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Abstract.— Analysis of phylogenetic trees has become an essential tool in epidemiology.14

Likelihood-based methods fit models to phylogenies to draw inferences about the15

phylodynamics and history of viral transmission. However, these methods are16

computationally expensive, which limits the complexity and realism of phylodynamic17

models and makes them ill-suited for informing policy decisions in real-time during rapidly18

developing outbreaks. Likelihood-free methods using deep learning are pushing the19

boundaries of inference beyond these constraints. In this paper, we extend, compare and20

contrast a recently developed deep learning method for likelihood-free inference from trees.21

We trained multiple deep neural networks using phylogenies from simulated outbreaks that22

spread among five locations and found they achieve close to the same levels of accuracy as23

Bayesian inference under the true simulation model. We compared robustness to model24

misspecification of a trained neural network to that of a Bayesian method. We found that25

both models had comparable performance, converging on similar biases. We also26

implemented a method of uncertainty quantification called conformalized quantile27

regression which we demonstrate has similar patterns of sensitivity to model28

misspecification as Bayesian highest posterior intervals (HPI) and greatly overlap with29

HPIs, but have lower precision (more conservative). Finally, we trained and tested a neural30

network against phylogeographic data from a recent study of the SARS-Cov-2 pandemic in31

Europe and obtained similar estimates of region-specific epidemiological parameters and32

the location of the common ancestor in Europe. Along with being as accurate and robust33

as likelihood-based methods, our trained neural networks are on average over 3 orders of34

magnitude faster. Our results support the notion that neural networks can be trained with35

simulated data to accurately mimic the good and bad statistical properties of the36

likelihood functions of generative phylogenetic models.37

(Keywords: phylogeography, SSE, phylodynamics, machine learning, deep learning,38

epidemiology)39
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Introduction40

Viral phylodynamic models use genomes sampled from infected individuals to infer the41

evolutionary history of a pathogen and its spread through a population (Holmes and42

Garnett 1994; Volz et al. 2013). By linking genetic information to epidemiological data,43

such as the location and time of sampling, these generative models can provide valuable44

insights into the transmission dynamics of infectious diseases, especially in the early stages45

of cryptic disease spread when it is more difficult to detect and track (Holmes et al. 1995;46

Rambaut et al. 2008; Lemey et al. 2009; Pybus et al. 2012; Worobey et al. 2016, 2020;47

Lemey et al. 2021; Washington et al. 2021; Pekar et al. 2022). This information can be48

used to inform public health interventions and improve our understanding of the evolution49

and spread of pathogens. Many phylodynamic models are adapted from state-dependent50

birth-death (SDBD) processes or, equivalently, state-dependent speciation-extinction (SSE)51

models (Maddison et al. 2007; FitzJohn 2012; Kühnert et al. 2014; Beaulieu and O’Meara52

2016). These birth-death models correspond to the well-known53

Susceptible-Infectious-Recovered (SIR) model during an exponential growth phase, when54

nearly all individuals in the population are susceptible to infection (Anderson and May55

1979). The simplest SIR models only track the number of susceptible, infected, and56

recovered individuals across populations over time, with more advanced models also57

allowing the movement of individuals among localized populations. The phylodynamic58

models we are interested in track the incomplete transmission tree (phylogeny) of sampled,59

infected individuals that emerges from host-to-host pathogen spread among populations60

over space and time. Within this broader context, we will refer to the state as location and61

the models as location-dependent birth-death (LDBDS) models that include serial62

sampling of taxa (Kühnert et al. 2016).63

Analysts typically fit these birth-death models to data using likelihood-based64

inference methods, such as maximum likelihood (Maddison et al. 2007; Richter et al. 2020)65

or Bayesian inference (Kühnert et al. 2016; Scire et al. 2020). Likelihood-based inference66

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.02.08.527714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527714
http://creativecommons.org/licenses/by-nd/4.0/


relies upon a likelihood function to evaluate the relative probability (likelihood) that a67

given phylogenetic pattern (i.e., topology, branch lengths, and tip locations) was generated68

by a phylodynamic process with particular model parameter values. In this sense the69

likelihood of any possible phylodynamic data set is mathematically encoded into the70

likelihood as a function of (unknown) data-generating model parameters.71

Computing the likelihood requires high-dimensional integration over a large and72

complex space of evolutionary histories. Analytically integrated likelihood functions,73

however, are not known for LDBDS models. Methods developers instead use ordinary74

differential equation (ODE) solvers (Maddison et al. 2007; Kühnert et al. 2016) to75

numerically approximate the integrated likelihood. These clever approximations perform76

well statistically, but are too computationally expensive to use with large epidemic-scale77

data sets. Thus, while Nextstrain (Hadfield et al. 2018) and similar efforts have provided78

useful visualizations to policy makers during the COVID response, most phylogeographical79

methods are used forensically, providing insight on the past, and are not used to provide80

parameter estimates in response to emerging events to inform policy decisions in real-time81

due to the complexity and long run-times of these models.82

As phylodynamic models become more biologically realistic, they will necessarily83

grow more mathematically complex, and therefore less able to yield likelihood functions84

that can be approximated using ODE methods. Because of this, phylodynamic model85

developers tend to explore only models for which a likelihood-based inference strategy is86

readily available. As a consequence, the lack of scalable inference methods impedes the87

design, study, and application of richer phylodynamic models of disease transmission, in88

particular, and richer phylogenetic models of lineage diversification, in general.89

To avoid the computational limitations associated with likelihood-based methods,90

deep learning inference methods that are likelihood-free have emerged as a complementary91

framework for fitting a wide variety of evolutionary models (Bokma 2006). Deep learning92

methods rely on training many-layered neural networks to extract information from data93
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patterns. These neural networks can be trained with simulated data as another way to94

approximate the latent likelihood function (Cranmer et al. 2020). Once trained, neural95

networks have the benefit of being fast, easy to use, and scalable. Recently, likelihood-free96

deep learning neural network methods have successfully been applied to phylogenetics97

(da Fonseca et al. 2020; Suvorov et al. 2020; Nesterenko et al. 2022; Solis-Lemus et al.98

2022; Suvorov and Schrider 2022) and phylodynamic inference (Lambert et al. 2022;99

Voznica et al. 2022).100

Here we extend new methods of deep learning from phylogenetic trees (Lambert101

et al. 2022; Voznica et al. 2022) to explore their potential when applied to phylogeographic102

problems in geospatial epidemiology. Phylodynamics of birth-death-sampling processes103

that include migration among locations have been under development for more than a104

decade (Stadler 2010; Stadler et al. 2012; Kühnert et al. 2014, 2016; Scire et al. 2020; Gao105

et al. 2022, 2023). Given the added complexity of location-specific dynamics (e.g.106

location-specific infection rates) and recent successes in deep learning with phylogenetic107

time trees (Voznica et al. 2022) under state-dependent diversification models (Lambert108

et al. 2022), we sought to evaluate this approach when applied to viral phylodynamics and109

phylogeography by including location data when training deep neural networks with110

phylogenetic trees.111

A current limitation of likelihood-free approaches is that it remains unknown how112

brittle the inference machinery is when the assumptions used for simulation and training113

are violated (Schmitt et al. 2022). For example, a brittle deep learning method would be114

more easily misled by model misspecification when compared to a likelihood-based method.115

Likelihood approaches may have some advantages because the simplifying assumptions are116

explicit in the likelihood function while for trained neural networks it is difficult to know117

how those same assumptions implemented in the simulation are encoded in data patterns in118

the training data and learned network weights. However, with complex likelihood models,119

there may be unexpected interactions among simplifying assumptions that can result in120
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large biases when applied to real-world data (Gao et al. 2023). Characterizing the relative121

robustness and brittleness of these two inference paradigms is essential for those who wish122

to confidently develop and deploy likelihood-free methods of inference from real world data.123

To explore relative robustness to model misspecification, we trained multiple deep124

convolutional neural networks (CNNs) with transmission trees generated from epidemic125

simulations. We were able to achieve accuracy very close to that of a likelihood-based126

approach and through several model misspecification experiments show that our CNNs are127

no more sensitive to model violations than the likelihood approach. Significantly, both128

methods consistently show similar biases induced by model violations in test data sets. We129

find that for the models tested here, the migration rate estimates are highly sensitive to130

misspecification of infection rate and sampling rates, but that estimates of the infection131

and sampling rates are fairly robust to misspecification of the migration models. We also132

show that the rate parameter estimates are fairly robust to misspecification of both the133

number of locations in the model and phylogenetic error. We also estimated prediction134

intervals for the rate parameters and compared and contrasted their performance to the135

Bayesian highest posterior density intervals (HPI). We show that they produce intervals136

that greatly overlap with HPIs in all experiments, but have, on average, wider intervals137

making them relatively conservative. Finally, we compared a simulation-trained neural138

network to a recent phylodynamic study of the first wave of the COVID pandemic in139

Europe (Nadeau et al. 2021) and obtain similar inferences about the dynamics and history140

of SARS-CoV-2 in the European clade.141

Methods142

First, we define the SIR model we assume here that is approximately equivalent to143

the LDBDS model (Kühnert et al. 2016). Following that, is a description of the simulation144

method to generate the training, validation, and test data sets of phylogenies under the145

model. The simulation and data processing pipeline is shown in Figure 1. We next describe146
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Figure 1: Simulation and tree encoding pipeline for generating training data. 1) Specify a
model, for example an SIR model with serial sampling and migration among three locations
(colored circles). 2) Run simulations of outbreaks under the model to generate population
trajectories and phylogenetic trees. 3) Encode trees and location data into the Compact
Bijective Ladderized Vector + States (CBLV+S) format. 4) Train the neural network with
CBLV+S training data.
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our implementation of simulation-trained deep learning inference with convolutional neural147

networks (CNN) as well as a likelihood-based method using Bayesian inference. We then148

describe our methods for measuring and comparing their performance when tested against149

data sets generated by simulations under the inference model as well as several data sets150

simulated under models that violate assumptions of the inference model. Finally, we151

describe how we tested our simulation-trained CNN against a real-world data set.152

Model definition153

We first define a general location-dependent SIR stochastic process used for simulations154

and likelihood function derivation in the format of reaction equations we specified in155

MASTER (Vaughan and Drummond 2013). Reaction equations 1 through 4 specify the156

SIR compartment model with migration and serial sampling where S, I, and R denote the157

number of individuals in each compartment. The S and I compartments are indexed by158

geographic location using i and j. Ni is the total population size in location i and159

Ni = Si + Ii +Ri. To simplify notation, we consider all local recoveries to lead to the same160

global compartment and absorbing state, R. The symbols for each rate parameter is placed161

above each reaction arrow.162

Si + Ii
βi/Ni−−−−→ 2Ii infection (1)

Ii
mij−−−−→ Ij migration (2)

Ii
γ−−−−→ R recovery (3)

Ii
δi−−−−→ R sample and recovery. (4)

We parameterize the model with the basic reproduction number in location i, R0i ,163

which is related to βi and δi by equation 5,164
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R0i =
βi

γ + δi
. (5)

In particular, our study considers a location-independent SIR (LISIR) model with165

sampling that assumes R0i was equal among all locations, and a location-dependent166

(LDSIR) model with sampling that assumes R0i varied among locations. During the167

exponential growth phase of an outbreak, the LISIR and LDSIR models are equivalent to168

the location-independent birth-death-sampling (LIBDS) and location-dependent169

birth-death-sampling (LDBDS) models, respectively, that are often used in viral170

phylogeography (Kühnert et al. 2014, 2016; Douglas et al. 2021).171

Each infectious individual transitions to recovered at rate γ. We assumed that172

sampling a virus in an individual occurs at rate δi in location i and immediately removes173

that individual from the infectious compartment and places them in the recovered174

compartment. Thus the effective recovery rate in location i is γ + δi. The above reactions175

correspond to the following coupled ordinary differential equations.176

dSi

dt
= − βi

Ni

SiIi

dIi
dt

=
βi

Ni

SiIi +
n∑

j ̸=i

mijIj −
n∑

j ̸=i

mjiIi − (γ + δi)Ii

dR

dt
=

n∑
i=1

(γ + δi)Ii

(6)

When the migration rate is constant among locations and the model is a177

location-independent SIR model, or equivalently, LIBDS, and we set Si(t = 0) ≈ Ni at the178

beginning of the outbreak, the equation set 6 reduces to179
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dSi

dt
= −βIi

dIi
dt

= βIi +m

(
n∑

j ̸=i

Ij − (n− 1)Ii

)
− (γ + δ)Ii

dR

dt
= (γ + δ)

n∑
i=1

Ii

180

The number of infections and the migration of susceptible individuals is at181

negligible levels on the timescales investigated here. The infection rate is, therefore,182

approximately constant and the migration of susceptible individuals can be safely ignored183

requiring only migration of infectious individuals to be simulated.184

At the beginning of an outbreak, it is often easier to know the recovery period from185

clinical data than the sampling rate which requires knowing the prevalence of the disease.186

Therefore, we treat the average recovery period as a known quantity and use it to make the187

other two parameters (the sampling rate and the basic reproduction number R0)188

identifiable. This was done by fixing the corresponding rate parameter in the likelihood189

function to the true simulated value for each tree, and by adding the true simulated value190

to the training data for training the neural network.191

Simulated training and validation data sets192

Epidemic simulations of the SIR+migration model that approximates the LIBDS process193

were performed using the MASTER package v. 6.1.2 (Vaughan et al. 2014) in BEAST 2 v.194

2.6.6 (Bouckaert et al. 2019). MASTER allows users to simulate phylodynamic data sets195

under user-specified epidemiological scenarios, for which MASTER simultaneously196

simulates the evolution of compartment (population type) sizes and tracks the branching197

lineages (transmission trees in the case of viruses) from which it samples over time. We198
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trained neural networks with these simulated data to learn about latent populations from199

the shape of sampled and subsampled phylogenies. In addition to the serial sampling200

process, at the end of the simulation 1% of infected lineages were sampled. In MASTER201

this was approximated by setting a very high sampling rate and very short sampling time202

such that the expected number sampled was approximately 1%. This final sampling event203

was required to make a 1-to-1 comparison of the likelihood function used for this study (see204

Likelihood method description below) which assumes at least one extant individual was205

sampled to end the process. Coverage statistics from our MCMC samples closely match206

expectations (see Likelihood method description below; SI Figure 2 C). Simulation207

parameters under LIBDS and LDBDS models for training the neural network under the208

phylogeography model were drawn from the following distributions:209

R0 ∼ Uniform(2, 8)

δ ∼ Uniform(0.0001, 0.005)

m ∼ Uniform(0.0001, 0.005)

γ ∼ Uniform(0.01, 0.05)

spillover location ∼ Multinomial(k = 1, pi = 1/5), for 5 locations

(7)

All five locations had initial population sizes of 1,000,000 susceptible individuals and210

one infected individual in a randomly sampled spillover location. Simulations were run for211

100 time units or until 50,000 individuals had been infected to restrict simulations to the212

approximate exponential phase of the outbreak. For the experiments comparing the CNN213

to the likelihood-based method under the LIBDS model, if this population threshold was214

reached the simulation was rejected. This criterion was not enforced for simulations under215

the LDBDS model. This ensured the LIBDS model used in the likelihood-based analyses216

are equivalent to more complex density-dependent SIR models. After simulation, trees with217
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500 or more tips were uniformly and randomly downsampled to 499 tips and the sampling218

proportion was recorded for training the neural networks and to adjust estimates of δ.219

We simulated 410,000 outbreaks under these LIBDS settings to generate the220

training, validation, and test sets for deep learning. Any simulation that generated a tree221

with less than 20 tips was discarded, leaving a total of 111,157 simulated epidemiological222

data sets. Of these, 104,157 data sets were used to train and 7,000 were used to validate223

and test each CNN. A total of 193,110 LDBDS data sets were simulated, with 186,110 used224

to train and 7,000 used to validate and test the LDBDS CNNs.225

To make phylodynamic inferences about the first wave of the SARS-CoV-2 epidemic226

in Europe we used the LDBDS model on the data set from Nadeau et al. (2021). Training227

simulation parameters for the LDBDS process were drawn from the same distributions as228

LIBDS except R0 which was unique for each location. We assume that the variability of R0229

among different pathogens (simulated outbreaks) is greater than the variability of the same230

pathogen’s R0 among different locations within the same simulation. To implement this231

assumption, all R0 was drawn from a joint distribution to narrow the magnitude of232

differences among locations within simulations to be within 6 of each other but expand the233

magnitude of differences between simulations to range from 0.9 to 15:234

α ∼ Uniform(3.9, 12)

R0i | α ∼ Uniform(α - 3, α + 3)

For the empirical analysis, population sizes at each location were also set to 500,000235

and instead of running the simulations for 100 time units, time was scaled by the recovery236

period, 1/γ, and was drawn from a uniform distribution:237
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time ∼ Uniform(1, 20)

Simulated test data sets with and without model misspecification238

All simulation models used for training and testing are listed in Table 1. We first239

simulated a test set of 138 trees under the training model to compare the accuracy of the240

CNN and the likelihood-based estimates when the true model is specified. These data sets241

were simulated by random draws of parameter values from the same distributions described242

above for generating the training data set.243

Sensitivity to model misspecfication for each of the three rate parameters, R0, δ,244

and m, was tested. All sensitivity experiments used the same LIBDS model for inference245

for both the CNN and the Likelihood-based methods. Sensitivity experiments were246

conducted by simulating a test data set of trees that were generated by an epidemic247

process that was more complex than or different from the LIBDS model.248

The tree data set for the misspecified R0 experiment consisted of simulating249

outbreaks where each location had a unique R0 drawn from the same distribution as above.250

Likewise, the misspecified sampling model test set was generated by simulating outbreaks251

where each location had a unique sampling rate, δ, drawn from the same distribution used252

for the global sampling rate described above. For the misspecified migration model, a253

random pair of coordinates, each drawn from a uniform(0,5) distribution in a plane, were254

generated for the five locations, and a pairwise migration rate was computed such that255

pairwise migration rates were symmetric and proportional to the inverse of their euclidean256

distances and the average pairwise migration rate was equal to a random scalar which was257

also drawn from a uniform distribution (see equations 7 above).258

The tree set for the misspecified number of locations experiment was generated by259
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Description Simulation model parameters and data

Generate training data {N,R0, δ,m, γ,Ψ}
Misspecify R0 {N,R01 , R02 , R03 , R04 , R05 , δ,m, γ,Ψ}
Misspecify δ {N,R0, δ1, δ2, δ3, δ4, δ5,m, γ,Ψ}
Misspecify m {N,R0, δ,mij∀i ̸= j ∈ {1, . . . , N}, γ,Ψ}

Misspecify number of locations {2N,R0, δ,m, γ,Ψ}
Tree error {N,R0, δ,m, γ,Ψerror}

Analyze Nadeau et al. (2021) dataset {N,R01 , R02 , R03 , R04 , R05 , δ,m, γ,Ψ}

Table 1: Models used in this study. All simulations assume an SIR compartmental epidemic
model. N = 5 is the number of locations, R0 is the basic reproduction number, δ is the
sampling rate, m is the migration rate, γ is the recovery rate (treated as data), and Ψ is the
phylogenetic tree + locations (also treated as data).

simulating outbreaks among ten locations instead of five. After simulations, six locations260

were chosen at random and re-coded as being sampled from the same location.261

To generate a test set where the time tree used for inference has incorrect topology262

and branch lengths, we implemented a basic pipeline of tree inference from simulated263

genetic data to mimic a worst case real world scenario. We simulated trees under the same264

settings as before. Phylogenetic error was introduced in two ways: the amount of site data265

(short sequences) and misspecification of the DNA sequence evolution inference model266

using seq-gen V. 1.3.2 (Rambaut and Grassly 1997). We simulated the evolution of a 200267

base-pair sequence under an HKY model with κ = 2, equal base frequencies and 4268

discretized-gamma(2, 2) rate categories for among site rate variation. The simulated269

alignment as well as the true tip dates (sampling times) was then used to infer test trees.270

Test tree inference was done using IQ-Tree v. 2.0.6 (Minh et al. 2020) assuming a271

Jukes-Cantor model of evolution where all transition rates are equal. The inference model272

also assumed no among-site rate variation. The number of shared branches between the273

true transmission tree and the test tree inferred by IQ-Tree was measured using gotree v.274

0.4.2 (Lemoine and Gascuel 2021). Polytomies were resolved using phytools (Revell 2012)275

and a small, random number was added to each resolved branch. These trees were then276

used for likelihood inference and CNN prediction.277
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Deep learning inference method278

The resulting trees and location metadata generated by our pipeline were converted to a279

modified CBLV format (Voznica et al. 2022), which we refer to as the CBLV+S (+State of280

character, e.g. location) format (Figure 1). The CBLV format uses an in-order tree281

traversal to translate the topology and branch lengths of the tree into an 2 x n matrix282

where n is the maximum number of tips allowed for trees. The matrix is initialized with283

zeroes. We then fill the matrix starting with the root then proceed to the tip with largest284

root-to-tip distance rather than starting with that tip as in Voznica et al. (2022). We chose285

this to separate the the zero value of the root age from the zeroes used to pad matrices286

where the tree has less than the maximum number of tips, though we expect this to make287

marginal to no difference in performance. The CBLV representation gives each sampled tip288

a pair of coordinates in ‘tree-traversal space’. Our CBLV+S format associates geographic289

information corresponding with each sampled taxon by appending each vector column with290

a one-hot encoding vector of length g states to yield a (2 + g)× n CBLV+S matrix. The291

CBLV+S format allows for multiple characters and/or states to be encoded, extending the292

single binary character encoding format introduced by Lambert et al. (2022). Our study293

uses CBLV+S to encode a single character with g = 5 location-states. In addition to the294

the CBLV+S data, we also include a few tree summary statistics and known simulating295

parameters; the number of tips, mean branch length, the tree height and the recovery rate296

and the subsampling proportion. Trees were rescaled such that their mean branch length297

was the default for phylodeep (Voznica et al. 2022) before training and testing of the CNN.298

The mean pre-scaling branch length and tree heights were also fed into the neural networks.299

Trees were not rescaled for the likelihood-based analysis. Recall that tree height did not300

vary for the LIBDS CNN training set but did for the LDBDS training set (see simulation301

time settings above). Varying the time-scale for the LDBDS model was necessary for302

analyzing real world data where time-scales of outbreaks can vary considerably.303

Our CNNs were implemented in Python 3.8.10 using keras v. 2.6.0 and304
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tensorflow-gpu v. 2.6.0. (Chollet; Abadi et al. 2016). CNNs consist of one or more layers305

specifically intended for structural feature extraction. CNNs utilize a filter, akin to a306

sliding window, that executes a mathematical operation (convolution) on the input data.307

When dealing with structured data like the CBLV+S matrix, multiple 1D filters slide308

across the matrix’s columns, embedding each scanned window into an N-dimensional vector309

representation. This architectural design imparts CNNs with translation invariance,310

enabling them to recognize and learn repeating patterns throughout the input space,311

regardless of their specific location. Stacking multiple convolutional layers enables CNNs to312

decipher hierarchical structures within the data. See Alzubaidi et al. (2021) and Khan313

et al. (2020) for reviews of the subject.314

For each model, LIBDS and LDBDS, we designed and trained two CNN315

architectures, one to predict epidemiological rate parameters and the other to predict the316

outbreak location resulting in four total CNNs trained by two training data sets (LIBDS317

and LDBDS). We used the mean-squared-error for the regression neural loss function in the318

network trained to estimate epidemiological rates, and the categorical cross-entropy loss319

function for the categorical network trained to estimate outbreak location. We assessed the320

performance of the network by randomly selecting 5,000 samples for validation before each321

round of training. We measured the mean absolute error and accuracy using the validation322

sets. We used these measures to compare architectures and determine early stopping times323

to avoid overfitting the model to the training data. We also added more simulations to the324

training set until we could no longer detect an improvement in error statistics. After325

comparing the performance of several networks, we found that the CNN described in SI326

Figure S1 performed the best. In brief, the networks have three parallel sets of sequential327

convolutional layers for the CBLV+S tensor and a parallel dense layer for the priors and328

tree statistics. The three sets of convolution layers differed by dilation rate and stride329

lengths. These three segments and the dense layer were concatenated and then fed into a330

segment consisting of a sequential set of dense layers, each layer gradually narrowing to the331
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output size to either three or five for the rates and origin location networks, respectively,332

for the LIBDS model, and seven and five for the seven rates and five locations, respectively,333

for the LDBDS model.334

All layers of the CNN used rectified linear unit (ReLU) activation functions. We335

used the Adam optimizer algorithm for batch stochastic gradient descent (Kingma and Ba336

2017) with batch size of 128. We selected the number of epochs by monitoring the mean337

absolute error and accuracy of the validation data set. This set was not used in training or338

testing. These metrics suggested stopping after 15 epochs for the regression network and339

ten epochs for the root location network would maximize accuracy/minimize error for340

out-of-sample test data. The output layer activation for the network that predicted the341

R0, δ and m parameters was linear with three nodes. For the output layer predicting the342

outbreak location the activation function was softmax with five nodes for the five locations.343

The input layer and all intermediate (latent) layers were the same for all four networks,344

namely the CBLV+S tensor and the recovery rate, mean branch lengths, tree height and345

number of tips in the tree. The LDBDS neural network was trained with simulated trees346

where R0i varied among locations and had an output layer with seven nodes; five for the347

each location’s R0i and a node each for the sampling rate and the migration rate. We348

tested networks with max-pooling layers between convolution layers as well as dropout at349

several rates and found no improvement or a decrease in performance.350

Likelihood-based method of inference351

We compared the performance of our trained phylodynamic CNN to likelihood-based352

Bayesian phylodynamic inferences. We specified LIBDS and LDBDS Bayesian models that353

were identical to the LIBDS and LDBDS simulation models that we used to train our354

CNNs. The most general phylodynamic model in the birth-death family applied to355

epidemiolgoical data is the state-dependent birth-death-sampling process (SDBDS;356

(Kühnert et al. 2016; Scire et al. 2020)), where the state or type on which birth, death, and357
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sampling parameters are dependent is the location in this context. The basic model used358

for experiments here is a phylogeographic model that is similar to the serially sampled359

birth-death process (Stadler 2010) where rates do not depend on location, which we refer360

to as the LIBDS model. The death rate, µ, is equivalent to the recovery rate, γ, in SIR361

models. Standard phylogenetic birth-death models assume the birth and death rates, λ and362

µ, are constant or time-homogeneous, while the SIR model’s infection rate is proportional363

to β and S and varies with time as S changes. However, when the number of infected is364

small relative to susceptible people, as in the initial stages of an outbreak, the infection365

rate, β, is approximately constant and approximately equal to the birth rate λ;366

λ =
βS

N
≈ β (8)

The joint prior distribution was set to the same model parameter distributions that367

were used to simulate the training and test sets of phylogenetic trees in the first section368

with γ treated as known and the proportion of extant lineages sampled, ρ, set to 0.01 as in369

the simulations. The likelihood was conditioned on the tree having extant samples (i.e. the370

simulation ran for the allotted time without being rejected). All simulated trees in this371

study had a stem branch and the outbreak origins were inferred for the parent node of the372

stem branch.373

We used Markov chain Monte Carlo (MCMC) to simulate random sampling from374

the posterior distribution implemented in the TensorPhylo plugin375

(https://bitbucket.org/mrmay/tensorphylo/src/master/) in RevBayes (Höhna et al. 2016).376

After a burnin phase, a single chain was run for 7,500 cycles with 4 proposals per cycle and377

at least 100 effective sample size (ESS) for all parameters. If the effective sample size378

(ESS) was less than 100, the MCMC was rerun with a higher number of cycles. We also379

analyzed the coverage of the 5, 10, 25, 50, 75, 90, and 95% HPI to verify that our380
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simulation model and inference model are the same and that the MCMC simulated draws381

from the true posterior distribution. Bayesian phylogeographic analysis recovered the true382

simulating parameters at the expected frequencies (Figure 2 C), thus validating the383

simulations were working as expected and confirming that the MCMC was accurately384

simulating draws from the true posterior distribution.385

Quantifying errors and error differences386

We measure the absolute percent error (APE) of the predictions from the CNN and the387

mean posterior estimate (MPE) of the likelihood-based method. The formula for APE of a388

prediction/estimate, yestimate, of ytruth is389

APE =

∣∣∣∣yestimate − ytruth

ytruth

∣∣∣∣× 100

The Bayesian alternative to significance testing is to analyze the posterior390

distribution of parameter value differences between groups. In this framework, the391

probability that a difference is greater than zero can be easily interpreted. We therefore392

used Bayesian statistics to infer the median difference in error between the CNN and393

likelihood-based methods and the increase in median error of each method when analyzing394

misspecified data compared to when analyzing data simulated under the true inference395

model.396

We used Bayesian inference to quantify population error by performing three sets of397

analyses: (1) inferred the population median APE under the true model (this will be the398

reference group for analysis 3), (2) the effect of inference method — CNN or399

likelihood-based (Bayesian) — on error by inferring the median difference between the400

CNN estimate and the likelihood-based estimate, (3) the effect of misspecification on error401

for each parameter by comparing the median error of estimates under misspecified402
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experiments and the reference group defined by analysis 1. See SI Figures S3 - S13 and SI403

Table S1 for summaries and figures for all analyses for this section.404

To infer these differences between groups we used the R package BEST (Meredith405

and Kruschke). BEST assumes the data follow a t-distribution parameterized by a location406

parameter, µ, a scale parameter, σ, and a shape parameter, ν, which they call the407

”normality parameter” (i.e. if ν is large the distribution is more Normal). Because the408

posterior distribution does not have a closed form, BEST uses Gibbs sampling to simulate409

draws from the posterior distribution. 20,000 samples were drawn from the posterior410

distribution for each BEST analysis. BEST uses automatic posterior predictive checks to411

indicate that a model adequately describes the data distributions. Posterior predictive412

checks indicate the BEST model adequately fits each data set analyzed below.413

Inferring the median APE.— Before inferring differences between groups, we inferred the414

population median APE for predictions of R0, δ, and m from test data simulated under the415

inference model using the CNN and likelihood-based methods. Histograms of the sampled416

log-transformed APE appears to be symmetric with heavy tails so we fit the log APE to417

the BEST model. This implies that the sampled APE scores are drawn from a log-t418

distribution. The log-t distribution has a mean of ∞ and median of eµ, we therefore focus419

our inference on estimating posterior intervals for the population median APE from the420

sampled APE values for each parameter estimated by the CNN method and421

likelihood-based method which we denote APECNN, and APELike respectively. The data422

analyzed here and likelihood assumed by BEST is423

y = APECNN or APELike

log y | µ, σ, ν ∼ tν(µ, σ).

The priors were set to the vague priors that BEST provides by default,424
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µ ∼ Normal(mean(y), sd(y)× 1000)

σ ∼ Uniform(sd(y)/1000, sd(y)× 1000)

ν ∼ Exponential(1/29) + 1.

95% HPI for the median APE, µ̃, was estimated by the following transformation of425

simulated draws from the posterior distribution426

µ̃ = eµ.

In summary, the results we present are 95% HPI from the posterior distributions of427

the median error, µ̃.428

Inferring the relative accuracy of the CNN and likelihood-based method.— To quantify the429

difference in error between the CNN and the likelihood-based method, we fit the difference430

in sampled APE scores, ∆APE, between the CNN method and the likelihood-based431

method to the BEST model. Histograms of ∆APE appear symmetric with weak to strong432

outliers making the BEST model a good candidate for inference from this data. The data433

and likelihood are434

∆y = APECNN − APELike

∆y | µ, σ, ν ∼ tν(µ, σ)

We used the same default priors as above.435

Because, ∆y is not log-transformed, it is drawn from a t-distribution and the436
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marginal posterior of the parameter µ is an estimate of the population mean, µd. Because437

the mean and the median are equivalent for a t-distribution, we again report the posterior438

distribution of the median difference, µ̃d to simplify the results.439

In summary, the results we present are 95% HPI from the posterior distribution of440

the median difference between the two methods, µ̃d.441

When comparing CNN to the likelihood-based approach, positive values for µ̃d
442

indicate the CNN is less accurate, and negative indicate the likelihood-based estimates less443

accurate. We emphasise that this quantity is the median difference in contrast to the444

difference in medians, ∆µ̃, reported in the next section.445

Inferring sensitivity to model misspecification.— Finally, to quantify the overall sensitivity446

of each rate parameter to model misspecification under each inference method, we infer the447

difference in median APE, µ̃ of predictions under a misspecified model relative to448

predictions under the true model. In other words we are inferring differences in medians449

between experiments. For example, to infer the sensitivity of the CNN’s inference of the450

sampling rate, δ, to phylogenetic error, we inferred the difference between the median APE451

of the CNN’s predictions for misspecified trees and the median APE of CNN predictions452

for true trees. The data is concatenated as below.453

(y1, y2) = (APECNN,APECNN Ref) or

(y1, y2) = (APELike,APELike Ref)

We inferred the difference between group median APE scores, denoted ∆µ̃, by454

assuming that the model parameters conditioned on the observed APE from the two455

groups, y1 and y2, follow a posterior distribution that is proportional to456
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P (y1 | µ1, σ1, ν)P (y2 | µ2, σ2, ν)P (µ1, µ2, σ1, σ2, ν),

where log y1 and log y2 follow t distributions with means µ1 and µ2 and standard457

deviations σ1 and σ2, respectively while sharing a common normality parameter, ν.458

The posterior sample of ∆µ̃ is obtained by transforming samples from the joint459

marginal posterior distribution of µ1 and µ2 with the following equation,460

∆µ̃ = eµ1 − eµ2 .

The two components of the likelihood are each t-distributed and share the ν461

parameter which means we assume both samples are drawn from a similarly shaped462

distribution (similarly heavy tails).463

log y1 | µ1, σ1, ν ∼ tν(µ1, σ1)

log y2 | µ2, σ2, ν ∼ tν(µ2, σ2)

The prior distribution for the parameters of the model were set to the defaults for464

BEST,465
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µ1 ∼ Normal(mean(log y1), sd(log y1)× 1000)

µ2 ∼ Normal(mean(log y2), sd(log y2)× 1000)

σ1 ∼ Uniform(sd(log y1)/1000, sd(log y1)× 1000)

σ2 ∼ Uniform(sd(log y2)/1000, sd(log y2)× 1000)

ν ∼ Exponential(1/29) + 1

As before, interpretation of the posterior distribution of the difference in medians is466

straightforward: the more positive the difference in median APE from the misspecified467

model test set and the median APE from the true model test set, the more sensitive the468

parameter is to model misspecification in the experiment.469

CNN uncertainty quantification470

We used conformalized quantile regression (CQR) to construct calibrated probability471

intervals (CPI), ensuring accurate predictive coverage (Lei et al. 2018; Romano et al. 2019;472

Sousa et al. 2022; Vovk et al. 2022; Angelopoulos et al. 2023). CQR is implemented in two473

stages: first a network is trained to predict conditional quantiles, then a hold-out simulated474

dataset is used to estimate bias adjustment terms to ensure correct coverage on future data475

i.e. 95% intervals contain the true value 95% of the time for test data.476

To implement quantile regression with a neural network and predict lower and upper477

quantiles, we adjusted the general network architecture used for point estimates above to478

have two outputs each with a mean pinball loss function instead of the mean squared error,479

Lτ (y, q̂) =
1

N

N∑
i

[(yi − q̂i)τ1{yi ≥ q̂i}+ (q̂i − yi)(1− τ)1{yi ≤ q̂i}] .
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Here, y is the label or true parameter value (not a quantile) and q̂ is the trained neural480

network’s prediction of a given quantile. τ is the quantile level and is equal to 1− α, where481

α is the mis-coverage rate, or the probability the true value is not below the quantile. To482

estimate inner quantiles with miscoverage rate α, the lower quantile output was set to483

predict the α/2 quantile for each rate parameter and the other layer to predict the 1− α/2484

upper quantile (Steinwart and Christmann 2011) (SI figure S2). We refer to CNNs of this485

type as qCNN. Though often close, these inner quantiles are not guaranteed to have the486

correct coverage on test data sets (Figure 3) necessitating the calibration487

(conformalization) step (Romano et al. 2019).488

To calibrate the predictions of quantile regression neural networks, CQR finds an489

adjustment term for each quantile through computing a non-comformity score, such as the490

distance of the predicted value from the predicted quantile. If the estimated quantile is491

well calibrated, then the same quantile of the scores in a calibration set will be zero. If the492

estimated quantile is, for example, too high then too high a proportion of the labels will493

fall below the estimated quantile and the empirical quantile, Q, of the nonconformity score494

y − q̂ at 1− α/2 will be negative. In other words it will over cover the calibration set. Q495

thus becomes the adjustment term for calibrating the qCNN’s quantile estimate (equations496

9, and 10) by simply adding the term to the corresponding estimated quantile as shown in497

equation 11.498

Qlower s.t. P (y − q̂lower < Qlower) =
α

2

(
1 +

1

n

)
(9)

Qupper s.t. P (y − q̂upper < Qupper) =
(
1− α

2

)(
1 +

1

n

)
(10)

499

CPI = [q̂lower +Qlower, q̂upper +Qupper] (11)

Note that the quantiles of the score for finite sample sizes require adjustment by (1 + 1
n
)500

where n is the number of samples in the calibration set (Romano et al. 2019).501
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We simulated 108,559 more datasets (trees) to estimate the calibration amounts for502

the upper and lower qCNN-estimated quantiles. After calibration through503

conformalization, we clipped intervals to the prior boundary for intervals that extended504

beyond the prior distribution’s range. To examine the consistency of quantile regression for505

neural networks trained on different quantiles we trained seven different quantile networks506

to predict the same quantiles used for validating our Bayesian analysis and simulation507

model: {0.05, 0.25, 0.5, 0.75, 0.9, 0.95}. We checked the coverage of these adjusted CPIs508

on another simulated test dataset of 5,000 trees.509

Real data510

We compared the inferences of a LDBDS simulation trained neural network to that of a511

phylodynamic study of the first COVID wave in Europe (Nadeau et al. 2021). These512

authors analyzed a phylogenetic tree of viruses sampled in Europe and Hubei, China using513

a location-dependent birth-death-sampling model in a Bayesian framework using priors514

informed by myriad other sources of information. We simulated a new training set of trees515

under an LDBDS model where R0i depends on the geographic location, and the sampling516

process only consists of serial sampling and no sampling of extant infected individuals. We517

estimated 95% CPIs for model parameters with a simulated calibration dataset of 101,219518

trees using CQR as above and confirmed accurate coverages with another dataset of 5,000519

trees.520

We then analyzed the whole tree from Fig. 1 in (Nadeau et al. 2021) as well as the521

European clade which Nadeau et al. (2021) labeled as A2 in the same figure. We note that522

our simulating model is not identical to the inference model used in (Nadeau et al. 2021).523

We model migration with a single parameter with symmetrical migration rates among524

locations and all locations having the same sampling rate. Nadeau and colleagues525

parameterize the migration process with asymmetric pairwise migration rates and assume526

location-specific sampling rates. We also do not include the information the authors used527
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to inform their priors as that requires an extra level of simulation and training on top of528

simulations done here, and is thus beyond the scope of this study.529

The time tree from (Nadeau et al. 2021) was downloaded from GitHub530

(https://github.com/SarahNadeau/cov-europe-bdmm). The recovery rate assumed in531

(Nadeau et al. 2021) was 0.1 days−1 which was set to 0.05 to bring the recovery rate to532

within the range of simulating values used to train the CNN. Consequently, the branch533

lengths of the tree were then scaled by 2. The number of tips, tree height, and average534

branch lengths were measured from the rescaled trees and fed into the network. The full535

tree and A2 clade were then analyzed using the LDBD CNN and compared to the posterior536

distributions from (Nadeau et al. 2021).537

Hardware used538

Simulations were run on a 16 core Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz.539

For each simulation, an XML file with random parameter settings was generated using540

custom scripts. These XML files were the inputs for MASTER which was run in the541

BEAST2 platform. Neural network training and testing and predictions were conducted on542

an 8 core Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz laptop with a NVIDIA Quadro543

M1200 GPU for training.544

Results545

Comparing deep learning to likelihood546

Our first goal in this study was to train a CNN that produced phylodynamic parameter547

point estimates that were as accurate as likelihood-based Bayesian posterior mean548

estimates under the true model. This will serve as a reference for quantifying level of549

sensitivity in our misspecification experiments. Using viral phylogenies like those typically550
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estimated from serially sampled DNA sequences, we focused on estimating important551

epidemiological parameters – the reproduction number, R0, the sampling rate, δ, the552

migration rate, m, and the outbreak origin.553

Our CNN produced estimates that are as accurate as the mean posterior estimates554

(MPE) under the true simulating model. We compared the absolute percent error (APE)555

of the network predictions to the APE of the MPE of the Bayesian location-independent556

birth-death-sampling (LIBDS) model (Figure 2). The APE is straight-forward to interpret,557

e.g. an APE of < 10 means the estimate is within 10 percentage points (ppts) of the true558

value. For the three epidemiological rate parameters, R0, δ and m, both methods made559

very similar predictions for the 100 time tree test set (Figure 2 panel A). The two methods560

appear to produce estimates that are more similar to each other than to the ground truth561

labels (compare bottom row scatter plots in orange to the blue and red scatter plots in562

panel A). Fig. 2 panel B shows that the inferred median difference in APE, µ̃d, between563

the method’s estimates for the three parameters is close to zero (| µ̃d | 95% HPI is < 4564

ppts; SI Table S1; SI Figure S3).565

We also compared the performance of uncertainty quantification using566

quantile-CNN-based conformalized quantile regression (CQR; Romano et al. 2019) to that567

of Bayesian HPIs for each of the experiments. We trained seven qCNNs to predict568

inner-quantiles at seven different levels to compare with the Bayesian HPIs; τ = {0.05, 0.1,569

0.25, 0.5, 0.75, 0.9, 0.95}. We then used another simulated dataset to calibrate predicted570

intervals which we refer to as CPIs which theoretically have correct coverage properties571

(Romano et al. 2019) like the HPIs. For the test dataset of 138 trees, the CPIs had572

coverages that matched well with expectations to a comparable degree to the Bayesian HPI573

(Figure 2 panel C) though more variable. To further confirm that our CQR procedure was574

adequately calibrating the qCNN estimates, we confirmed correct coverages of CPIs for a575

much larger dataset with 5,000 trees (Figure 3). On average, the widths of CPIs in the set576

of 138 trees shown in (Figure 2) was about 20 - 40% wider than that of the corresponding577
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Figure 2: Inference under the true simulating model. (A) Scatterplot of CNN predictions
and posterior mean estimates from Bayesian analyses against the true values (top two rows
in blue and red respectively) of the basic reproduction number, R0, the sampling rate, δ, and
the migration rate, m for 138 test trees. In the upper-left corners of the scatter plots are the
correlations of the plotted data. The bottom row in orange shows scatter plots of the CNN
estimates against the posterior mean estimates for the same trees. (B) The difference in the
absolute percent error (APE) of estimates for the two inference methods. Boxes show the
inner 50% quantile of the data while whiskers extend 1.5 IQR. Dots with black circles were
truncated to 2× the length of whiskers for visualization purposes. (C) Coverage plots show
the expected frequency of coverage for each of the categories and the observed frequencies
(black steps and colored circle respectively). Gray boxes are the expected 95% confidence
intervals at each of the expected coverage values which follows a Beta((n+1)q, n−(n+1)q+1)
distribution. (D) Histograms of the probabilities of inferring the correct outbreak origin
location. 29

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.02.08.527714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527714
http://creativecommons.org/licenses/by-nd/4.0/


0.05 0.1 0.25 0.5 0.75 0.9 0.95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uncalibrated qCNN Coverage

expected

ob
se

rv
ed

R0

δ
m

0.05 0.1 0.25 0.5 0.75 0.9 0.95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calibrated qCNN (CPI) Coverage

expected
ob

se
rv

ed

R0

δ
m

Figure 3: Coverage of uncalibrated qCNN quantile predictions (left) and calibrated qCNN
which produce “calibrated probability intervals” (CPI) on the right. The observed coverage
of 5,000 samples tested at seven different predicted coverage levels (labeled horizontal). See
Figure 2 C for more details on coverage plots.
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HPI and Jaccard similarity index ranging from 0.66 to 0.75 suggesting a high degree of578

overlap between the intervals (SI Figure S4 and SI Table S2). These results indicate the579

probability level of the CPI, e.g. 95%, can be safely interpreted as the probability a580

parameter falls within the CPI. The wider intervals suggest the basic CQR method581

employed here is somewhat less precise and thus more conservative than the Bayesian582

method.583

Our trained CNN provides nearly instantaneous estimates of model parameters.584

While the run time of the likelihood approach employed in this study scales linearly with585

the size of the tree, the neural network has virtually constant run times that are more than586

three orders of magnitude faster. Because simulation-trained neural networks have a587

one-time cost of simulating the training data set and then training the neural network,588

these methods are often called amortized-approximators (Bürkner et al. 2022). This means589

the time savings aren’t recouped until a certain number of trees have been analyzed. For590

example, here over 524 trees would need to be analyzed to realize the cost savings of591

simulating data and training our neural network (Figure 4). This illustrates the importance592

of simulation optimization and generality for likelihood-free approaches to inference.593

Comparing sensitivity to model misspecification594

To test the relative sensitivity of CNN estimates and the likelihood-based MPE to model595

misspecification, we simulated several test data sets under different, more complex596

epidemic scenarios and compared the decrease in accuracy (increase in APE).597

Our first model misspecification experiment tested performance when assuming all598

locations had the same R0 when, in fact, each location had different R0i values. The599

median APE for all three parameters increased to varying degrees (SI Fig. S5 Panel A)600

compared to the median APE measured in Fig. S3. We found that both methods601

converged on similar biased estimates for R0. In both the CNN and Bayesian method,602

estimates of δ were relatively robust to misspecifying R0. In contrast, the migration rate603
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showed much more sensitivity to this model violation in both methods with both methods604

also converging on similarly biased estimates (Figure 5 A). The median difference in error605

between the two methods is close to zero for all rate parameters (| µ̃d | 95% HPI < 6 ppts;606

SI Table S1) (SI Figure S5 Panel B). For both methods of uncertainty quantification the607

coverage declined by similar amounts for all three parameters with δ showing little to no608

sensitivity to R0 misspecification (Figure 5 panel C and SI Table S2). The patterns of609

coverage are also somewhat less regular across the qCNN quantiles than the HPIs for the610

migration rate parameter likely due in part to the fact that each inner quantile qCNN was611

trained independently and thus have independent errors. The relative interval widths and612

Jaccard similarity indexes did not change appreciably from predictions under the true613

model (SI Figure S4 and SI Table S2). Our CNN appears to be slightly more sensitive than614

the Bayesian approach when predicting the outbreak location. Nevertheless, their615

distributions are quite similar (Figure 5 Panel C).616

Next, we measured method sensitivity when the sampling process of the test trees617

violates assumptions in the inference model. In this set, each location had a unique and618

independent sampling rate, δ, rather than a single δ shared among locations. The median619

APE only increased for δ and m (SI Figure S7 Panel A). As expected, estimates of δ were620

highly biased for both methods (Figure 6 panel A). Panel A also shows that R0 is virtually621

insensitive to sampling model misspecification, but that migration rate, again, is highly622

sensitive in both the CNN and likelihood method. The median difference in error between623

the two methods is close to zero for all the rate parameters (| µ̃d | 95% HPI < 5 ppts; SI624

Table S1, SI Figure S7) (Figure 6 panel B). For both methods coverage declined for δ and625

m, while R0 showed little to no sensitivity to δ misspecification (Figure 6 panel C and SI626

Table S2). The relative widths and degree of overlap was again similar to the experiments627

above (SI Figure S8, SI Table S2). We again also see greater irregularity among CPI levels628

in coverage, notably δ at inner-quantile level 0.9. The location of outbreak prediction is629

also somewhat sensitive in both methods, with the CNN showing a slightly larger mean630
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Figure 5: For 93 test trees where the R0 parameter was misspecified: the simulating model
for the test data specified 5 unique R0s among the five locations while the inference methods
assumed one R0 shared among locations. Because of this, the estimates for R0 are plotted
against mean of the five true R0 values. See Figure 2 for general details about plots.

difference, but the overall distribution of accuracy of all the test trees again is similar631

(Figure 6 panel C).632

To explore sensitivity to migration model underspecification, we simulated a test set633

where the migration rates between locations is free to vary rather than being the same634
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Figure 6: For 118 test trees where the sampling rate parameter was misspecified: the sim-
ulating model for the test data specified 5 unique sampling rates among the five locations
while the inference methods assumed one sampling rate shared among locations. The esti-
mates of δ are plotted against the mean true values of δ. See Figure 2 for general details
about plots.

among locations as in the inference model. This implies 5! unique location-pairs and thus635

unique migration rates in the test data set. Results show that for both methods the636

parameters R0 and δ are highly robust to this simplification (SI Fig. S9 Panel A). Though637
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estimates of a single migration rate had a high degree of error compared to a single pair of638

locations’ migration rates (Figure 7 panel A), the two methods still had similar estimates639

with the difference in APE centered near zero (Figure 7 panel B). The inferred median640

difference in APE was close to zero (| µ̃d | 95% HPI < 3 ppts; SI Table S1; SI Figure S9641

Panel B). For both methods the coverage only declined significantly for the migration rate642

and the decrease was again similar in magnitude across quantiles (Figure 7 panel C and SI643

Table S2). Again, relative widths and degree of overlap of CPI and HPI were similar to644

previous experiments (SI Figure S10, SI Table S2) There was a slight but similar decrease645

in accuracy in predicting the outbreak location for both methods (Figure 7 panel C).646

When testing the sensitivity of the two methods to arbitrary groupings of locations,647

we found that both methods showed equal sensitivity to the same parameters (Fig. 8648

Panels A and B). In particular, the migration rate showed a modest increase in median649

APE and R0 and sample rate showed virtually no sensitivity to arbitrary grouping of650

locations (SI Figure S11 Panel A). The inferred median difference between method APE’s651

was again close to zero (| µ̃d | 95% HPI < 4 ppts; SI Table S1; SI Figure S11 Panel B). For652

both methods the coverage declined modestly only for the migration rate (Figure 5 panel C653

and SI Table S2). Relative widths and interval overlap showed virtually no change (SI654

Figure S12 and SI Table S1). These results suggest that for at least the exponential phase655

of outbreaks where rate parameters do not vary among locations, these models have a fair656

amount of robustness to the decisions leading to geographical division of continuous space657

into discrete space. The outbreak location showed higher accuracy in both methods due to658

the fact that the test data was no longer a flat distribution; the 6 combined locations659

should contain 60% of the outbreak locations (Figure 8 panel C).660

Finally, we explored the relative sensitivity of our CNN to amounts of phylogenetic661

error that are present in typical phylogeographic analyses. Our simulated phylogenetic error662

produced trees with average Jaccard similarity indexes between the inferred tree and the663

true tree of about 0.5 with 95% of simulated trees having distances within 0.36 and 0.72.664
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Figure 7: For 90 test trees where the migration rate parameter was misspecified: the simulat-
ing model for the test data specified 5! (120) unique migration rates among the unique pairs
of the five locations while the inference methods assumed all migration rates were equal.
The infered migration rate is plotted against the mean pairwise migraiton rates of test data
set. See Figure 2 for general details about plots.

We again compared inferences derived from the true tree and the tree with errors using the665

CNN and the Bayesian LIBDS methods. Results show that migration rate was minimally666

affected but R0 and δ were to a some degree sensitive to phylogenetic error (Figure 9 panel667
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Figure 8: For 101 test trees where the number of locations was misspecified: the simulating
model for the test data specified an outbreak among 10 locations with 6 locations subse-
quently combined into a single location while the inference methods assumed 5 locations
with no arbitrary combining of locations. See Figure 2 for general details about plots.

A; SI Figure S13 Panel A), with both methods again showing similar degrees of sensitivity668

(Figure 9 panel B). The inferred median difference was, yet again, small (| µ̃d | 95% HPI669

< 6 ppts. SI Table S1, SI Figure S13 Panel B). Coverages of δ declined for both methods in670

a similar way across quantiles. Again the 90% inner quantile showed some inconsistency671
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Figure 9: For 118 test trees where the time tree was misspecified: the true tree from the
simulated test set was replaced with an inferred tree from simulated DNA alignments under
the true tree. See Figure 2 for general details about plots.

with its nieghboring quantiles. In this case its coverage for δ was slightly higher than the672

95th inner quantile. The CPIs for R0 appear much less sensitive (Figure 9 panel C and SI673

Table S2). Although the relative widths of the CPIs and HPIs were similar to previous674

experiments, the degree of overlap decreased somewhat by about 5 - 10% (SI Figure S14675
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and SI Table S2). One difference between this experiment and the others, is that trees are676

data instead of model parameters. It is interesting that the point estimates from the two677

methods show similar biases while the coverages seem to depart somewhat. Inference of the678

origin location, were very similar for both methods (Fig. 9 Panel C).679

Analysis of SARS CoV-2 tree680

We next compared our likelihood-free method to a recent study investigating the681

phylodynamics of the first wave of the SARS CoV-2 pandemic in Europe (Nadeau et al.682

2021). Despite simulating the migration and the sampling processes differently from683

Nadeau et al. (2021), our CNN produces similar estimates for the location-specific R0 and684

the origin of the A2 clade (Figure 10). Whether the full tree or just the A2 clade is fed into685

the network, the predicted R0 for each location was not far from the posterior estimates of686

Nadeau et al. (2021). For the most part the R0 95% CPI for each location overlaps to a687

high degree with the 95% HPI and is roughly 1.5 times wider indicating that our CNN688

estimates are relatively conservative. For Hubei the interval width of the a2 clade is much689

wider than the estimate using the whole tree. This is not surprising because there are no690

samples from Hubei in the a2 clade. We also obtained estimates for a single sampling rate691

and a single migration rate from our CNN and CPIs from our calibrated qCNN. Among692

the five location-specific estimates of the sampling proportion and the migration proportion693

from Nadeau et al. (2021), our CNN’s point estimates and interval estimates fall well694

within the their combined ranges.695

The spillover location prediction CNN produced probability estimates of the A2696

clade ancestral location the mostly agreed with that of Nadeau and colleagues (Figure 10,697

right histograms). The only significant discrepancy in the European origin prediction is698

that Nadeau and colleague’s analysis suggests a much higher probability that the most699

recent common ancestor of the A2 clade was in Hubei than our CNN predicts. This is700

likely because our CNN only used the A2 clade to predict A2 origins which has no Hubei701
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samples to infer the origin of the A2 clade while Nadeau et al. (2021) used the whole tree.702

Notwithstanding this difference, among European locations, both methods predict703

Germany is the most likely location of the most recent common ancestor followed by Italy.704
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Figure 10: Location-dependent birth-death-sampling model (LDBDS) CNN comparison to
(Nadeau et al. 2021) inference. Left violin plots show the posterior distributions of R0 for
each location in Europe as well as Hubei, China (orange). The block dot and line within
each violin plot shows the posterior mean and 95% HPI respectively. The blue X and O
marks the LDBDS CNN prediction from analyzing the full tree and the A2 (European)
clade respectively. Vertical blue lines give the 95% CPI for the CNN estimates of R0. Right
barplots show the LDBDS CNN prediction (blue) and posterior inference (orange) from
(Nadeau et al. 2021) of the ancestral location of the A2 (European) clade (see Figure 1
(Nadeau et al. 2021)).

Discussion and Conclusions705

Inference models are necessarily simplified approximations of the real world. Both706

simulation-trained neural networks and likelihood-based inference approaches suffer from707

model under-specification and/or misspecification. When comparing inference methods it is708
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important to assess the sensitivity of model inference to simplifying assumptions. In this709

study we show that newer deep learning approaches and standard Bayesian approaches710

behave and misbehave in similar ways under a panel of phylodynamic estimation tasks711

where the inference model is correct as well as when it is misspecified.712

By extending new approaches to encode phylogenetic trees in a compact data713

structure (Voznica et al. 2022; Lambert et al. 2022), we have developed the first application714

of phylodynamic deep learning applied to phylogeography with serial sampling. Our715

approach is similar to that of Lambert et al. (2022) in which they analyzed a binary SSE716

model with exclusively extant sampling. By training a neural network on phylogenetic trees717

generated by simulated epidemics, we were able to accurately estimate key epidemiological718

parameters, such as the reproduction number and migration rate, in a fraction of the time719

it would take with likelihood-based methods. Like Voznica et al. (2022) and Lambert et al.720

(2022), we found that CNN estimators perform as well or nearly as well as likelihood-based721

estimators under conditions where the inference model is correctly specified to match the722

simulation model. The success of these separate applications of deep learning to different723

phylodynamic problems is a testament to the versatility of the CBLV encoding of trees.724

We compared the sensitivity of deep learning and likelihood-based inference to725

model misspecification. Because deep-learning methods of phylogenetic and phylodynamic726

inference are new, few studies compare how simulation-trained deep learning methods fail727

in comparison to likelihood methods in this way (Flagel et al. 2019). We assume that when728

the inference model is correctly specified to match the simulation model, the trained CNN729

will, at best, produce noisy approximations of likelihood-based parameter estimates. In730

reality, issues related to training data set size, learning efficiency, and network overfitting731

may cause our CNN-based estimates to contain excess variance or bias when compared to732

Bayesian likelihood-based estimators. Our results from five model misspecification733

experiments show that both methods of inference perform similarly when the simulating734

model and the inference model assumptions do not perfectly match. These similarities735
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exist not only in aggregate, when comparing method performance across datasets, but also736

when comparing performance for each individual dataset. This suggests that the CNN and737

likelihood methods are truly estimating parameters using isomorphic criteria, despite the738

fact that CNN heuristically learns these criteria through data patterns, while likelihood739

precisely and mathematically defines these criteria through the model definition itself.740

Results of comparative sensitivity experiments like this are important because if741

likelihood-free methods using deep neural networks can easily be trained to yield estimates742

that are as robust to model misspecification as likelihood-based methods, then analysis of a743

large space of more complex outbreak scenarios for which tractable likelihood functions are744

not available can be developed and applied to real world data. Additionally, sufficiently745

realistic, pre-trained neural networks can yield nearly instantaneous inferences from data in746

real time to inform analysts and policy makers.747

We also tested location-dependent SIR simulation trained neural network against a748

previous publication fitting a similar model – location-dependent birth-death-sampling749

(LDBDS) model – on real-world data using a Bayesian method. Our CNN predicted750

location-specific R0i and outbreak origin in Europe were similar to that inferred in (Nadeau751

et al. 2021). This result and our model misspecification experiments suggest that752

simulation-trained deep neural networks trained on phylogenetic trees can find patterns in753

the training data that generalize well beyond the training data set.754

Our study extends the results of Voznica et al. (2022) and Lambert et al. (2022) in755

several important ways. Our work showed that the new compact bijective ladderized vector756

encoding of phylogenetic trees can easily be extended with one-hot encoding to include757

metadata about viral samples. Using this strategy, we trained a neural network to not only758

predict important epidemiological parameters such as R0i and the sampling rate, but also759

geographic parameters such as the migration rate and the location of outbreak origination760

or spillover. We anticipate that more diverse and complex metadata can be incorporated to761

train neural networks to make predictions about many important aspects of762
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epidemiological spread such as the relative roles of different demographic groups and the763

overlap of different species’ ranges.764

This approach can be readily applied to numerous compartment models used to765

describe the spread of different pathogens among different species, locations, and766

demographic groups, e.g. SEIR, SIRS, SIS, etc. (Ponciano and Capistrán 2011; Volz and767

Siveroni 2018; Bjørnstad et al. 2020; Chang et al. 2020; O’Dea and Drake 2021) as well as768

modeling super-spreader dynamics as in (Voznica et al. 2022). Here we focused on one769

phase of outbreaks (the exponential phase), but there are many other scenarios to be770

investigated, such as when the stage of an epidemic differs among locations (e.g.771

exponential, peaked, declining). With likelihood-free methods, the link between the772

underlying population dynamics from which viral genomes are sampled and inferred773

phylogenetic trees can easily be interrogated. More complex models will require larger trees774

to infer model parameters. In this study we explored trees that contained fewer than 500775

tips, but anticipate that larger trees will demonstrate even greater speed advantages of776

neural networks over likelhood-based methods either through subsampling regimes777

(Voznica et al. 2022) or by including larger trees in training datasets.778

With fast, likelihood-free inference afforded by deep learning, the technical779

challenges shift from exploring models for which tractable likelihood functions can be780

derived towards models that produce realistic empirical data patterns, have parameters781

that control variation of those patterns, and are efficient enough to generate large training782

data sets. A growing number of advanced simulators are rapidly expanding the possibilities783

for deep learning in phylogenetics. For example, FAVITES (Moshiri et al. 2019) is a784

simulator of disease spread through large contact networks that tracks transmission trees785

and simulates sequence evolution. Gen3sis, MASTER, SLiM, and VGsim are flexible786

simulation engines for generating complex ecological, evolutionary, and disease787

transmission simulations (Hagen et al. 2021; Vaughan and Drummond 2013; Shchur et al.788

2022; Haller and Messer 2019; Overcast et al. 2021). Continued advances in epidemic789
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simulation speed and flexibility will be essential for likelihood-free methods to push the790

boundaries of epidemic modeling sophistication and usefulness.791

There are several avenues of development still needed to realize the potential of792

likelihood-free inference in phylogeography using deep learning. The current setup is ideal793

for simulation experiments, but it is more difficult to ensure that the optimal parameter794

values for empirical data sets are within the range of training data parameters.795

Standardizing input tree height, geographical distance, and other parameters help make796

training data more universally applicable. Simulation-trained neural networks are often797

called amortized methods (Bürkner et al. 2022; Schmitt et al. 2022) because the cost of798

inference is front-loaded, i.e. it takes time to simulate a training set and train a neural799

network. The total cost in time per phylogenetic tree amortizes as the number of trees800

analyzed by the trained model increases. These methods are therefore important when a801

model is intended to be widely deployed or be responsive to an emerging outbreak where802

policy decisions must be formulated rapidly. Because amortized approximate methods803

require multiple analyses to realize time savings, researchers need to generate training data804

sets over a broad parameter and model space so that trained networks can be applied to805

new and diverse data sets.806

Our analysis introduces a simple approach to estimate the ancestral state807

corresponding to the root node or stem node of a phylogeny. More sophisticated supervised808

learning approaches will be needed to train neural networks to predict the ancestral809

locations for internal nodes other than the root. The topologies and branch lengths of810

random phylogenies in the training and test datasets will vary from tree to tree. Our811

approach relies on the fact that all trees contain a root node, meaning all trees can help812

predict the root node’s state. However, few (if any) trees in the training dataset will contain813

an arbitrary clade of interest within a test dataset, suggesting to us that naive approaches814

to train networks to estimate ancestral states for all internal nodes will probably fail. We815

are unaware of any existing solutions for generalized ancestral state estimation using deep816
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learning, and expect the problem will gather more attention as the field matures.817

Quantifying uncertainty is crucial to data analysis and decision making, and818

Bayesian statistics provides a framework for doing so in a rigorous way. It is essential to819

understand how uncertainty estimation with likelihood-free methods compare to820

likelihood-based methods when confronted with the mismatch of models and real-world821

data-generating processes. We quantified uncertainty using conformalized quantile822

regression (CQR; Romano et al. 2019) by training neural networks to predict quantiles and823

then calibrating those quantiles to produce the expected coverage. We refer to the resulting824

intervals as CPI and demonstrate that they predict well the coverage of true values on a825

test dataset (Figure 3) and behave in similar ways to Bayesian methods when the model is826

or is not misspecified (Figures 2 - 9). Despite having the same (correct) coverage as the827

Bayesian HPI, the interval length was 20-50% wider on average making them a more828

conservative (less precise) estimation procedure. Though this can likely be improved with829

more training data for qCNNs, there are more fundamental challenges for uncertainty830

quantification with quantile regression and conformalization.831

Methods for estimating more precise intervals is an active vein of research among832

machine learning researchers and statisticians (Barber et al. 2020; Chung et al. 2021; Sousa833

et al. 2022; Gibbs et al. 2023). For example, although intervals estimated by the qCNN are834

conditional on each data point, the calibration of quantiles through CQR involves835

estimating marginal calibration terms that shift all quantiles by the same amount. If the836

error in the quantile coverage is not constant across the prediction range, then a more837

adaptive procedure should yeild more precise intervals (Sousa et al. 2022; Gibbs et al.838

2023).839

We also compared the consistency among CPI estimates at different inner-quantiles840

to that of HPIs at those same quantiles. We find that independently trained neural841

networks for each α level can potentially lead to inconsistencies where narrower, nested842

inner quantiles can have close to or higher coverage than wider quantiles (e.g. Figure 9 C).843
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Overall, our results suggest CQR is approximately consistent with likelihood-based844

methods and similarly sensitive to model misspecification, while there is room for845

improvement. Methods where all quantiles of interest can be estimated jointly (Chung846

et al. 2021) may be a fruitful avenue of research for such improvements.847

Another important challenge of inference with deep learning is the problem of848

convergence to a location on the loss function surface that approximates the maximum849

likelihood well. There are a number of basic heuristics that can help such as learning850

curves but more rigorous methods of ascertaining convergence is the subject of active851

research (Bürkner et al. 2022; Schmitt et al. 2022).852

With recent advances in deep learning in epidemiology, evolution, and ecology853

(Battey et al. 2020; Schrider and Kern 2018; Voznica et al. 2022; Radev et al. 2021;854

Lambert et al. 2022; Rosenzweig et al. 2022; Suvorov and Schrider 2022) biologists can now855

explore the behavior of entire classes of stochastic branching models that are biologically856

interesting but mathematically or statistically prohibitive for use with traditional857

likelihood-based inference techniques. Beyond epidemiology, we anticipate that deep858

learning approaches will be useful for a wide range of currently intractable phylogenetic859

modeling problems. Many phylogenetic scenarios – such as the adaptive radiation of anoles860

(?) or the global spread of the grasses (?) – involve the evolution of discrete traits,861

continuous traits, speciation, and extinction within an ecological or spatial context across a862

set of co-evolving species. Deriving fully mechanistic yet tractable phylogenetic model863

likelihoods for such complex scenarios is difficult, if not impossible. Careful development864

and applications of likelihood-free modeling methods might bring these phylogenetic865

scenarios into renewed focus for more detailed study. Although we are cautiously866

optimistic about the future of deep learning methods for phylogenetics, it will become867

increasingly important for the field to diagnose the conditions where phylogenetic deep868

learning underperforms relative to likelihood-based approaches, and to devise general869

solutions to benefit the field.870
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Supplemental Tables1165

Table S1: BEST comparisons between CNN and Bayesian absolute percent errors (APEs)
for model parameters across all experiments.
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Table S2: Comparison 95% CPI and HPI for all experiments.
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Supplemental Figures1166

Figure S1: Diagram of deep neural network trained to make 2 kinds of predictions (rates
and origin location) under two models (LIBDS and LDBDS).
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Figure S2: Diagram of deep neural network trained to predict the upper and lower quantiles
for a specified α level under two models (LIBDS and LDBDS).
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Figure S3: Posterior distributions of the population median, µ̃, APE estimates of the rate
parameters R0, δ, and m under the true model. A) shows posterior distribution of the median
APE for each of the 3 rate parameters estimated by the CNN (blue) and the likelihood-based
method (red). The green line indicates no error. B) shows the posterior distribution for the
median difference between the CNN estimate’s APE and the likelihood-based estimate’s
APE. The green line indicates the median APE difference is zero.
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Figure S4: Comparison of interval overlap and relative widths of qCNN and Bayesian meth-
ods of uncertainty quantification under the true simulating model. Top row: 95% CPI from
CNN conformalized quantile regression (blue). and 95% HPI from Bayesian phylogenetic
analysis (red) from a random subset of the data for visualization purposes. Bottom row:
scatterplots of the lengths of CPI and HPI intervals of all experiment data. The red diago-
nal y = x line is for reference.
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Figure S5: Posterior distributions of median, µ̃, APE for the misspecified R0 experiment. A)
shows posterior distribution of the difference between the median error under the misspecified
model and the the median error under the true, reference model. B) shows the posterior
distribution for the population median difference between the CNN estimate’s APE and the
likelihood-based estimate’s APE.
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Figure S6: Comparison of CPI and HPI intervals for misspecified R0 experiment. See SI
Figure S4 for general details about plot.
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Figure S7: Posterior distributions of median, µ̃, APE for the misspecified sampling rate, δ,
experiment. Details are the same as in S5
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Figure S8: Comparison of CPI and HPI intervals for misspecified δ experiment. See SI
Figure S4 for general details about plot.
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Figure S9: Posterior distributions of median, µ̃, APE for the misspecified migration rate, m,
experiment. Details are the same as in S5
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Figure S10: Comparison of CPI and HPI intervals for misspecified migration rate experiment.
See SI Figure S4 for general details about plot.
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Figure S11: Posterior distributions of the median APE when the model is misspecified for
the number of locations. Details are the same as in S5
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Figure S12: Comparison of CPI and HPI intervals for misspecified number of locations
experiment. See SI Figure S4 for general details about plot.
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Figure S13: Posterior distributions of the median APE when the phylogenetic tree is incor-
rect. Details are the same as in S5
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Figure S14: Comparison of CPI and HPI intervals for phylogeny error experiment. See SI
Figure S4 for general details about plot.
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