times and all 100 models, and then averaged across time and models. For

complex modes, the same load is shared across both complex conjugate pairs, and is computed using

equation (24).

1.3.5 Most amplifying dimensions

The most amplifying modes where found following22, by computing the Observability Gramian and its

associated eigenvectors. The most amplifying modes are defined by the eigenvectors with the largest

associated eigenvalues. We computed the Observability Gramian by solving the following Lyapunov

equation

ATX +XA+ CTC = 0 (31)

where A is the LDS models dynamics matrix and C is the loading matrix. We considered only stable

models22, which in our case were 90% of the 100 A,Bcx models and 85% (mot cx), 60% (col cx) of the

Acx, B models in monkey A.

1.4 Additional analysis methods

1.4.1 Alignment metrics

We report alignments between different dimensions using either dot products or angles (in degrees). When

computing alignments between a given vector and complex eigenvector dimensions, we consider the plane

spanned by the real and imaginary vector components of the pair of complex conjugate modes, and compute

the minimum subspace angle between the vector and the plane.
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1.4.2 Statistical tests

To asses statistical significance of differences between distributions, such as the relevant vs. irrelevant load

distributions in Fig. 5c, we used a Wilcoxon rank-sum test with significance levels (p-values) set at p<0.001

(Fig. 4b,c, Fig. 7b, Extended Data Fig. 8b, and associated Supplementary Figures) or p<0.05 (Fig. 5c and

associated Supplementary Figures, also Supplementary Fig. 4). This is a two-sided rank sum test of the null

hypothesis that two independent samples come from distributions with equal medians.
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neuron 4 = max R2
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neuron 1 = max mot TDR weight

neuron 3 = max dec TDR weight

neuron 2 = max col TDR weight

Extended Data Figure 1 . Individual neurons performance for the LDS and TFR models. a, LDS and TFR

models R2 for all individual neurons, sorted by their mean firing rate as in Aoi et al.12. Highlighted in colors are five

example neurons. Three of them have maximum selectivity to either motion, color or decision (in black, blue, red), as

measured by their weight onto the motion, color and decision population vectors found using targeted dimensionality

reduction (TDR)1. The two other neurons were selected based on model performance (best neuron captured, max R2,

in green, and worse neuron captured, min R2, in pink). b, PFC data and LDS/TFR models cross-validated PSTHs for

the 5 example neurons. The PSTHs are computed from z-scored data/model responses sorted by the relevant coherence

value in each context (motion in the motion context, left, and color in the color context, right) and averaged across

irrelevant coherence conditions, as in Mante et al.1. Color shades and filled/hollow circles indicate the strength and

direction of the coherence evidence, respectively (same notation as in Fig. 1a). PFC data responses have been smoothed

with a Gaussian kernel (σ=40ms) for visualization1. Data is from monkey A.
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Extended Data Figure 2 . Population trajectories of the TFR model and alternative LDS models in the task-
related subspace. Cross-validated model trajectories (LOOCV) for the best TFR model and additional LDS models

with various input dimensionalities and input/contextual constraints. a, TFR ABcx model with 2D inputs. b, LDS

A,B model with 3D inputs. This model poorly captures the trajectories, specially along the decision dimension.

c,d, LDS A,Bcx and Acx, B models with 2D inputs. e,f, LDS A,Bcx and Acx, B models with 1D inputs. Note that

the trajectories along the input dimensions are not accurately captured, in particular for the irrelevant inputs, where

trajectories poorly separate by coherence conditions. g,h, LDS A,Bcxum,c and Acx, Bum,c models with time-constant

3D inputs. Same conventions as in Fig. 3. All trajectories have been smoothed with a Gaussian filter for visualization

(sliding window size, 5-bins). This step did not change much the LDS trajectories, since they are inherently smooth,

but it helped smooth-out substantially the TFR model trajectories, given that this model has no dynamical constraints

that enforce smoothness (data not shown). Monkey A data.
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Extended Data Figure 3 . Input variance, PFC data in the 2D input subspaces and alignment statistics. a,
External inputs variance in the three input dimensions from both LDS models. For the A,Bcx model variance is

computed along the mean dimensions across contexts (first taking the average across contexts: mot avg. B(m)
m −B(c)

m ,

for dims 1-3, and col avg. B(m)
c −B(c)

c , for dims 1-3, then re-orthogonalizing the three input dimensions). Note that

most of the input variance is concentrated in the first two input dimensions (a 2D plane) whereas the third dimension

carry almost no input variance. Averages across 100 models. b, PFC data at t=250ms for all coherences projected

onto the same 2D coh-|coh| input planes as in Fig. 4d,e. The PFC data contains a curved representation of coherence

information. CI signals have been subtracted. c, Alignment between the motion and color input vectors within contexts

(dashed lines), and between the motion or color input vectors across contexts (filled lines), for each of the three

input dimensions, and the two LDS models (left and middle panels). Dashed red lines, 5th and 95th percentiles of

a null distribution of alignments (see d). Error bars, std across a 100 randomly initialized models. Note that the

inferred coherence and coherence magnitude dimensions for both motion and color are largely stable across contexts

in the A,Bcx model (i.e. they are highly aligned, filled lines). However, the across-contexts alignments for the third

input dimension are close to random, indicating that this dimension is not common across contexts. Right panel,

alignments between the mean input directions (across 100 models) from each LDS model class. d, Null distribution

of alignments (subspace angles) from randomly sampled 3D subspaces within and across contexts drawn aligned to

the data covariance62, orthonormalized, and then projected onto the low-d subspaces from each LDS model class

(defined by the columns of the loading matrices C, left, right panels). The null distributions from the two model

classes are different since they learned different C matrices. Random samples s≈33,000 orthonormal subspaces, or

100,000 vectors. Dashed red lines, 5th and 95th null distribution percentiles. Alignments not expected by chance fall in

regions ≤ the 5th or ≥ the 95th percentiles of the control distributions. Additionally, given the binomial nature of the

distribution, where both high and low alignments are expected, random alignments should on average lie around 50◦.

This is not what is typically obtained from the data (panel c). Furthermore, in all 100 models from the A,Bcx class, the

highest alignments consistently occurred between the two color and two motion dimensions across contexts, and not

between the motion and color dimensions within contexts (first panel in c, filled vs. dashed lines). This was true only

for the first two input dimensions, but not the third, where all alignments are very low. Similarly, the first two mean

input dimensions were highly aligned across model classes, but not the third (c, third panel). Monkey A data.
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Extended Data Figure 4 . LDS models external inputs, latents and PFC data in the LDS input dimensions.
LDS external inputs, LDS cross-validated latents (outputs) and PFC data trajectories projected along the three input

dimensions found for the A,Bcx (a-c) and Acx, B (d-f) models, for all coherence conditions and contexts (relevant

vs. irrelevant). a,d, First input dimension, capturing coherence related variance (coh). b,e, Second input dimension,

capturing coherence magnitude related variance (|coh|). c,f, Third input dimension, orthogonal to the coh and |coh|
dimensions, capturing little input and relatively little output/data variance compared to the other dimensions (in

particular, for color). For the A,Bcx model, projections are shown onto the direction bisecting the two color and two

motion directions found for each context. All data is from means over 100 models initialized at random. The three

mean color and motion input dimensions are orthogonalized with QR-decomposition. For all trajectories the mean

across conditions has been subtracted out to remove condition independent signals (CI). Latents and data trajectories are

generated for all 36 task conditions and plotted along the motion/color input dimensions with color/motion conditions

averaged out. Same plotting conventions as in Fig. 3. Monkey A data.
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a b c

d

Extended Data Figure 5 . Performance of LDS models with time-constant inputs and randomized data controls.
a, Leave-one-condition-out cross-validation performance (LOOCV) of the time-varying input LDS models in Fig. 2a

(filled lines) and the same models after re-training their input parameters Bum,c, but constraining um,c to be constant

in time, and with the rest of the parameters kept the same (dashed lines). See next panel for performance of a similar

model but fully optimized (all parameters re-trained). b, Performance of LDS models with um,c constant in time

where all parameters, including the dynamics matrix, are optimized to fit the data (dashed lines). The time-varying

models from Fig. 2a are also shown for reference (filled lines). c, Performance of the best time-constant models

(A,Bcxum,c−Acx, Bum,c 3D models, dashed lines in b) when fitted to time-shuffled PFC data. For all three subpanels

(a-c) the minimum cross-validation errors are shown relative to the best performing LDS model (the time-varying

A,Bcx model with 3D inputs). Error bars indicate the standard error mean across LOOCV folds. Note that the

performance of the best time-constant models when fitted to time-shuffled data drops substantially (c), being worse

than the 1D input models and nearly as bad as the most contextually constrained A,B models (since ∆ MSE = 26, see

b for reference). d, Training performance of the best time-varying LDS models on surrogate data sets randomized

across time, neurons and conditions (TNC), but designed to preserve the primary statistics of the data13. To obtain the

randomized TNC data sets the tensor maximum entropy method (TME) was used. Shades indicate standard error mean

across 30 surrogates. Monkey A data.
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Extended Data Figure 6 . LDS models dynamics properties. a, LDS eigenspectrums for the 100 models from each

model class. b,c, Null distribution of alignments for randomly sampled pairs of vectors, within contexts or across

contexts, drawn aligned to the data covariance62 in the ambient (high-d) space (b) or projected onto the low-d LDS

subspaces from each model class (c, defined by the columns of the loading matrices C). Random samples s=100,000

vectors. Dashed red lines, 5th and 95th null distribution percentiles. Alignments not expected by chance fall in regions

< the 5th or > the 95th percentiles of the control distributions. d, Mean alignments among the left/right eigenvectors

from each model class (A,Bcx, top, Acx, B, bottom, averages across 100 models from each class). e, Motion and color

input coherence vector alignments with respect to dynamic dimensions of various degrees of amplification, sorted

from the least to the most amplifying modes (Methods), for the two contexts (left and right panels) and the two LDS

model classes (top, bottom). Mean ± std across 100 models. Motion and color inputs do not strongly align to the most

amplifying dimensions. Note that in Fig. 5c we found that coherence inputs were strongly loaded onto the relatively

fast decaying left eigenmodes. Indeed, these intermediate left eigenmodes do not align particularly strongly to the most

amplifying modes, compared to the alignments for the fastest and the slowest eigenmodes (see f, L panels). f, Right (R)

and Left (L) eigenvectors alignments with respect to the four most amplifying modes of the dynamics (Methods), for

both models and both contexts. Mean ± std across 100 models. Note that all left eigenvector dimensions, from fast, to

intermediate, to slow, have moderate to strong alignments with the most amplifying modes. In fact, all left eigenvector

directions amplify inputs similarly (see next panel) g, Impulse response along each left eigenvector direction, measured

at the time right after the perturbation (t=2), which was unit norm. The state at this time indicates the degree of transient

amplification immediately after the pulse (see also Fig. 6a for response over time, averaged across all left eigenvectors).

The state norm at t=2 is slightly bigger than 1 for all A,Bcx left eigenvectors, indicating that all these directions slightly

amplify inputs. For the Acx, B, in both contexts, the impulse response is much bigger than one for all left eigenvectors,

indicating that all these directions strongly amplify inputs. This confirms that the dimensions where the inputs are

mostly loaded, the intermediate or relatively fast decaying dimensions, are not particularly amplifying, relative to the

fastest and slowest dimensions. Monkey A data.
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Extended Data Figure 7 . Non-normal transient amplification of inputs. Impulse response behavior of a 2D

linear dynamical system with normal dynamics (a) and a similar but highly non-normal system (b). By construction,

the normal system had orthogonal eigenvectors (e1, e2, left panels, in green and blue) and the non-normal system

non-orthogonal, in this case set to be closely aligned to each other. In both systems e1, e2 correspond to the two right

eigenvectors of the dynamics. Two additional left eigenvectors exist in the non-normal system, distinct from the right

ones, but these are not shown since they are not crucial to understand this picture. In a normal system the right and

left eigenvectors are the same (see Methods). Both models were set to have identical eigenvalues, one being small

(λ = 0.3, fast dynamics, in green) and the other large (λ = 0.7, slower but also decaying dynamics, in blue). The

impulse response of the system was defined as the dynamics of the system state x(t) under a pulse input (or unit norm

perturbation). The magnitude of the response was measured by the state norm over time after the pulse ||x(t)|| (right

panels). The perturbation was given along a direction bisecting the plane spanned by the two right eigenvectors in the

normal model (x0, left panels). For the normal system (a), the projection of the state onto the eigenvectors’ orthonormal

basis (dashed lines) at each time step gives the evolution along the dynamic modes (dots on e1 and e2 directions).

For the non-normal system (b), the state cannot be decomposed using an orthogonal projection since the eigenvector

basis is not orthogonal. Instead, the eigenvector components are given by the linear combination coefficients of two

non-orthogonal basis vectors (here reconstructed using the parallelogram vector addition rule, dashed lines, middle

panels). After the pulse, activity along the dynamic modes e1 and e2 decays exponentially for the normal system (right

panel in a, in green and blue, given by the norm of the green and blue vectors in the middle panels, whose length at

each time step is marked by dots), and so does the state norm (in purple). For the non-normal systems, the dynamic

modes also decay exponentially (right panel in b, in green and blue). However, the state norm experiences a transient

increase, followed by exponential decay (in purple), as a consequence of the non-orthogonality in the state-vector

decomposition and the difference in decay rates of the two eigenmodes (left panels in b). This phenomenon is known

as non-normal or transient amplification.
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Extended Data Figure 8 . PFC integration phases for both LDS models across contexts. Same as in Fig. 7 but

for both models and contexts. a,b, The two distinct integration phases are consistently observed across model classes

(A,Bcx and Acx, B), contexts (mot and col cx) and model instantiations (b, the distribution of alignments across

100 randomly initialized models are fairly narrow, mean ± std). Note that for the Acx, B model in the color context

the early and late alignment distributions are not significantly different along the intermediate set of eigenmodes (at

significance level p<0.001, b), unlike for the other cases. However, the early distribution clearly peaks around the

intermediate modes, which have relatively fast decaying dynamics (b, left) and fast rotations (b, right). The early and

late alignment distributions are always significantly different along the last modes, which have the slowest dynamics (b,

left) and very small rotation frequencies (b, right). c,d, CI signals are integrated along a different set of slow modes

than CD signals, consistently across models and contexts (The peaks of the CI distributions, d, lie in different ranges of

slow eigenvalues than the CD distribution peaks, b). The integration of CI signals do not clearly separate in two phases

given that the alignments are largely steady across the trial (c). Indeed, the distribution of alignments early vs. late

largely overlap (d, green and magenta distributions). Monkey A data.
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Extended Data Figure 9 . PFC data trajectories in coherence magnitude dimensions and data variance in the
novel and TDR dimensions. a,b, Same as in Fig. 8, but for the LDS inferred coherence magnitude dimensions

(averaged across contexts and models). The condition independent (CI) variance has been subtracted to the trajectories

in these panels to emphasise input-related variance. c, Variance in the novel decision, secondary decision, motion

coherence, motion coherence magnitude, color coherence, color coherence magnitude and condition independent

(CI) dimensions. Note that the variance that is reflected in each dimension is the total variance, and not the isolated

task-related variance components. For instance, there is substantial CI variance in the input dimensions, which we

removed in panel b to emphasize input-related features. d, Variance in TDR decision, motion and color dimensions.

Monkey A data.
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Extended Data Figure 10 . Choice signals in the slowest LDS subspace largely evolve along a single dimension
across contexts. a, The four slowest dimensions inferred by the LDS models have very long time constants (|λ| > 0.9,

time-constant τ > 475ms, average across 100 models, Fig. 5b), so they are expected to define a 4D subspace that

contains highly persistent signals. However, the associated right eigenvectors are not orthogonal (Extended Data

Fig. 6d), so these signals could occupy fewer than four dimensions. We measured the effective dimensionality of the

subspace spanned by the four slowest right eigenvectors by taking the SVD of the matrix containing them. We found

that the right eigenvectors effectively span four dimensions, since all singular values are well above zero. Mean ± std

across 100 models. The dominant dimension (1st singular vector) is also the one most highly aligned across contexts in

the Acx, B model and also across models (see next panel). b, Alignments of the slowest subspace dimensions found

across contexts in the Acx, B model (left panel) and across models (right panel). Mean ± std across 100 models. The

alignments are moderate to weak and expected by chance from a control distribution of random vector alignments in

the low-d LDS subspaces (alignments are within the 5th and the 95th percentiles of the control distributions, Extended

Data Fig. 6c). However, the largest alignments occur precisely for the first dimension. c, PFC data projected in

the four singular vector (sv) dimensions of the slowest subspace (averaged across models and contexts, and then

orthonormalized). Importantly, the first dimension captures decision information, but dimensions 2 to 4 mostly capture

condition independent (CI) variance, and some contextual variance (in particular for sv2, where the whole trajectories

are slightly shifted vertically). d, Same as c but after subtracting CI signals. Red bars show the alignment of the

decision dimension found by TDR with respect to the four averaged singular value dimensions (sv1: 36◦, sv2: 86◦,

sv3: 65◦, sv4: 86◦). The first singular value dimension highly aligns with the decision dimension (36◦), and the third

one moderately aligns to it (65◦). These alignments are not expected by chance, considering a control distribution of

random alignments in the ambient (high-d) space (alignments < 5th percentiles of the control distributions, Extended

Data Fig. 6b). The 2D subspace spanned by these two singular value dimensions (middle panels) contains trajectories

mainly evolving along a single dimension, when CI signals are subtracted out (compare to middle panels in c). This

dimension is common across contexts and strongly aligns to the decision axis found by Mante et al. (red bars). Monkey

A data.
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Supplementary Information
Inferring context-dependent computations through linear approximations of prefrontal

cortex dynamics

1. Supplementary Notes 1–3

2. Supplementary Figures 1–10

3. Supplementary Tables 1–5

1 Supplementary Notes

1.1 Additional LDS model-fitting controls

To rule out the possibility that the LDS models were learning dynamically complex external input signals
um,c(t) to capture the data, we re-trained all input parameters and constrained um,c(t) to be constant in
time um,c. This resulted in a relatively small drop in performance (Extended Data Fig. 5a, for models with
input dimensionalities higher than 2D). In particular, the performance of re-trained models with 3D constant
inputs (dashed lines) dropped to the level of the 1D time-varying input models (filled lines). Newly fitted
models with um,c constant in time, but where all parameters were optimized, performed nearly as well as the
time-varying models (Extended Data Fig. 5b), and accurately captured the PFC trajectories (Extended Data
Fig. 2g,h). Notably, in these two control model classes the optimal input dimensionality was consistently
3D, and the latent dimensionalty was also close to the time-varying input models’ dimensionality (Acx, B
- A,Bcx xdim = 16-22 for the time-varying models with inputs retrained to be time-constant; 15-16 for
the newly optimized time-constant models and xdim=16-18 for the original time-varying models). Most
importantly, the time-constant input models could only rely on their recurrent dynamics to capture the
temporal complexity of the PFC data. Therefore, the complexity of the PFC responses is well approximated
by linear dynamics and is not necessarily inherited from the external inputs’ dynamics.

We also quantitatively assessed whether the time-constant input models were indeed capturing any temporal
structure in the data. For this, we asked how well these models performed on time-shuffled data, which
had no correlational structure across time. If there was no drop in performance, this would indicate that
the time-constant input models were uniquely capturing time-unrelated correlational structure, such as
correlations across neurons and conditions. The performance of the best time-constant models (which
had 3D inputs, Extended Data Fig. 5b) dropped substantially, being worse than the 1D input models and
nearly as bad as the most contextually constrained A,B models (Extended Data Fig. 5c). This indicates
that the simple, time-constant LDS models were indeed capturing time-related structure in the PFC data.
However, these models still captured a substantial fraction of the time-shuffled data variance (24% on
shuffled data vs 27% on the original data). This suggests that the LDS models might be primarily capturing
correlational structure across neurons and conditions, besides time-related variance. Indeed, surrogate
data sets randomized across conditions, neurons and time were very poorly captured, even by the best
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time-varying LDS models (Extended Data Fig. 5d). These data sets were designed to preserve the primary
statistics of the data, and thus these results also indicate that the LDS models were not merely capturing
basic features of the data13.

1.2 Understanding non-normal transient amplification

Transient amplification is a property of dynamical systems that have non-normal dynamics matrices18,19.
These systems present non-trivial dynamical properties that are not predicted by their steady state behavior.
In particular, such systems can transiently amplify inputs before decaying to a steady state. To illustrate how
the transient amplification mechanism takes place, we built two simplified dynamical system models with
identical specifications and only two dimensions, and made one normal (Extended Data Fig. 7a, degree of
non-normality or Henrici’s index=0, see Methods) and the other highly non-normal (Extended Data Fig. 7b,
Henrici’s index=0.8). In Extended Data Fig. 7a,b, we show the two right eigenvectors of the dynamics (e1,
e2, in green and blue), for each system, which define the ”output” dimensions were activity evolves over
time. In the normal system, by definition, these are orthogonal vectors. In the non-normal system, they need
not be, as it is the case in this example. Two additional left eigenvectors exist, but in a normal system they are
the same as the right eigenvectors (see Methods). In a non-normal system the left eigenvectors are distinct
from the right ones (see Methods), but these are not shown here since they are not crucial to understand this
picture. We set one of the eigenvalues of the system to be small (λ = 0.3, fast dynamics) and the other large
(λ = 0.7, slow dynamics) in both models. We then analysed the impulse response properties of both systems
(for t=15 time steps, as in the PFC data). For this, we provided an input pulse of unit norm along a random
direction x0 (in this case, for illustration purposes, a direction that bisected the plane spanned by the two
right eigenvectors in the normal system, left panels in Extended Data Fig. 7a,b, in purple). We then looked at
how each system processed such input by looking at the evolution of the system state over time x(t) and its
norm (middle and right panels, in purple). In the normal system, the input decayed exponentially towards its
steady-state, at zero, as expected from a dynamical system with real eigenvalues smaller than one (right and
middle panels). The evolution of the two modes of the dynamics was governed by the time-constant of the
eigenvalues (right panel). The smallest eigenvalue mode decayed faster (in green) and the largest slower (in
blue), with the slower eigenmode largely determining the evolution of the state at later stages (in purple).
The evolution along the two dynamic modes could be obtained by projecting the state at each time step onto
the orthonormal basis defined by the two right eigenvectors (left and middle panels). The non-normal system,
however, had non-orthogonal eigenvectors. In particular, we purposely set the eigenvectors to be closely
aligned to each other, to obtain non-normal dynamics. This meant that the system state could no longer be
decomposed using an orthogonal projection. Instead, the state was constructed from a linear combination
of a non-orthogonal eigenvector basis (left and middle panels, were the parallelogram vector composition
rule is applied for this). We provided the same input perturbation as for the normal system. Despite the
similarities in design (in particular, having the same eigenvalues), the impulse response properties of this
system were very different. Most notably, right after the pulse, there was a transient increase in the state
norm (right and middle panels). However, the state eventually decayed to zero. This is because the long-term
behaviour of a non-normal system is still governed by its eigenvalues. The smallest eigenvalue mode decayed
faster and the largest slower, and they did so exponentially, as in the normal system. Yet, initially a transient
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amplification effect was observed. This happens precisely because of the difference in the decay rates of
the modes, combined with the fact that the state is reconstructed with a non-orthogonal eigenvector basis
(left and middle panels, note how the state vector, in purple, is reconstructed at each time step). The more
aligned the eigenvectors are, and the stronger the difference between their eigenvalues, the larger the degree
of non-normal amplification. Note that because of the non-trivial decomposition of the state along the
non-orthogonal basis, the modes’ initial norm was very large (left and right panel, specially for the mode in
blue). This resulted in the state experiencing a more sustained decay than in the normal system (right panel,
compare blue and purple lines in both systems), i.e. in the input pulse to be transiently ”persistent”.

1.3 Alternative input modulation mechanism: fixed input subspaces with context-
dependent external input signals

The A,Bcx mechanism can be implemented even when the input dimensions are fixed across contexts B.
This is because the direction of the input vectors within the input subspacesBu can still be changed, provided
that the external inputs are context-dependent ucx, and that the dimensionality of the input subspaces is higher
than 2D. This can be achieved by changing the external inputs’ strength in each context along each of the
input dimensions (i.e. for 2D inputs, ucx1 and ucx2 ). This effectively changes the input vector Bu coordinates
within the orthonormal input basis B. This change of coordinates can be used to rotate and stretch the inputs
within the input subspace differently across contexts (i.e. ucx1 and ucx2 can be set to define any vector in
the 2D input plane). This contextual mechanism might be closer to biology, given that long-range input
projections are known to be anatomically stable.
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Supplementary Figure 1 . The LDS models accurately capture the RNN data. a, Same as Fig. 2a, but for the

A,Bcx andAcx, B models fitted to the RNN data. In this case the best performing model was theA,Bcx model with 4D

inputs. However, the performance of the A,Bcx model with 3D inputs was not significantly different (Supplementary

Table 5). Therefore, in the RNN data the best performing models required at least 3D inputs, as for the PFC data

(Fig. 2a). This was greater than the actual input dimensionality of the RNN model, which had 1D inputs (Fig. 1c), but

see Supplementary Fig. 2. The two LDS model classes performed equally well (Supplementary Table 5), as in the

PFC data (Fig. 2a), but the optimal latent dimensionality for the 3D A,Bcx model was 26 and for the Acx, B model 14

(Supplementary Table 5). The difference in dimensionality between the two model classes is larger than in the PFC

data (18D vs. 16D, Supplementary Table 1). This suggests that the A,Bcx model struggles to capture the RNN data,

since it needs more parameters. Note that the error for the two LDS models is close to zero (Supplementary Table 5,

MSE≈0, or ≈0% of variance missed), unlike for the PFC data from both monkeys (MSE≈0.73, or ≈73% of variance

missed, Supplementary Tables 1 and 3). Thus, the LDS models are able to approximate near perfectly the dynamics of

the non-linear RNN in each context. b-d, Same as Fig. 3b-d but for the RNN data. Trajectories in the RNN task-related

subspace are well captured by the both LDS models. Axes are defined by the RNN motion and color input vectors and

the output vector (the decision readout) after training1. Note that the A,Bcx model can capture well the input variance

along the RNN input dimensions, which by design are fixed across contexts (Fig. 1c). In spite of this, this LDS model

must have changed the inputs to achieve contextual integration, since the variance along the decision axis is also well

captured.
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Supplementary Figure 2 . The LDS inputs inferred from the RNN data are largely constant over time and
one-dimensional. a-d, Same as Fig. 4b-e but for the RNN data. a,b, Inputs are learned nearly flat in both the A,Bcx

and Acx, B models, and almost identical across contexts in the A,Bcx model, which is consistent with the ground truth

RNN inputs being flat and fixed across contexts (Methods). Yet, both models, including the A,Bcx model, strongly

amplify the relevant inputs across contexts, but not the irrelevant ones. Note that the relevant inputs are much more

strongly amplified than the irrelevant ones in the RNN, as expected from an optimal selective integration strategy1, but

the same is not found in the PFC data (Fig. 4b,c). c,d, In the RNN the coherence representations are largely 1D since

very little coherence magnitude modulation exists, unlike what is found for the PFC data (Fig. 4d,e). This is consistent

with the ground truth RNN inputs being 1D and lacking a coherence magnitude component. e, Same as Extended

Data Fig. 3c but for the RNN data. The alignments of the second inferred dimension (coherence magnitude) are not

consistent across contexts in the A,Bcx model (first panel), and neither across models for the irrelevant inputs (third

panel, transparent lines), unlike what is found for the PFC data (Extended Data Fig. 3c). The same is observed for the

third input dimension, both in the RNN and the PFC data. This indicates that the coherence magnitude dimension in

the RNN is not an invariant input feature. This is consistent with the ground truth RNN inputs being 1D and lacking a

coherence magnitude component. Instead, the additional input dimensions might be learned to compensate for the

linear approximation.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527389
http://creativecommons.org/licenses/by-nc/4.0/


a

A,Bcx

b

Acx,B

A,Bcx

Acx,B

c d

e

eigenspectrum

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527389
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 3 . The LDS dynamics inferred from the RNN data are high-dimensional, mediate
relevant input selection largely through slow modes, and implement transient amplification of relevant inputs
in the two models, but are extremely non-normal for the A,Bcx model. a,b, Same as Fig. 5b,c and Extended Data

Fig. 6a, but for the RNN data. a, The LDS models inferred from the RNN data are higher dimensional than expected

for an idealized line attractor solution, with a single slow dimension and the rest of the dimensions fast decaying16. In

particular, the LDS models learned several slow modes (|λ| > 0.8, green lines), as happened in the LDS data (Fig. 5b).

However, the LDS models inferred from the RNN data had a smaller fraction of slow modes than the ones inferred

from the PFC data (A,Bcx, 20 ± 5%; Acx, B, 21 ± 7% mot cx/ 22 ± 5% col cx, mean±std across 100 models; vs.

35− 55% in the PFC data). Furthermore, for the rest of the modes, most of them were very fast decaying (|λ| < 0.4,

τ < 55ms), unlike what was found in the PFC data, where most of the modes had either intermediate (|λ| = 0.4− 0.8,

τ = 98− 224ms) or slow eigenvalues (|λ| > 0.8). The largest eigenvalue was 1.00± 0.02 for the A,Bcx model and

0.98± 0.04 / 0.99± 0.04 (mot/col cx) for the Acx, B model. The second largest eigenvalue was 0.94± 0.03 for the

A,Bcx model and 0.93± 0.08 / 0.95± 0.06 (mot/col cx) for the Acx, B model. The additional slow modes could have

been learned to capture the curvature of the line attractor1, or alternatively, to capture CI and contextual variance, as

found in the PFC data (Extended Data Fig. 10, see also Supplementary Fig. 5). Another possibility is that the higher

dimensionality is a necessary feature of the mapping between low-rank linear RNNs and LDS models63 (note that

the RNN dynamics was low-rank, and approximately linear in each context1). Similarly, this might also explain the

dimensionality of the LDS models inferred from the PFC circuit. b, In both models, the coherence inputs inferred are

most strongly loaded onto slow modes, rather than intermediate modes as in the PFC data (Fig. 5c). However, the

inputs do not preferentially load onto the slowest modes (|λ| > 0.9, τ > 475ms), as we found in the data. c-e, Same

as Fig. 6a-c but for the RNN data. c, Left-eigenvector perturbations as well as random perturbations result in very

strong amplification for the A,Bcx model, unlike what is found in the PFC data (Fig. 6a). Accordingly, the degree of

non-normality for this model is extremely high (e), unlike what is found in the PFC data (Fig. 6c). On the contrary, the

response behavior of the Acx, B fitted to the RNN data is similar to the behavior of the same model fitted to the PFC

data (Fig. 6a). d, Random perturbations are very strongly amplified by the A,Bcx model, but the inputs are not. This

indicates a high degree of specificity in the model, which might imply fine-tuning. The Acx, B model, on the contrary,

process inputs in a similar way as found in the PFC data (Fig. 6b), with the difference that the relevant inputs in this

case are transiently ”amplified”, rather transiently ”persistent”. This might be simply due to the fact that for the RNN

data the inputs are learned much weaker than for the PFC data (Fig. 4c, Supplementary Fig. 2b), but the input pulse is

provided with the same strength in both cases (unit norm). Also, the Acx, B model is slightly more non-normal for the

RNN data (e) than the PFC data (Fig. 6c).
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Supplementary Figure 4 . The RNN integration process did not separate in two phases. a-d, Same as Fig. 7,

Extended Data Fig. 8, but for the RNN data. a,b, The largest CD mode for the RNN data projects to slow modes

throughout the whole trial, unlike what is found in monkey A’s PFC data, where the CD vector projects to relatively

fast decaying modes first and to the slowest modes later in the trial. Thus, the CD projection pattern in the RNN does

not change over the course of the trial. Indeed, the distributions of projection early vs. late in the trial are practically

indistinguishable (absence of green bars in b, Wilcoxon rank-sum test, p<0.05). The CD vector aligns to slow modes

(|λ| > 0.8), but not preferentially to the slowest modes (|λ| > 0.9), unlike what is found in monkey A’s PFC data. The

dynamics was also largely non-rotational (≈1Hz), and not significantly different early vs. late in the trial (right panels

in b). c,d, The largest CI mode for the RNN data projects most strongly to the slowest modes, unlike what is found for

monkey A’s PFC data, where the CI vector targets slow modes, but not the slowest. e, Same as Fig. 8b, but fore the

RNN data. Top, the dimension inferred early in the trial highly aligns to the decision axis (small angle between red and

yellow bars). This is consistent with the fact that early in the trial the RNN CD vector already projects to slow modes

(a,b), and not to a different set of dimensions (the relatively fast decaying modes), as is found in monkey A’s PFC data,

which define a secondary decision dimension (Fig. 8b). Middle panels, trajectories in the LDS motion and color input

coherence dimensions. The coherence input vectors found by the LDS models are only moderately aligned with the

ground truth input vectors (A,Bcx: mot = 45◦, col = 55◦, for mean coherence input dimensions across 100 models

and across contexts; Acx, B, mot = 43◦, col = 54◦, for mean across 100 models), but higher than expected by chance

(Extended Data Fig. 6b). However, the RNN trajectories along the LDS coherence input dimensions (middle panels)

are very similar to the trajectories along the ground truth input vectors, and separate coherence information similarly

well (Supplementary Fig. 1b).
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Supplementary Figure 5 . Choice signals in the slowest LDS subspace largely evolve along a single dimension
across contexts in the RNN data. Same as Extended Data Fig. 10, but for the RNN data. a,b, The right eigenvectors

effectively span four dimensions, since the singular values are not close to zero, as is found in the PFC data. Furthermore,

the first first singular vector dimension is also the most aligned across contexts in the A,Bcx model and across models.

c,d, The first singular vector dimension (sv) captures decision information. However, sv dimensions 2 to 4 mostly

capture condition independent (CI) variance and contextual variance. Indeed, only the first dimension aligns well with

the RNN decision dimension (red bars), which is defined by the RNN readout or output vector after training1 (sv1: 61◦,

sv2: 85◦, sv3: 90◦, sv4: 84◦). Thus, the RNN trajectories mainly evolve along a single dimension in this 4D subspace,

which aligns with the decision (or output) axis of the network. The other dimensions are used to capture the small

curvature of the approximate line attractor (sv4), CI features (sv2), and contextual separation (sv3, sv4).
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LDS models performance on monkey F data

Supplementary Figure 6 . The LDS models accurately capture monkey F’s data. Same as Supplementary Fig. 1,

but for monkey F data. a, The pattern of errors across models and input dimensions closely follows the one obtained

for monkey A (Fig. 2a). The best performing model is also the A,Bcx model with 3D inputs. The Acx, B model with

3D inputs performs similarly well (Supplementary Table 3). b-d Same as Fig. 3b-d but for monkey F data. The LDS

models accurately capture the trajectories in the stable task-relevant subspace.
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Supplementary Figure 7 . The inferred LDS inputs from monkey F’s data are largely stable across contexts
and span curved manifolds. Same as Supplementary Fig. 2, but for monkey F data. a,b, The motion inputs from

both models are similar to the inputs inferred for monkey A, in that these are transient in both the A,Bcx and Acx, B

models, but more sustained in the A,Bcx model (top left panels). However, the A,Bcx model infers motion inputs that

are nearly identical in strength across contexts (a, top left), unlike what is found for monkey A (Fig. 4b). Accordingly,

the motion inputs are strongly integrated in both contexts, with the relevant outputs being only slightly stronger than

the irrelevant ones (a, bottom left). Another difference is that the inferred color inputs are very weak, although these

increase slightly towards the end of the trial when relevant (a, top right). Yet, the A,Bcx model selectively integrates

the color inputs (a, bottom right). Both models generate identical outputs (a,b, bottom). The color outputs increase

more sharply in the middle of the trial, and continue growing until the end of the trial. On the contrary, motion outputs

saturate towards the end of the trial (bottom left). This saturation is also observed in monkey A, for both the motion

and the color outputs (Fig. 4b,c). Thus, color inputs might be integrated later in the trial in monkey F. An alternative

possibility could be that color signals arriving into monkey F’s PFC circuit are already integration signals, and our LDS

models learn this particular input-ouput solution due to the fact that they incorporate an input penalty which encourages

learning weak inputs (Methods). In line with this interpretation, we found that the LDS coherence input dimension

is highly aligned with the decision dimension (Supplementary Fig. 9e). c,d, The motion coherence representations

inferred by both models are strongly curved in this monkey. The color inputs are weak along both the coherence and the

coherence magnitude dimensions. e, The pattern of alignments between the different input dimensions across models

and contexts is consistent across monkeys. The inferred coherence and coherence magnitude dimensions for both

motion and color are largely stable across contexts in the A,Bcx model, but not the third dimensions (filled lines). One

difference is that the motion coherence magnitude dimension is highly aligned across contexts in the A,Bcx model, but

less so in monkey A (Extended Data Fig. 3c). This is consistent with the motion coherence representations having a

stronger curvature in monkey F than in monkey A (c,d vs. Fig. 4d,e).
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Supplementary Figure 8 . The LDS dynamics inferred from monkey F’s data are high-dimensional, mediate
relevant input selection through both intermediate and slow modes, and implement transient amplification of
relevant inputs in the Acx, B model. Same as Supplementary Fig. 3, but for monkey F data. a, The inferred

eigenspectrum from both models presents multiple slow modes, as in monkey A. The A,Bcx model had also a larger

fraction of slow modes than the Acx, B model (63 ± 7% vs. 46 ± 8% mot cx/ 53 ± 8% col cx, mean±std across

100 models). Note that the last two eigenvalues of the A,Bcx model are slightly larger than 1 (unstable), so the time

constant is not shown. Same for the last eigenvalue of the Acx, B model in the motion context. b, The coherence inputs

are not preferentially loaded onto the slowest modes, but rather, intermediate and fast modes, as in monkey A’s data.

However, the A,Bcx model loads the motion inputs selectively only onto the second and third slowest modes (green

bar). c In the A,Bcx model the average impulse response across random perturbations grows over time, indicating the

presence of unstable dynamics (top), which was not found in monkey A. On the contrary, the A,Bcx model exhibited

similar transient responses as monkey A (bottom). d The instability effect is also observed for perturbations along the

color input dimension (top right panel). This feature might help integrate color input signals selectively, given that

color inputs are very weak Supplementary Fig. 7a. The A,Bcx model response to motion and color pulses is broadly

similar to that of monkey A’s. However, the responses were more amplified for the relevant color inputs in this monkey,

and the relevant motion inputs exhibited transient amplification effects later in the trial, rather than immediately after

the pulse. e, The degree of non-normality of the LDS models is similar across monkeys (Fig. 6c).
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Supplementary Figure 9 . Monkey F’s integration process did not separate in two phases. Same as Supplemen-

tary Fig. 4, but for monkey F data. a,b, Monkey F did not present a clear separation of the integration process into

different phases, unlike monkey A. In particular, early in the trial the leading CD variance vector did not preferentially

project onto relatively fast decaying modes (b, left panels, yellow lines, the pattern of projections is nearly flat), unlike

for monkey A (Fig. 7b, Extended Data Fig. 8b, left panels, yellow lines, projections pick at intermediate modes).

However, the pattern of early vs. late projections was similar to that of monkey A when splitting the modes by their

rotation frequency (b, right panels, yellow lines in the color context, and in the motion context for the A,Bcx model

pick on intermediate rotation frequencies, as for monkey A, Fig. 7b, Extended Data Fig. 8b, right panels). The modes

targeted during the late phase of the trial (red line projections) are consistent across monkeys both in time constant

and rotation frequency. This late projections significantly differ from the early projections (green bars in b, Wilcoxon

rank-sum test, p<0.001). c,d, The CI data vector for monkey F projects most strongly onto the slowest modes, in

particular at the end of the trial (d, pink lines). This indicates that CI signals are integrated along the same dimensions

as the CD signals, i.e., the dimensions that integrate inputs (compare with red lines in b), unlike what is found for

monkey A (Fig. 7c,d, Extended Data Fig. 8c,d, left panels, pink lines pick onto slow modes, but not the slowest).

This is consistent with the fact that CI signals are strongly present along the decision axis1. The block-like structure

found in the pattern of projections in panels a,c comes from the fact that the variance along the first singular vector

dimensions is close to the variance along the other singular value dimensions (i.e. that the covariance structure of

the data is largely spherical), which leads to switches in the estimation of the dominant variance direction. e, The

early-phase dimension or secondary decision dimension (yellow) does not capture much structure of the trajectories

in monkey F (top). The late-phase dimension (red) is strongly aligned with the TDR decision axis (18◦). The LDS

coherence input dimensions were well aligned with the TDR dimensions in the Acx, B model, specially for color, but

not in the A,Bcx model (A,Bcx: mot = 54◦, col = 71◦, for mean coherence input dimensions across 100 models and

across contexts; Acx, B, mot = 44◦, col = 31◦, for mean across 100 models). The averaged coherence input dimension

across contexts and models highly aligned with the decision dimension (angle between blue and red bars in middle

panels). This alignments were higher than expected by chance (Extended Data Fig. 6b).
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Supplementary Figure 10 . Choice signals in the slowest LDS subspace largely evolve along a single dimension
across contexts in monkey F’s data. Same as Supplementary Fig. 5, but for monkey F data. a,b, The right eigenvectors

effectively span four dimensions, since the singular values are not close to zero, as found in the PFC data. Furthermore,

the first singular vector dimension is also the most aligned across contexts in the A,Bcx model and across models

(Extended Data Fig. 10a,b). c,d, The first singular vector dimension (sv) captures decision information. However, sv

dimensions 2 to 4 mostly capture condition independent (CI) variance and contextual variance. Indeed, only the first

dimension aligns well with the TDR decision dimension (red bars) (sv1: 58◦, sv2: 80◦, sv3: 75◦, sv4: 76◦).
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3 Supplementary Tables
Supplementary Table 1. Monkey A data minimum MSE ± sem across k folds (36 conditions) and corresponding
latent dimensionality for which it is achieved, for LDS models with different input dimensionalities and contextual
constraints. Highlighted in black is the model that achieved the minimum MSE. It cannot be appreciated in the 4th
column (min MSE) due to rounding error, but can be seen in the last column (min ∆(MSE± sem)), where performance
is given relative to the best performing model (TFR 2D ABcx model, see Supplementary Table 2), so the differences
across models, albeit small, can be revealed. This quantity is the one reported in Fig. 2a.

Input dim Contextual constraints Latent dim min MSE min ∆MSE (×10−3)

1D

Acx, Bcx 13 0.74 ± 0.02 13 ± 1

Acx, B 15 0.74 ± 0.02 13 ± 1

A,Bcx 15 0.74 ± 0.02 12 ± 1

A,B 16 0.78 ± 0.02 48 ± 6

2D

Acx, Bcx 15 0.73 ± 0.02 2.7 ± 0.4

Acx, B 15 0.73 ± 0.02 2.7 ± 0.4

A,Bcx 16 0.73 ± 0.02 1.7 ± 0.6

A,B 17 0.77 ± 0.02 38 ± 6

3D

Acx, Bcx 14 0.73 ± 0.02 1.3 ± 0.4

Acx, B 16 0.73 ± 0.02 1.3 ± 0.3

A,Bcx 18 0.73 ± 0.02 0.6 ± 0.5
A,B 17 0.77 ± 0.02 38 ± 6

4D

Acx, Bcx 14 0.73 ± 0.02 1.9 ± 0.4

Acx, B 14 0.73 ± 0.02 1.8 ± 0.4

A,Bcx 16 0.73 ± 0.02 1.0 ± 0.5

A,B 17 0.77 ± 0.02 39 ± 6

Supplementary Table 2. Monkey A data minimum MSE ± sem, min ∆(MSE ± sem) and corresponding latent
dimensionality for which it is achieved, for TFR models with different input dimensionalities and contextual constraints.
Same conventions as in Supplementary Table 1. Performance in the last column is given relative to the best performing
model (TFR 2D ABcx model).
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Input dim Contextual constraints Latent dim min MSE min ∆MSE (×10−3)

1D
ABcx 13 0.74 ± 0.02 9 ± 1

AB 14 0.78 ± 0.02 51 ± 7

2D
ABcx 14 0.73 ± 0.02 0 ± 0
AB 16 0.76 ± 0.02 36 ± 6

3D
ABcx 14 0.73 ± 0.02 1.5 ± 0.4

AB 18 0.76 ± 0.02 36 ± 6

4D
ABcx 14 0.73 ± 0.02 4.3 ± 0.5

AB 14 0.77 ± 0.02 38 ± 6

Supplementary Table 3. Monkey F data minimum MSE ± sem, min ∆(MSE ± sem) and corresponding latent
dimensionality for which it is achieved, for LDS models with different input dimensionalities and contextual constraints.
Same conventions as in Supplementary Table 1. Performance in the last column is given relative to the best performing
model (TFR 2D ABcx model, see Supplementary Table 4).
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Input dim Contextual constraints Latent dim min MSE min ∆MSE (×10−3)

1D

Acx, Bcx 12 0.75 ± 0.02 18 ± 2

Acx, B 14 0.75 ± 0.02 19 ± 2

A,Bcx 12 0.75 ± 0.02 18 ± 2

A,B 15 0.77 ± 0.02 39 ± 4

2D

Acx, Bcx 13 0.73 ± 0.02 3.1 ± 0.3

Acx, B 14 0.73 ± 0.02 3.6 ± 0.4

A,Bcx 13 0.73 ± 0.02 3.0 ± 0.4

A,B 15 0.75 ± 0.03 25 ± 4

3D

Acx, Bcx 13 0.73 ± 0.02 1.1 ± 0.5

Acx, B 13 0.73 ± 0.02 1.8 ± 0.4

A,Bcx 13 0.73 ± 0.02 0.6 ± 0.5
A,B 14 0.75 ± 0.03 24 ± 4

4D

Acx, Bcx 13 0.73 ± 0.02 1.0 ± 0.4

Acx, B 13 0.73 ± 0.02 1.2 ± 0.4

A,Bcx 12 0.73 ± 0.02 0.8 ± 0.4

A,B 13 0.75 ± 0.03 24 ± 4

Supplementary Table 4. Monkey F data minimum MSE ± sem, min ∆(MSE ± sem) and corresponding latent
dimensionality for which it is achieved, for TFR models with different input dimensionalities and contextual constraints.
Same conventions as in Supplementary Table 1. Performance in the last column is given relative to the best performing
model (TFR 2D ABcx model).

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527389
http://creativecommons.org/licenses/by-nc/4.0/


Input dim Contextual constraints Latent dim min MSE min ∆MSE (×10−3)

1D
ABcx 12 0.74 ± 0.02 12 ± 2

AB 13 0.77 ± 0.02 43 ± 4

2D
ABcx 12 0.73 ± 0.02 0 ± 0
AB 13 0.75 ± 0.03 23 ± 4

3D
ABcx 12 0.73 ± 0.02 1.0 ± 0.3

AB 12 0.75 ± 0.03 22 ± 4

4D
ABcx 12 0.73 ± 0.02 4.2 ± 0.5

AB 12 0.75 ± 0.03 24 ± 4

Supplementary Table 5. RNN data minimum MSE ± sem, min ∆(MSE ± sem) and corresponding latent dimension-
ality for which it is achieved, for LDS models with different input dimensionalities and contextual constraints. Same
conventions as in Supplementary Table 1. Performance in the last column is given relative to the best performing model
(LDS 4D A,Bcx model).

Input dim Contextual constraints Latent dim min MSE min ∆MSE (×10−3)

1D
Acx, B 23 0.039 ± 0.003 27 ± 2

A,Bcx 26 0.039 ± 0.003 27 ± 2

2D
Acx, B 13 0.017 ± 0.001 5.1 ± 0.5

A,Bcx 26 0.017 ± 0.001 5.0 ± 0.6

3D
Acx, B 14 0.013 ± 0.001 0.8 ± 0.3

A,Bcx 26 0.012 ± 0.001 0.1 ± 0.4

4D
Acx, B 15 0.013 ± 0.001 0.6 ± 0.2

A,Bcx 24 0.012 ± 0.001 0 ± 0
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