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Knowledge of who infected whom during an outbreak of an infectious disease is important to determine12

risk factors for transmission and to design effective control measures. Both whole-genome sequencing13

of pathogens and epidemiological data provide useful information about the transmission events and14

underlying processes. Existing models to infer transmission trees usually assume that the pathogen is15

introduced only once from outside into the population of interest. However, this is not always true. For16

instance, SARS-CoV-2 is suggested to be introduced multiple times in mink farms in the Netherlands17

from the SARS-CoV-2 pandemic among humans. Here, we developed a Bayesian inference method18

combining whole-genome sequencing data and epidemiological data, allowing for multiple introductions of19

the pathogen in the population. Our method does not a priori split the outbreak into multiple phylogenetic20

clusters, nor does it break the dependency between the processes of mutation, within-host dynamics,21

transmission, and observation. We implemented our method as an additional feature in the R-package22

phybreak. On simulated data, our method identifies the number of introductions with high accuracy.23

Moreover, when a single introduction was simulated, our method produces similar estimates of parameters24

and transmission trees as the existing package. When applied to data from a SARS-CoV-2 outbreak in Dutch25

mink farms, the method provides strong evidence for 13 introductions, which is 20 percent of all infected26

farms. Using the new feature of the phybreak package, transmission routes of a more complex class of27

infectious disease outbreaks can be inferred which will aid infection control in future outbreaks.28
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Introduction31

Knowledge of who infected whom during an infectious disease outbreak is an important source of information.32

Characteristics of the outbreak, such as the generation time distribution, are derived from data on these transmission33

events [31]. Moreover, risk factors for transmission, such as distance between individuals or time lag since infection,34

can be more accurately quantified, if the infection chain is known. Several methods exist that use data on the time35

of symptom onset, contacts, or other proximity information, to reconstruct the most likely transmission links between36

cases [13, 4, 3]. Currently, genetic data is increasingly incorporated into epidemiological inference as an additional37

source of information to infer individual transmission events, transmission clusters, and even complete transmission38

trees [9, 12, 22, 27, 29]. The use of both genetic data (i.e., differences in nucleotides between different samples of39

the pathogen) and epidemiological data (e.g., time of sampling, contacts, and geographic distance) increases the40

evidence on who infected whom. Moreover, high-risk contacts and superspreaders can be identified when a model41

is based on both types of data [16, 15]. Therefore, several statistical methods have been developed which take both42

transmission and evolutionary dynamics of the pathogen into account [5, 23, 30, 10].43

Most methods assume a single introduction to the population of interest. However, there are many outbreaks where44

this assumption does not hold, e.g., Staphylococcus aureus or Pseudomonas aerigunosa are often introduced45

multiple times on a hospital ward when infected patients are admitted [25], highly pathogenic avian influenza (HPAI)46

outbreaks among farms are initiated multiple times by wild birds [28], and Foot and Mouth Disease (FMD) can be47

introduced multiple times from outside a district [17]. Control measures focusing on transmission between hosts may48

be less effective if there are also external introductions.49

Currently, several methods to infer transmission trees from both genetic and epidemiological data are available. A50

method designed by Worby et al. [29] allows for multiple introductions, but it only has phenomenological distributions51

of genetic distances. There is no underlying mechanistic mutation model for the genetic difference within and52

between transmission trees. The outbreaker2 package in R [14] also allows for multiple introductions, but there53

is only a phenomenological distribution of the genetic distances between trees. Moreover, outbreaker2 assumes54

mutation at transmission, thereby ignoring within-host evolution of the virus. A method that uses a phylogenetic55

tree and within-host evolution is Transphylo [6], although transmission links are placed on a fixed phylogenetic tree.56

Both outbreaker2 and Transphylo can deal with unsampled cases within the population, which can be used to link57

transmission clusters, although this is different than inferring introductions from an exogenous population. To model58

multiple introductions from an exogenous population, Mollentze et al. [? ] extended the transmission model of Morelli59

et al. [20], which simultaneously infers a transmission and phylogenetic tree. Here, the within-host evolution was60

modeled by the use of a binary tree, making the use of multiple samples per host problematic. Moreover and most61

importantly, there is no publicly available software to use the method.62

To make optimal use of genetic and epidemiological data while allowing for multiple introductions of a pathogen,63

we propose a method to simultaneously infer introductions and transmissions consistent with an explicit phylogeny64

describing the genetic history of all samples. This extended version of the method developed by Klinkenberg et al.65

[18] aims to infer the transmission dynamics of an outbreak, i.e., who infected whom, from both genetic data of the66

pathogen and epidemiological data, such as the time of sampling and culling. Inference of the transmission tree67

and the phylogenetic tree is done simultaneously, concerning four processes: genetic diversity (within and between68

transmission trees), within-host diversity, transmission, and case observation. Samples from posterior distributions69

of the model parameters are taken, using a Markov-Chain Monte Carlo (MCMC) method. These samples provide70

information on how likely certain infection times and infectors of hosts are.71

To address the possibility of multiple introductions, we relax the assumption of a single index case. We add an72

artificial host to the set of sampled hosts, which serves as an infector for all index cases (Figure 1). For this artificial73

host, we introduce the term ‘history host’, referring to the representation of the history of the lineages within the index74

cases. Using the history host, multiple outbreaks of a pathogen in the same population are merged into a single75

phylogenetic tree.76

After evaluation of the performance on simulated outbreaks with single and multiple introductions, we illustrate the77

application of our method with an analysis of an outbreak of the SARS-CoV-2 virus in the Dutch mink farm industry.78

From April to November 2020, 63 mink farms tested positive for SARS-CoV-2. To investigate whether the virus79

was introduced several times into the mink population, we estimated the number of introductions and compared80

the resulting transmission tree and phylogenetic tree to the phylogenetic tree obtained in [19, 21]. To describe81

the generation time distribution of infected farms, we used a within-farm model of time since infection, that takes82

measures to reduce the spread and culling of all animals into account. Furthermore, we implemented the possibility83

to include multiple sequences per host.84

Van der Roest et al. | Transmission tree inference with multiple introductions | 2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.07.527429doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.527429
http://creativecommons.org/licenses/by/4.0/


Results85

Modelling with the history host86

To infer the transmission tree of an infectious disease outbreak, we developed a Bayesian method in which four87

processes define the likelihood of a tree. Mutation events are modeled with a mutation rate µ. For the within-host88

dynamics, we make a distinction between the history host and the sampled hosts. The history host represents89

either a different population of the same host species, or a different host species (e.g., zoonotic infection), or an90

environmental source. Therefore, it contains the evolution of the pathogen in the source population, with coalescence91

happening on a different time scale than within the sampled hosts (see Figure 1). Coalescence, i.e. lineages92

merging backward in time, is thus described by two rates: rate 1/r(τ), with τ the time since infection, for the93

coalescence events in the sampled hosts, and rate 1/rhistory(τ) for the coalescence events in the history host.94

Timing of transmission is described by a generation time distribution, in the default model a gamma distribution95

with mean mG and shape aG, and for the analysis of the mink farm data we used the generation time described in96

the methods. Sampling time intervals, as a representation of case observations, are also described by a gamma97

distribution with mean mS and shape aS .98

Improving efficiency of the MCMC99

The posterior is sampled by MCMC, with proposals that simultaneously change the phylogenetic and transmission100

trees. In case there are many introductions, convergence of the MCMC chain to the optimal phylogenetic tree in101

the history host is usually slow for a random initial configuration of the phylogenetic tree. We solved this issue102

by (1) initializing the MCMC chain by making each host an introduction and using the neighbor-joining (NJ) tree103

for the phylogenetic tree in the history host, and (2) implementing the paralleled Metropolis Coupled Monte Carlo104

Markov Chain (p(MC3)) algorithm to give more freedom to the chain [1]. We tested for convergence by comparing105

the likelihood reached by each algorithm, to the likelihood reached by an MCMC chain starting with the simulated106

(true) phylogenetic and transmission trees. It turned out that the NJ initialization and the p(MC3) algorithm always107

led to optimal convergence, whereas starting from a random tree and using MCMC sometimes ended up in a local108

optimum, especially when the number of introductions is high (Table S1). As the tree estimated from the posterior109

of an MCMC with random initialization did not converge optimally (Figure S1), we say that the configuration of the110

history host is a bottleneck for performance. Trees may end up in a local optimum of the likelihood. To escape these111

local optima all following analyses are done with NJ-tree initialization and p(MC3).112

Varying number of introductions and coalescent rate113

Before assessing in detail the method’s performance to identify the correct introductions and infectors, we compared114

its performance in relation to different priors. Outbreaks of with 20 hosts were simulated with 5 introductions and115

a set of default parameters (see materials and methods). The outbreaks were analyzed with uninformative priors116

on all parameters, informative priors on the mutation rate and mean generation and sampling intervals, and with all117

parameters set to their true values. Results were compared with respect to identifying the correct infectors, infection118

times, and parameter values. Only small differences were found between the results of each set of priors for the119

outbreaks with 5 introductions (Table S2). For instance, the mean numbers of correctly identified infectors were 15,120

15, and 15.7, with increasing prior information.121

Next, we simulated outbreaks with varying numbers of introductions and varying coalescent rates of the history host.122

While fixing the number of sampled hosts at 20, we simulated outbreaks with either 1, 2, 5, 10, 15, or 20 introductions.123

For each number of introductions, we used coalescent rates of 0.004, 0.02, and 0.1 coalescence events per day in124

the history host, against the background of a mean generation interval of 1 day for transmission events. Thereby125

we changed the genetic variability of the index cases, by different coalescent rates in the history hosts, resulting in126

different branch lengths in the phylogenetic tree in the history host. Each combination of a number of introductions127

and coalescent rate was used for 25 simulated outbreaks, resulting in 450 outbreaks. We analyzed the simulated128

data with informative priors (Table S2), as in outbreak research most of the time there is some prior information about129

the generation time and mutation rate.130

Analyzing simulated outbreaks with 1 introduction resulted in a mean number (of 25 posterior medians) of 1131

introduction, see Figure 2A. This result did not change with the coalescent rate, because there is no coalescence in132

the history host. With 2 or 5 introductions, the estimated medians were still close to the simulated number. However,133

with 10 or more introductions the estimated medians were lower than the simulated number of introductions, and a134

high coalescent rate increased this gap. When all hosts are simulated as an introduction, no more than 40% of all135

introductions were truly identified by the inference method. This indicates that simulated clusters were merged due136

to the low genetic variability.137
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Approximately 70% of all hosts have correctly identified infectors when there was 1 introduction, and more than 95%138

of the hosts had their true infectors present in the 95% support set (Figure 2B). This is the set of infectors for a host139

with cumulative support of at least 95%, with infectors added by decreasing support. For more introductions and140

low coalescent rates, more infectors were correctly identified, whereas for higher coalescent rates the number of141

correctly identified infectors decreased.142

Several types of incorrectly identified infectors can be distinguished. We define a transmission cluster as the set of143

hosts derived from one index case. We separate the errors into two classes: involving a single transmission cluster144

in both the simulated and estimated tree (single, S), or involving multiple transmission clusters in the simulated145

and/or estimated tree (multiple, M). The simulated or identified infector is then in a different transmission cluster than146

the case in the simulated or estimated tree. Both classes of error can be subdivided into three subclasses: both147

simulated and identified infectors are other cases in the data set (case to case, C->C), the simulated infector is the148

history host and the identified infector is a case (history to case, H->C), and the simulated infector is a case and the149

identified infector is the history host (case to history, C->H) (see Figure S1). In our analysis, we find that for small150

numbers of introductions, i.e. 1, 2, and 5, almost all errors are within a single transmission cluster and do not involve151

an index case (single none). For 10 introductions, this is around half of the errors, while the other half are merges of152

transmission clusters (multiple simulated). Larger numbers of introductions, i.e. 15 and 20, mostly lead to merged153

transmission clusters. With the number of introductions approaching the number of sampled hosts, there are only154

very few transmission events, such that it is hard to estimate the mutation rate or the coalescent rate in the history155

host correctly. An overestimation of the mutation rate, or an underestimation of the coalescent rate, makes it more156

likely that index cases are placed in the same cluster, causing merges. Fewer index cases imply more transmission157

events to estimate the correct parameter values. However, even if all parameters were fixed at their true value, an158

incorrect infector sometimes has the highest posterior probability (Figure S2).159

So, for low numbers of introductions, in these simulations up to 5, the model can reliably infer the number of160

introductions when informative priors are given for the model parameters. The number of introductions tends to161

be underestimated if there are many, due to the merging of clusters.162

SARS-CoV-2 in mink farms: analysis of simulated data163

In 2020, an outbreak of SARS-CoV-2 occurred among mink farms in the Netherlands. Symptomatic infections in164

minks first occurred two months after the virus was introduced into the Dutch human population, which suggests that165

the outbreak was a spillover from humans to mink. To investigate whether there were multiple introductions of the166

virus into the mink farm population, we applied our extended method to sequence data collected from minks together167

with their time of sampling. Culling times of the farms were also known. To assess the accuracy of our method on168

outbreaks with sizes similar to the SARS-CoV-2 outbreak, we simulated and analyzed outbreaks with comparable169

settings (see material and methods). Again, we tested different numbers of introductions, for which 10 outbreaks170

each were simulated and analyzed. The results are shown in Table 1. Compared to the percentages of correctly171

identified infectors for outbreaks with 20 hosts, the model performs equally well for the larger outbreak size of 63172

hosts. Around 70-75% of all infectors are correctly identified with the highest support, and the true infector of a host173

is present in the 95% CI set for at least 95% of all hosts. Only for a high number of introductions (e.g., 20, or 30174

introductions), the performance decreases, due to merged clusters, with 5-10% (Figure S3).175

SARS-CoV-2 in mink farms: analysis of the Dutch outbreak176

During the first and second wave of SARS-CoV-2 infections in the Netherlands (starting in March 2020 and177

September 2020 respectively), 63 out of a total of 126 mink farms in the Netherlands were sampled positive for178

the virus. From the end of April 2020 till November 2020, genetic and epidemiological data were collected on these179

farms, including viral sequences, sampling times, and culling times. A phylogenetic analysis of the viral sequences180

showed 5 distinct genetic clusters of farms, based on their separation by sequences from human samples [19].181

Classification by PANGO lineages [24] showed that each cluster contained one PANGO lineage, with 2 clusters182

containing the same lineage (Table S?). One farm, NB-EMC-8, contained samples from 2 different clusters and is183

therefore split into NB-EMC-8a and NB-EMC-8b in our analysis. Whereas the phylogenetic analysis could distinguish184

five clusters based on human intermediate samples, suggesting five introductions, it could not rule out multiple185

introductions within each cluster. For an estimate of the number of introductions without the need for intermediate186

samples from the source population, we analyzed this outbreak with our extended version of phybreak. We set the187

following priors on the model parameters: µµ = 3 · 10−6 substitutions per nucleotide per day, σµ = 1 · 10−6 [2] and188

the mean rhistory = 20 coalescent events per day with shape equal to 3 (see materials and methods). The mean of189

the prior introduction rate distribution is 5/180, as five genetic clusters were reported within 180 days, with shape190

equal to 3. Finally, we set the prior mean sampling time µS at 10 days, with standard deviation σS = 2, as infection191

is expected to happen 1-2 weeks before sampling [11].192
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The method estimated the time of the first coalescent event in the history host on March 4th, 2020 (Table 2). The193

reduction factor of infectiousness after sampling L was estimated at 1, meaning that the method did not find an194

influence of sampling on infectiousness. We find 13 introductions in the maximum parent credibility tree (see Figure195

3), of which 11 have minimal support above 0.5. The median number of introductions in all cycles was 13, with196

the first and third quartile being 11 and 14 introductions respectively (Figure S7). Six introductions initiated a197

transmission chain, whereas the other 7 were single cases. By coloring the host labels, we see that the method198

divided the hosts into subtrees similar to the phylogenetic clusters found by Lu et al. [19]. Two genetic clusters,199

i.e. cluster B and cluster D, were merged into a single transmission cluster, and with a genetic distance of only 4200

nucleotides they belong to the same PANGO lineage. Genetic cluster C is split into two transmission clusters, with201

NB-EMC-46 as the index case of one of them. NB-EMC-46 was placed in genetic cluster A, but its samples were202

found to belong to multiple PANGO lineages, including the lineage of genetic cluster C. This indicates that farm203

NB-EMC-46 is infected multiple times. The large genetic cluster A is separated into multiple transmission clusters,204

meaning that not all genetically clustered farms are linked by one transmission chain. We find that the single cases205

which are part of this phylogenetic cluster have common ancestors with cases in the human population (Figure S5).206

Time of infection and genetic distance made it less likely that the single farms were part of the transmission cluster207

of farms. In the later stage of the outbreak, there are two larger transmission chains, for which the exact index case208

is less certain (Figure S8). There is support for the scenario that these transmission clusters are merged into one. In209

conclusion, by using a phylodynamic model combining the phylogenetic history of the samples with the transmission210

history between the farms, we were able to distinguish farm-to-farm transmission routes within a group of farms with211

a common introduction from the human population.212

Our extensions are implemented in the package phybreak [18] for the R software [26] and can be found at213

https://github.com/bastiaanvdroest/phybreak. The package version used, together with the code for the analyses,214

is found at https://github.com/bastiaanvdroest/phybreak_multiple_introductions.215
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Discussion216

The method presented enables for the first time to simultaneously estimate the phylogenetic tree and the217

transmission tree of an outbreak in the case where there may have been multiple introductions. The inference is218

done without breaking the dependencies between mutations, within-host dynamics, transmission, and observation.219

By modeling the history of lineages infecting index cases through a phylogenetic tree in a history host, we can220

distinguish between single and multiple introductions. As an extension to the model of Klinkenberg et al. [18],221

we now have an easily accessible method for transmission tree inference, with the possibility to assess multiple222

introductions.223

From analyses of simulated outbreaks, we conclude that the model can infer the true number of introductions if there224

are few introductions compared to the total outbreak size. For an increasing number of introductions, the model225

increasingly underestimated the number of introductions, but the posterior distribution did include the actual number226

of introductions. The simulated index cases which were incorrectly identified as non-index cases did have support227

as an index in the posterior trees. This means that interpretation of the transmission trees should take into account228

the support as index for cases.229

The ability to infer multiple introductions in the analysis of an outbreak is not only useful for finding transmission230

clusters but also gives valuable information on how to respond to an outbreak. In the case of multiple introductions,231

measures aimed at reducing transmission events need to be complemented by preventing introduction from outside232

the target population. Therefore it is of great importance to distinguish between single and multiple introductions233

of a pathogen in a population. With simulated data sets, we showed that our method is a useful tool to make this234

distinction: outbreaks with a single introduction are almost always inferred to have a single index case, and outbreaks235

with multiple introductions are almost never inferred to have a single introduction.236

Although the model can distinguish between single or multiple introductions, the accuracy strongly depends on237

genetic variability. High genetic variability makes it easier to distinguish clusters of hosts, and thus gives more238

weight to the true number of introductions in the posterior. Low genetic variability, however, will cause sub-trees to239

be merged and therefore will lead to an underestimation of the number of introductions. As this variability depends240

on the variation in the external source population, which depends on the mutation rate and effective population size241

in the history host, it is not possible to state in beforehand how accurate the results will be. When available, strong242

priors on the mutation rate and coalescent rate in the history host will increase the accuracy, although even with the243

true values of the model parameters sub-trees will not always be separated. In that case, there is too little information244

in the genetic and epidemiological data to find all introductions.245

Transmission clusters of an infectious disease outbreak in a population are often derived with phylogenetic analyses.246

However, with closely related index cases, defining clusters may become arbitrary. If obtainable sequences sampled247

outside of the study population may help to discriminate the clusters by acting as ’missing links’ between clusters,248

but discrimination is not so likely if clusters are closely connected. As with the SARS-CoV-2 outbreak in minks, low249

genetic variability may cause transmission clusters to be merged in the phylogenetic tree, thereby underestimating250

the number of introductions. We have shown that our method can be used as an alternative approach, which only251

depends on the genetic data from the study population. Moreover, with the addition of epidemiological data, e.g.252

sampling times and culling times, it can differentiate genetically similar transmission clusters.253

Application of the model to a SARS-CoV-2 outbreak in the Dutch mink farms led to confirmation of previously found254

phylogenetic clusters, although the phylogenetic clusters are broken down into multiple transmission clusters. These255

transmission clusters are composed of individual infections along with a larger transmission tree. We split farm256

NB-EMC-8 based on the genetic clustering of the samples taken on this farm. Without this split, a transmission257

cluster would have been formed containing multiple PANGO lineages and always having NB-EMC-8 separating the258

two genetic clusters within that transmission cluster. Farm NB-EMC-46 is also likely to be infected multiple times,259

as in our results it is the index case of a transmission cluster containing samples from a different genetic cluster260

than NB-EMC-46. Currently, our method does not allow for multiple infections of a host with different strains, and261

therefore these clusters could not be separated by the estimation procedure. Extending the method to allow multiple262

infections of the same host is a challenge for future development. The SARS-CoV-2 outbreak on the mink farms has263

been studied previously in which samples of humans around and on the farms were used. Here we show that we264

come to similar conclusions, but do not need samples of the source population to distinguish transmission clusters.265

Often such data is not available, for example with introductions from other countries, the general population is case266

of non-notifiable diseases or from wildlife.267

The possibility to distinguish multiple introductions of a pathogen into a host population opens up a new avenue for268

the analysis of outbreaks. However, the method assumes a large population of which a small part gets infected and269

where contact is equally likely for all pairs of hosts. An outbreak on, for instance, a hospital ward does not meet270

this assumption with its small population size, in and outflow of patients, and spatial distance between patients. To271

address these assumptions, the population size has to be accounted for, and contact data, i.e., possible (in)direct272
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contacts between hosts, as well as the geographical location of hosts give a probability of the contact between hosts.273

Transmission routes can be excluded based on these data sources, such that the certainty of the results increases.274

In conclusion, we developed a new method for transmission tree inference which makes it possible to estimate the275

number of introductions of a pathogen during an outbreak. the analysis of the SARS-Cov-2 outbreak in Dutch mink276

farms shows multiple introductions of the virus, indicating that even with fully controlling farm-to-farm transmission,277

newly infected farms would arise by new introductions from the human population. Our method opens the way to278

evaluate outbreaks in such a way that information about new introductions can be derived; knowledge that is useful279

for policy-making.280
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Methods281

Tree inference model282

The transmission and phylogenetic tree inference model describes the likelihood of observing an infectious disease283

outbreak based on the epidemiological and genetic links between hosts and samples. The outbreak dynamics are284

described by four processes: incidence of new cases by introduction from outside or transmission by existing cases,285

the observation of the pathogen through sampling, the dynamics of the pathogen within infected hosts and the286

history host, and genetic mutations in the pathogen. By means of MCMC, we sample from the posterior distribution287

of parameters and phylogenetic and transmission trees, formed by prior distributions and four likelihood functions288

for the four processes. The inference is done by a Bayesian analysis, using Markov-Chain Monte Carlo (MCMC) to289

obtain samples from the posterior distributions of all outbreak parameters and transmission events. We will briefly290

summarize the likelihood functions, the posterior distributions, and the update steps in the MCMC chain.291

Incidence of cases after the first introduction is modeled by two independent processes: additional introduction from292

outside the study population and transmission between hosts. Additional introductions occur with a rate λintro, after293

the first introduction until the last sample time. We denote by T the time between the first introduction and the last294

sample time, and k the number of introductions. Transmission occurs with a dynamic rate, depending on the times295

since infection of infected hosts, described by the generation time distribution. This is a Gamma distribution with296

shape aG and mean mG. By the use of vector I of all infection times, including introductions, and the numeric vector297

M indicating the infectors of all hosts and 0 for introductions, the probability density function of the generation time298

of a host i, with Mi ̸= 0, is dΓ(aG,mG)(Ii − IMi
). The likelihood for the transmission tree is therefore:299

Pr(I,M|aG,mG) =λk−1
intro ·e(−λintro∗T )·300 ∏

i|Mi>0
dΓ(aG,mG)(Ii − IMi

)301

302

For sampling, we assume that all hosts are detected and sampled at random times after they were infected, according303

to a Gamma distribution with shape aS and mean mS . The likelihood uses the vector S of sampling times of all hosts304

and is therefore:305

Pr(S|I,aS ,mS) =
∏

i

dΓ(aS ,mS)(Si − Ii)306

The phylogenetic tree P describes the evolutionary history of all sampled sequences and is built from the307

phylogenetic mini-trees for each host, connected through the transmission links. The introductions are connected308

by a phylogenetic tree in a separate ’history host’. Each mini-tree has tips formed by samples and lineages from309

secondary cases, and a single root which is a tip in the mini-tree of the infector. Mini-trees are formed by coalescent310

processes. In (normal) hosts, a rate 1/w(τ,r) describes coalescence between any pair of lineages within the host311

going backward in time; in the history host, the rate is constant over time: rhistory. In our analysis, we use w(τ,r) = rτ ,312

the linearly increasing within-host pathogen population size at forward time τ since infection of the host. In the313

phylogenetic tree P of the outbreak with the set of nodes V , there are three sets of nodes: sampling nodes VS , i.e.314

the tips of the tree where sampling took place, coalescent nodes VC and transmission nodes VT , where a lineage315

goes from the infector to its infectee. For node x, τx gives the time of the node since infection of the host. The316

number of lineages in host i at time τ is then denoted by Li(τ):317

Li(τ) =1+
∑

x∈Pi
x∈VC

(u(τ − τx))−
∑

x∈Pi
x∈(VT ∪VS)

(u(τ − τx))
318

where u(τ) is the heaviside step function, i.e. u(τ) = 0 if τ < 0, and u(τ) = 1 if τ ≥ 0. The likelihood of each host’s319

tree is then320

Pr(Pi|Si, I,M, r) =exp
(

−
∫ ∞

0

(
Li(τ)

2

)
1

w(τ,r)dτ

)
·∏

x∈Pi
x∈VC

1
w(τx, r)

321

with
(0

2
)

≡
(1

2
)

≡ 0. Here, the first term is the probability to have no coalescent event during the intervals in which322

there are two or more lineages, and the second term is the product of coalescent rates at the coalescent nodes.323

The prior distribution of the slope r is Gamma distributed with shape ar and rate br. Those were set to ar = br = 3324
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in an uninformative analysis. For the history host, we assume that the coalescent rate is constant over time, so325

w(τ,rhist) = rhist. The total likelihood of the within-host dynamics is the product of all hosts’ likelihoods:326

Pr(P |S, I,M, r) =Pr(P0|I,M, rhistory)·

·
∏

i|i>0
Pr(Pi|Si, I,M, r)327

Mutations are described by a Jukes-Cantor model, stating that any of the four nucleotides have equal probability to328

mutate to, with a fixed mutation rate µ for all sites in the set of sequences G. For all coalescent and transmission329

nodes x, which occur at time tx with parent node vx, the mutation likelihood is:330

Pr(G|P,µ) =
∏
loci

∑
{A,C,G,T }3n−1∏
x

(
1
4 − 1

4 exp(−µ(tx − tvx))
)Imut(1−N)

·
(

1
4 + 3

4 exp(−µ(tx − tvx))
)(1−Imut)(1−N)

331

Here, Imut indicates if a mutation occurred on the branch between x and vx, and N indicates if a branch ends with a332

tip with an unknown nucleotide (’n’ in the sequence). We use here a strict molecular clock model, i.e. one mutation333

rate for all branches of the phylogenetic tree, because on this time scale there won’t any effect of different mutation334

rates. In the history, changes of mutation rates are met by the coalescent rate of the history host. The likelihood is335

calculated using Felsenstein’s pruning algorithm [8].336

The transmission tree and its parameters are inferred by a Bayesian analysis, using Markov-Chain Monte Carlo337

(MCMC). From the MCMC we obtain samples from the posterior distributions of the model parameters, the infectors,338

and the infection times of all hosts. The posterior distribution, with θ the set of model parameters, is given by339

Pr(I,M,P,θ|S,G) ∝Pr(G|P,θ) · Pr(P|S, I,M,θ) · Pr(S|I,θ)·
Pr(I,M|θ) · Pr(θ)340

MCMC sampling341

An MCMC chain is run to get the posterior distribution of the model parameters, together with the transmission and342

phylogenetic tree of the outbreak. The MCMC chains were initialized by first choosing the means of priors for the343

parameters (except for µ), then constructing the transmission and phylogenetic trees, and finally computing a value344

for µ. The trees were constructed by first sampling infection times from the observed sampling times and sample345

time distribution. All cases were assumed to be index cases (other options are possible within the package), and346

the topology of the phylogenetic tree was made with the neighbor-joining algorithm using the first sequence of each347

host. The times of the coalescent nodes were simulated with the coalescent model. This guaranteed an optimized348

tree topology in the history host, not needing to be reached by sampling in the MCMC chain. The parameter µ was349

for the initial state set to be the tree parsimony (the number of mutations on the tree) divided by the sum of all branch350

lengths and the genome size. The default prior distributions for the model parameters are found in Table 3. The351

priors for mG and mS are translated into a prior for the rate parameter in the Gamma distribution. More detail about352

the prior and posterior distributions is included in the supplementary material. Per iteration cycle, each host is picked353

once in random order as the focal host. A new infection time I ′
i is proposed for focal host i and consecutive steps354

are made according to this new infection time. At the start of a proposal, there are two main ways of updating: within355

a sub-tree, by following all hosts with a common index case along their transmission links, or between sub-trees.356

Here we will describe the proposal step for updating between sub-trees, as this is the step where the number of357

introductions can be altered. The update steps within a sub-tree are as in the original phybreak package and can be358

found in the supplementary information.359

Three situations describe the possibility to update the transmission tree between sub-trees (see figure 4):360

1. The focal host i is the history host. In this case, new coalescent times are proposed. Optionally, a new361

phylogenetic mini-tree can be proposed.362

2. The focal host i is an index case. An infection time I ′
i is proposed. If this I ′

i is before the first transmission from363

host i, a new infector M ′
i is proposed out of the hosts which are infectious at time I ′

i. Two situations are now364

possible:365
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a If M ′
i = 0, then host i remains an index case, with infection time I ′

i.366

b If M ′
i ̸= 0, then host i is no longer an index case, and there is one introduction less. Host i and its367

descendants will be merged as a branch to another sub-tree.368

3. The focal host i is not an index case. An infection time I ′
i is proposed. If this I ′

i is before the first transmission369

from host i, a new infector M ′
i is proposed out of the hosts which are infectious at time I ′

i. Two situations are370

now possible:371

a If M ′
i = 0, then host i will become an index case, and there is one extra introduction. The new sub-tree372

consists of host i and all of its descendants.373

b If M ′
i ̸= 0, then host i either switch to another branch in its sub-tree or switch to another sub-tree. There374

is no change in the number of introductions.375

Each proposal step is followed by proposing new phylogenetic mini-trees for all hosts involved. The proposal376

distributions and acceptance probabilities of all steps are described in the supplemental materials. The MCMC377

chain is run according to the (MC)3 algorithm described by Altekar et al.[1] to improve convergence to the global378

likelihood optimum. The chains consisted of 35,000 cycles of which the first 10,000 were used as burn-in.379

Construction and analysis of simulated outbreaks380

To verify the implementation of multiple introductions in the model, we simulated outbreaks including one or more381

index cases, and analyzed them by running MCMC chains. The simulation of an outbreak starts with the simulation382

of a transmission tree:383

1. Set an observation size, i.e. the number of hosts, the number of introductions k, and the duration of the384

outbreak T .385

2. Calculate the optimal population size in which to simulate the outbreak from parameter R0 and the observation386

size.387

3. Sample k − 1 introduction times from the exponential waiting time distribution with rate λintro. The introduction388

time of the first index case will be 0, and other introductions are at cumulative waiting times from the first index.389

4. For the index cases, sample the number of secondary cases from a Poisson distribution with parameter R0.390

5. The generation time between two hosts is Gamma distributed with shape aG and mean mG. After infection,391

the sampling of a host takes place after a Gamma distributed time with shape aS and mean mS .392

6. Repeat steps 3 and 4 for the complete population size, where the infection time for a host is not after T .393

Remove non-index cases without any links.394

7. Repeat 3-6 till the desired observation size was given.395

8. Add the history host and connect the index cases to this host.396

After the simulation of the transmission tree, the phylogenetic tree is constructed by simulating phylogenetic397

mini-trees for each host. Coalescent times are sampled according to the given coalescent rate 1/w(τ,r). Edges398

between sample, coalescent, and transmission nodes are made backward in time. In the history host, coalescence399

events occur with a constant rate 1/rhistory.400

For the sequences, we sample the number of mutations from a Poisson distribution with parameter equal to λ =401

µ · sequence length · total length of all edges, where µ is the mutation rate. The mutations are distributed over the402

edges, with weights the lengths of the edges. For each mutation, a uniform random locus is changed to a uniform403

random nucleotide.404

We simulated outbreaks with a basic set of parameter values, the same as in Klinkenberg et al. [18], (mG = 1, aG =405

10, mS = 1, aS = 10, R0 = 1.5, r = 1, a sequence length of 104 nucleotides and a mutation rate of µ = 10−4), with406

new parameters at λintro = 1. The number of introductions varied between the simulations to assess the performance407

of the model. MCMC chains were run following the (MC)3 algorithm, with 3 parallel chains with heats 1, 0.5, and408

0.333. The chains are 35,000 cycles long, of which the first 10,000 cycles are used as burn-in. Posterior distributions409

for infectors, infection times, and model parameters are collected from the remaining 25,000 cycles.410
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Analysis of SARS-CoV-2 outbreak in Dutch mink farms411

As an application of the method, we analyzed the SARS-CoV-2 outbreak in the Dutch mink industry in 2020 [19].412

We collected the full viral genomes in minks at 63 farms from GISAID (gisaid.org) and aligned them with MUSCLE413

[7]. The alignment contains 326 sequences of 29,775 nucleotides long. All positions with N in all 326 sequences are414

removed because we do not know if there is a mutation at such a position. This left us with 326 sequences of 16,289415

nucleotides long. Each farm is sampled at least once, and we have an average number of 5 samples per farm, each416

farm sampled on a single day. Besides the date of sampling, we also have the date of culling, which is between 1417

day and 45 days after sampling, with an average of 4 days. The first 5 farms found to be infected had more than 30418

days between sampling and culling, but for the rest of the farms, this was no more than 10 days.419

We described the outbreak among mink farms by taking the farms as hosts. The prior distributions of the model420

parameters are set as follows: we set the mean sampling time interval mS = 10 days (with a shape aS = 3), as421

the time between infection and detection was estimated to be 1-2 weeks [11]. We set the mean introduction rate to422

5/180 (with a shape of 3), as five different clusters were found during the outbreak, which lasted for approximately423

180 days, by Lu et al. [19]. The coalescent rate parameter rhistory was set to 20. With an expected number of 5424

introductions, this rate represented the introduction of the virus in the Netherlands two months before the first positive425

mink sample. The other prior distributions were set to default.426

As the hosts are farms here, we introduced an infectiousness function describing the growth and circulation of the427

virus within the mink population of a farm. This function replaced the gamma distribution for the likelihood that one428

farm infected another. We assumed that infectiousness follows a logistic curve, with a reduced level after detection429

at time Ts, and exponential decline after culling at time Tc:430

I =



1
1+ae−gt

t < Ts

L

1+ae−gt
Ts < t < Tc

L

1+a ·e−gTc
·e−C(t−Tc) t > Tc


431

Here, a = 1 · 10−4 is the initial part of the mink population at a farm being infected, g is the growth rate, and t is the432

time after infection of the farm. Parameter L is estimated to see if there was some reduction of infectiousness after433

detection, and C is a fixed value. Because the values for Ts and Tc differ per farm, the infectiousness curves differ434

between the farms. Therefore we normalize the curves, such that the mean AUC of all curves is 1. Then, on average435

a farm has a distribution of infectiousness that adds up to 1, just as in the default phybreak model, while accounting436

for higher total infectivity of longer infected farms. Another addition used for the mink farms was to include multiple437

samples per farm. Phylogenetic mini-trees are then built with multiple lineages within a farm, increasing the amount438

of genetic data. For the sampling time distribution, only the first sample of each host is used.439

To test the new model, with a similar history host, and sampling time distribution, we simulated outbreaks with the440

same parameters as before but with the new infectiousness curve. Culling times were set 15 days after infection,441

such that the hosts have a fixed infectiousness curve. As for the outbreak size, we used 63 hosts with 1 sample per442

host. Prior distributions were set with the same parameter values as the analysis of the real data. We set C to 5,443

such that in 5 days after culling the infectiousness of a farm was 0. We varied the number of introductions, from 1,444

2, 5, 10, 20, up to 30 introductions. Results of the SARS-CoV-2 outbreak were obtained by running three parallel445

chains, with 25,000 cycles each, according to the (MC)3 algorithm. The maximum parent credibility tree is used for446

visualization, computation of the number of introductions, and comparison to the phylogenetics [19].447
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Table 1 - Summary statistics of simulated SARS-CoV-2 outbreaks in mink farms.

Number of simulated introductions
1 2 5 10 20 30

Estimated number
of introductions

1.2 2.1 4.5 7 12.7 14.3

Correct infectors
with highest support

75% 75% 71% 74% 74% 66%

Correct infectors
in 95% CI

96% 97% 96% 97% 97% 92%

545

Table 2 - Summary statistics of SARS-CoV-2 outbreak in mink farms from real data.

Parameter Inference median (95% quantile range) of posterior
µ 5.5 ·10−6 (4.7 ·10−6; 6.4 ·10−6)
mS 11.9 (10.2; 14.1)
rhistory 30.5 (17.2; 53.6)
L 1.0 (0.6; 1.5)

Tree inference
Number of introductions 13 (11; 14)
Time of first coalescent event in history -51.7 (-87.4; -27.9)

546

Table 3 - Prior distributions of the model parameters.

Parameter Description Type of distribution Distribution parameters
log10(µ) Mutation rate N(µ,σ) µlog10(µ) = −4;σlog10(µ) = 0.5
mG Mean generation time interval D(µmG

,σmG
) µmG

= 1;σmG
= ∞

mS Mean sampling time interval D(µmS
,σmS

) µmS
= 1;σmS

= ∞
r Within-host coalescent rate Γ(ar, br) ar = 3;br = 3/1
rhistory History host coalescent rate Γ(arhistory

, brhistory
) arhistory

= 1;brhistory
= 1/100

rintro Introduction rate N(µrintro ,σrintro) µrintro = 1;σrintro = ∞
547
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Figure 1 - Overview of an outbreak with five sampled hosts and two introductions.548

The index cases of the sampled hosts (blue squares) are connected via the history host (red square). Coalescence549

of lineages happens at a different rate in the history host than in the sampled hosts. The black lines give the550

phylogenetic tree of the outbreak and the red arrows indicate transmissions between hosts.551

.
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Figure 2 - Analysis of simulated outbreaks with a varying number of introductions and coalescent rate552

(rhistory) in the history host. The facets give the results for either 1, 2, 5, 10, 15, or 20 simulated introductions.553

(A) The mean estimated median number of introductions. The black line indicates the simulated number of554

introductions.555

(B) Percentage of correctly identified infectors. The grey bar indicates cases for which the true infector has the556

highest posterior weight. The transparent bar indicates cases for which the true infector is contained in the smallest557

set of candidate infectors with at least 95% of the posterior weight.558

(C) Classification of the falsely identified infectors based on the highest support. The grey bars indicate the559

correctly identified infectors. S: single transmission cluster involved, M: multiple transmission clusters involved. For560

the infector of a host: C2C: case becomes case, H2C: history becomes case, C2H: case becomes history.561

.
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Figure 3 - Maximum parent credibility transmission tree of a SARS-CoV-2 outbreak in mink farms.562

In total 13 introductions are found in the outbreak. Vertical arrows represent transmission links and all arrows are563

colored according to the support in the posterior distribution. The grey bars show the infectiousness of the hosts and564

hosts are sampled at the crosses. Host labels are colored according to phylogenetic clusters found by Lu et al. [19].565
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Figure 4 - Proposal steps for updates between sub-trees.566

In purple is the focal host, with the purple arrow indicating the proposed infection time I ′
i. The red arrows indicate the567

transmission events and the history host is colored red, with the introductions as transmission from the history host.568

2: Losing an introduction by proposing a new infector Mi ̸= 0 for an index case. 3a: The reverse of 2, by proposing a569

new infector Mi = 0 for a non-index case. 3b: Switching sub-trees by proposing a new infector Mi ̸= 0 on a different570

sub-tree. Situation 3b is also possible within the same sub-tree.571
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Supplementary Information572

Figure S1 - Comparison of MCMC and p(MC3) with and without the neighbour-joining tree initialization step.573

A: For low numbers of introductions (5 of the 20 hosts), there is no difference between methods in the posterior574

log-likelihood distribution. B: Higher numbers of introductions (15 of the 20 hosts), performance of MCMC with a575

random tree as initialization of the history host is inferior to either p(MC3), neighbour-joining tree initialization of the576

history host or the combination of both. The latter gives the highest likelihood distribution and is chosen as default577

option in all analyses. ’random’ is random tree initialization, ’nj’ is neighbour-joining tree initialization, ’2’ is MCMC578

and ’3’ is p(MC3).579
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Figure S2: Type of errors in the estimated transmission tree. The left figure represents the transmission tree of580

a simulated outbreak with 5 cases; there are 2 introductions (clusters) and 3 transmission events. The right figures581

represents possible estimates of the transmission tree of the simulated outbreak. The vertical ordering of cases582

in the left and the right figures is identical. The upper right figure shows errors in which an incorrect infector is583

identified, but the incorrect infector belongs to the same cluster as the true infector (type A errors), the lower right584

figure represents incorrect identifications of the infector in which the incorrect infector belongs to a different cluster585

as the true infector (type B errors). In Type 1 errors neither the true infector nor the incorrect identified infector is an586

index case. For type 2 errors, the host is an index case in the simulated outbreak but not in the estimated outbreak.587

For type 3 errors, the host is not an index case in the simulated outbreak but is an index case in the estimated588

outbreak.589
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Figure S3: Analysis of simulated outbreaks with varying number of introductions and coalescent rate in the590

history host. The model parameters are fixed at the simulation values. (A) The mean estimated median number of591

introductions. The black line indicates the simulated number of introductions. (B) Percentage of correctly identified592

infectors. The grey bar indicates cases for which the true infector has the highest posterior weight. The transparent593

bar indicates cases for which the true infector is contained in the smallest set of candidate infectors with at least 95%594

of the posterior weight. (C) Classification of the incorrectly identified infectors in the maximum credibility tree. The595

grey bars indicate the correctly identified infectors. S: single transmission cluster involved, M: multiple transmission596

clusters involved. C->C: simulated and inferred infectors are cases, H->C: simulated infector was history host,597

inferred infector is case, C->H: simulated infector was case, inferred infector is history host.598
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Figure S4: Analysis of simulated outbreaks with similar parameter values as the SARS-CoV-2 outbreak in599

mink farms. (A) The mean estimated median number of introductions. The black line indicates the simulated600

number of introductions. (B) Percentage of correctly identified infectors. The grey bar indicates cases for which601

the true infector has the highest posterior weight. The transparent bar indicates cases for which the true infector is602

contained in the smallest set of candidate infectors with at least 95% of the posterior weight. (C) Classification of603

the falsely identified infectors based on highest support. (C) Classification of the falsely identified infectors based on604

highest support. The grey bars indicate the correctly identified infectors. S: single transmission cluster involved, M:605

multiple transmission clusters involved. For the infector of a host: C->C: case becomes case, H->C: history becomes606

case, C->H: case becomes history.607
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Figure S5: Maximum parent credibility transmission tree with with-host phylogenetic trees for SARS-CoV-2608

outbreak in mink farms. The farms are colored according to the clusters found by Lu et al. (2021): cluster A: red;609

cluster B; yellow, cluster C: green; cluster D: blue, cluster E: purple, cluster unknown: black. Cluster A is divided into610

5 smaller clusters, with cluster A1 introduced in NB-EMC-1 and cluster A2 introduced in NB-EMC-46.611
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Figure S6: Maximum parent credibility phylogenetic tree for SARS-CoV-2 outbreak in mink farms. The history612

host is shown as the most-left red line, and the hosts are given in alternating colors. The black boxes represent the613

clusters in the transmission tree, with the lowest box the assumed bigger cluster with index case NB-EMC-46.614
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Figure S7: Histogram of number of introductions for the mink farms
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Figure S8: Posterior support of infectors of all hosts. There is a high certainty of the index cases (infectees with616

the history host as infector) in the beginning of the outbreak. Transmission clusters with index cases NB-EMC-33617

and NB-EMC-53 show more variation of the infectors, even outside their transmission cluster. Posterior support is618

shown from 0 (white) to 1 (blue). Hosts are ordered by transmission cluster and infection time. The grey bars show619

the transmission clusters.620
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Table S1: Comparison between MCMC and MC3. Differences between median posterior log-likelihood and the621

log-likelihood of the simulated outbreak. Results are the means from analyses of 25 outbreaks for each setting, of622

the 10,001st to 35,000th MCMC cycle of each outbreak analysis.623

Simulated numbers of introductions Method Log-likelihood
4*1 MCMC random 68.3

p(MC3) random 70.1
MCMC NJ 67.9
p(MC3) NJ 70.1

4*5 MCMC random 27.3
p(MC3) random 27.0

MCMC NJ 27.5
p(MC3) NJ 27.0

4*10 MCMC random 9.78
p(MC3) random 20.0

MCMC NJ 17.0
p(MC3) NJ 20.2

4*15 MCMC random -2.04
p(MC3) random 14.5

MCMC NJ 9.49
p(MC3) NJ 14.5

Table S2: Inferring multiple introductions with varying prior information: no information, informative priors,624

and fixed parameters. 25 outbreaks of size 20 are simulated with 5 introductions for each set of priors. The results625

of the model parameters are mean differences between mean estimates and the simulated value.626

No information c Informative priors b Fixed parameters a

Mean difference
between estimations
and simulated value
Introductions 0.16 0.12 0.41
µ 3.28 ·10−5 4.59 ·10−6 0
mG 0.22 0.05 0
mS 0.40 0.02 0
r 0.08 0.10 0
rhistory 15.1 4.95 0
Tree inference
True infectors
with highest support

15/20 15/20 15.7/20

True infectors
in 95% CI

19.8/20 20/20 19.5/20

a µG = 1, σG = ∞, µS = 1, σS = ∞, µµ = 0, σµ = 100
b µG = 1, σG = 0.1, µS = 1, σS = 0.1, µµ = 10−4, σµ = 5 ·10−5

c mG,mS , r = 1, rhistory = 50, µ = 10−4

Table S3: Effective Sample Sizes of the model parameters calculated for a various number of introductions.627

Results are the mean of 75 chains, i.e. 3 coalescent rates per number of introductions and 25 outbreaks per628

parameter set.629

Parameters
Simulated number of introductions µ mG mS r rhistory

1 3565 6590 1187 512 1629
2 623 5426 907 496 1191
5 183 5399 1082 546 1314
10 411 3154 699 491 1583
15 556 1660 491 593 1479
20 373 420 227 635 1067
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Table S4: Effective Sample Sizes (ESS) of the model parameters for analyzing a SARS-CoV-2 outbreak in630

mink farms in the Netherlands.

Parameters ESS
log-likelihood 633
µ 710
mS 205
r 376
rhistory 232

631
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