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Abstract  
Individual differences in general cognitive ability (GCA) have a biological basis within the 
structure and function of the human brain. Network neuroscience investigations revealed 
neural correlates of GCA in structural as well as in functional brain networks. However, whether 
the relationship between structural and functional networks, the structural-functional brain 
network coupling (SC-FC coupling), is related to individual differences in GCA remains an open 
question. We used data from 1030 adults of the Human Connectome Project, derived structural 
connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, 
and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and 
six communication measures were used to model possible functional interactions arising from 
structural brain networks. SC-FC coupling was estimated as the degree to which these 
measures align with the actual functional connectivity, providing insights into different neural 
communication strategies. At the whole-brain level, higher GCA was associated with higher 
SC-FC coupling, but only when considering path transitivity as neural communication strategy. 
Taking region-specific variations in the SC-FC coupling strategy into account and 
differentiating between positive and negative associations with GCA, allows for prediction of 
individual cognitive ability scores in a cross-validated prediction framework (correlation 
between predicted and observed scores: r = .25, p < .001). The same model also predicts GCA 
scores in a completely independent sample (N = 567, r = .19, p < .001). Our results propose 
structural-functional brain network coupling as a neurobiological correlate of GCA and suggest 
brain region-specific coupling strategies as neural basis of efficient information processing 
predictive of cognitive ability. 

 

Keywords: structural connectivity, functional connectivity, structure-function coupling, general 
cognitive ability, network communication models
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Abbreviations 

AOMIC = Amsterdam Open MRI Collection  

BOLD = Blood Oxygen Level Dependent 

CoS = Cosine Similarity 

FC = Functional Brain Network Connectivity  

FG = Flow Graphs 

G = Communicability 

GCA = General Cognitive Ability 

HCP = Human Connectome Project  

IST = Intelligence Structure Test  

MFPT = Mean First Passage Time 

MI = Matching Index 

NMA = Node-Measure Assignment 

PL = Path Length  

PT = Path Transitivity 

SC = Structural Brain Network Connectivity 

SC-FC Coupling = Structural-Functional Brain Network Coupling 

SI = Search Information 

TE = Time to Echo 

TR = Time to Repetition 
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1. Introduction 
Humans differ in their level of general cognitive ability (GCA), frequently assessed by 
measures of intelligence. Although GCA is often interchangeably referred to as general 
intelligence (Kovacs & Conway, 2019; Plomin, 1999; Sternberg, 2019), GCA represents a 
rather vague and often poorly-defined construct of cognitive functioning, while the 
psychological concept of general intelligence is distinguishable from other concepts of 
intelligence and has a more precise theoretical foundation. Specifically, it is based on the 
observation that performance scores on all kinds of cognitive tasks are positively correlated 
with one another, i.e., there exists a positive manifold. According to the g-factor theory of 
intelligence (Spearman, 1904), the performance on each task is determined by general 
intelligence (a single underlying intelligence factor called the g-factor) reflecting the latent 
mental ability dimension that is common to all tasks, and by a specific factor s that is unique 
to each given task. Research across the last decades demonstrated that individual differences 
in general intelligence (and in GCA) are associated with important life outcomes including 
academic and occupational achievement (Deary et al., 2010), socio-economic status (Strenze, 
2007), and even with health and longevity (Deary et al., 2004). Although intact brain structure 
and brain function are essential for effective cognition (Woolgar et al., 2010), the 
neurobiological mechanisms underlying individual differences in GCA remain elusive (Barbey 
et al., 2021; Basten et al., 2015; Hilger et al., 2022). Network neuroscience theories of 
intelligence propose that not only the structure and function of distinct brain regions, but 
especially the interactions and the information flow between them is critical to explain individual 
differences in intelligence (Barbey, 2018; Hilger and Sporns, 2021). Such conceptual models 
are closely related to psychological theories which postulate that GCA results from coordinated 
action of several fundamental cognitive processes (including, e.g., working memory capacity 
and mental processing speed; e.g., Duncan et al., 2020; Frischkorn et al., 2019; McKinney and 
Euler, 2019; for review see Hilger et al., 2022). 
 
Support for network neuroscience theories comes from studies relating individual differences 
in GCA to various characteristics of structural brain network connectivity (SC; for a 
comprehensive overview see Genç and Fraenz, 2021) including e.g., whole-brain white-matter 
integrity (Chiang et al., 2009; Navas-Sánchez et al., 2014; Penke et al., 2012). Characteristics 
of functional brain network connectivity (FC) have also been linked to GCA such as, for 
example, the efficiency and the modularity of brain regions implicated in higher cognitive 
functions (e.g., Bertolero et al., 2018; Finn et al., 2015; Hilger et al., 2017, 2020; Kruschwitz et 
al., 2018; Thiele et al., 2022; for a comprehensive overview see Hilger and Sporns, 2021). 
However, how the alignment of the two modalities – the structural-functional brain network 
coupling (SC-FC coupling) – relates to GCA has not yet been investigated.  
 
While SC and FC are significantly correlated (i.e., coupled), there is imperfect correspondence 
(Suárez et al., 2020). Various methods have been developed to estimate the amount of SC-
FC coupling, including statistical models (Messé et al., 2014; Mišić et al., 2016), biophysical 
models (Breakspear, 2017; Deco et al., 2009; Honey et al., 2007), and communication models 
(Crofts and Higham, 2009; Goñi et al., 2014; Mišić et al., 2015). A straight-forward statistical 
approach is to directly compare both modalities by correlating structural and functional 
connectivity matrices (Baum et al., 2020; Gu et al., 2021). However, one of the main challenges 
to this approach is that SC represents a sparse matrix that only captures direct anatomical 
connections, while FC represents a full matrix that captures all pairwise interactions regardless 
of direct anatomical linkage. Overcoming this problem requires a model of neural dynamics 
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that can be applied on the sparse SC matrix and approximates relationships between brain 
regions that are not directly structurally connected. Similarity measures are one type of such 
model expressing the similarity of structural connections between all possible pairs of brain 
regions. Their application results in almost fully connected similarity matrices thus bridging the 
gap between brain structure and function (Zamani Esfahlani et al., 2022). Other studies 
assessed SC-FC coupling indirectly by focusing on SC-behavior relationships and FC-
behavior relationships separately while subsequently identifying overlapping brain connections 
(Dhamala et al., 2021; Zimmermann et al., 2018). Biophysical models consider plausible 
biological mechanisms to model the link between SC and FC but are computationally costly 
(Murray et al., 2018; Suárez et al., 2020). Lastly, network communication models are another 
way to estimate neural dynamics from SC based on specific strategies of neural 
communication (e.g., shortest path routing, diffusion, or navigation). Like in the case of 
similarity measures, this approach also results in nearly fully connected communication 
matrices (computed from SC) that can then be compared to the actual FC, so that both 
approaches allow for a valid examination of SC-FC coupling (Abdelnour et al., 2014; Seguin 
et al., 2020; Suárez et al., 2020). 
 
More specifically, communication measures quantify the ease of communication between pairs 
of brain regions under the signaling strategy proposed by a specific communication model 
(Seguin et al., 2022). In contrast to statistical approaches only quantifying the amount of SC-
FC coupling, the degree to which communication measures (computed on the basis of the SC) 
overlap with the actual FC provides insights into different neural communication processes 
(Avena-Koenigsberger et al., 2018; Betzel et al., 2022; Goñi et al., 2014; Rubinov and Sporns, 
2010; Seguin et al., 2020, 2022; Zamani Esfahlani et al., 2022). Support for the utility of 
communication models to investigate SC-FC coupling comes from studies reporting improved 
coupling strength when communication measures, instead of the raw SC, were set in relation 
to FC (Goñi et al., 2014; Seguin et al., 2020, 2022) and from research examining SC-FC 
coupling with respect to brain development (Zamani Esfahlani et al., 2022) and human 
behavior (Seguin et al., 2020). Finally, communication models have also been proposed as 
promising means of analyzing SC-FC coupling with respect to individual differences (Avena-
Koenigsberger et al., 2018; Goñi et al., 2014; Seguin et al., 2020). 
 
The increased interest in SC-FC coupling motivated research on relationships with age (Baum 
et al., 2020; Hagmann et al., 2010), gender (Gu et al., 2021; Zhao et al., 2021), heritability (Gu 
et al., 2021), and disease (Ma et al., 2021; Rui et al., 2020; H. Zhang et al., 2021, X. Zhang et 
al., 2022). Also, there have been first efforts to investigate the relationship between SC-FC 
coupling and individual differences in cognitive ability: While stronger SC-FC coupling has 
been related to decreased cognitive functioning (Wang et al., 2018), other studies found 
increased SC-FC coupling to promote specific processes of cognitive flexibility (Medaglia et 
al., 2018) and complex cognition (Griffa et al., 2022). Notably, these three studies focused on 
whole-brain or brain-network-wise SC-FC coupling, i.e., coupling values were averaged across 
the whole brain or across large brain networks (Yeo et al., 2011). In contrast, Baum et al. 
(2020) demonstrated that the association between SC-FC coupling and cognitive ability differs 
critically between brain regions, e.g., higher executive functioning was associated with 
increased alignment in the rostrolateral prefrontal cortex, posterior cingulate and medial 
occipital cortex but with decreased alignment in the somatosensory cortex. However, insights 
of their study are limited due to the purely statistical approach of directly correlating SC and 
FC to assess their coupling and by restricting analyses to only one very specific cognitive ability 
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measure. Whether a) whole-brain SC-FC coupling is related to general cognitive ability, b) 
potential associations are positive or negative, and c) whether potential associations differ 
between distinct brain regions has not yet been investigated. 
 
Here, we systematically examine the association between GCA and SC-FC coupling in a 
sample of 1030 adults from the Human Connectome Project (HCP, Van Essen et al., 2013). 
GCA was estimated as a latent g-factor derived from 12 cognitive performance measures and 
SC-FC coupling was operationalized with two similarity measures and six communication 
measures. First, we tested for potential associations between GCA and SC-FC coupling on a 
brain-average level. Second, a cross-validated prediction framework was developed that 
accounts for region-specific variations in coupling strategies as well as for positive and 
negative associations with GCA. This model was evaluated for its ability to predict individual 
cognitive ability scores in previously unseen participants. All analyses were finally repeated in 
an independent replication sample and the generalizability of the prediction model was 
assessed with a cross-sample model generalization test.  
 
2. Methods  
2.1. Preregistration 
Analysis plans and variables of interest were preregistered in the Open Science Framework: 
https://osf.io/wr9aj. Please note that in deviation to our preregistration, the HCP was used as 
main sample as the initial sample did not contain all data required for the planned analyses 
and the benefit of having more than 1000 subjects (as contained in the HCP) was essential for 
developing a cross-validated prediction framework, the latter of which increases the 
robustness of results and allows to estimate the generalizability of our findings but was not 
initially planned. Also, an additional sample for external replication (AOMIC) was included. 
Note further, that in order to keep a clear focus, we also deviated from our preregistration in 
exclusively reporting the result of the first proposed hypothesis (H1), while the other stated 
hypotheses (H2 – H5) focusing on additional cognitive measures and potential mediating 
factors will be addressed in separate publications. 
 
2.2. Participants 
Main analyses were conducted in the HCP Young Adult Sample S1200 (details see Van Essen 
et al., 2013) including 1200 subjects of age 22-37 (656 female, 1089 right-handed, mean age 
= 28.8 years). 
 
Subjects with missing resting-state fMRI data (from all four scans), missing DWI data, missing 
cognitive measures required to calculate a latent general cognitive ability factor, or a Mini-
Mental State Examination (MSSE) score equal to or smaller than 26 were excluded. Further, 
subjects were ruled out based on in-scanner head motion measured by framewise 
displacement (Jenkinson et al., 2002). Following Parkes et al. (2018), scans with a) a mean 
framewise displacement above 0.2 mm, b) a proportion of motion spikes (framewise 
displacement  > 0.25 mm) greater than 20 percent, or c) any spikes above 5 mm were 
removed. The resulting sample referred to as main sample consisted of 1030 subjects (age 
range 22-37, 555 female, 935 right-handed, mean age = 28.7 years).  
 
2.3. General cognitive ability (GCA) 
GCA was operationalized as latent g-factor derived from 12 cognitive measures (Table 1, see 
Thiele et al., 2022). The g-factor was calculated as outlined in Dubois et al. (2018) using 
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simplified bi-factor analysis based on the Schmid-Leiman transformation (Schmid and Leiman, 
1957).   
 
Table 1 

Cognitive tests and measures used to calculate a latent g-factor as estimate of GCA 

Test Instrument Measure used as input for g-factor calculation 
1 Episodic Memory (Picture Sequence 

Memory) 
PicSeq_Unadj 

2 Executive Function/Cognitive Flexibility 
(Dimensional Change Card Sort) 
  

CardSort_Unadj 

3 Executive Function/Inhibition (Flanker 
Task) 

Flanker_Unadj 

4 Fluid Intelligence (Penn Progressive 
Matrices) 

PMAT24_A_CR 

5 Language/Reading Decoding (Oral 
Reading Recognition) 
  

ReadEng_Unadj 

6 Language/Vocabulary Comprehension 
(Picture Vocabulary) 
  

PicVocab_Unadj 

7 Processing Speed (Pattern Completion 
Processing Speed) 
  

ProcSpeed_Unadj 

8 Self-regulation/Impulsivity (Delay 
Discounting) 

DDisc_AUC_200 + DDisc_AUC_40K  

9 Spatial Orientation (Variable Short Penn 
Line Orientation Test) 
  

VSPLOT_TC 

10 Sustained Attention (Short Penn 
Continuous Performance Test) 
  

𝑆𝐶𝑃𝑇_𝑇𝑃 + 𝑆𝐶𝑃𝑇_𝑇𝑁
(𝑆𝐶𝑃𝑇_𝑇𝑃 + 𝑆𝐶𝑃𝑇_𝑇𝑁 + 𝑆𝐶𝑃𝑇_𝐹𝑃 + 𝑆𝐶𝑃𝑇_𝐹𝑁)𝑆𝐶𝑃𝑇_𝑇𝑃𝑅𝑇 

11 Verbal Episodic Memory (Penn Word 
Memory Test) 
  

IWRD_TOT 

12 Working Memory (List Sorting) ListSort_Unadj 
 
Note: A latent factor of general cognitive ability (g-factor) was estimated by conducting a bi-
factor analysis based on the Schmid-Leiman transformation (Schmid and Leiman, 1957) in 
accordance with Dubois et al. (2018). Analyses were conducted with N = 1186 subjects  using 
12 cognitive measures (Thiele et al. 2022) that were administered as part of the Human 
Connectome Project (Barch et al., 2013). 
 
2.4. Data acquisition and preprocessing  
MRI data were acquired with a gradient-echo EPI sequence on a Siemens Skyra 3T scanner 
with a 32-channel head coil. The fMRI scans were obtained with multi-slice acceleration (time 
to repetition (TR) = 720 ms, time to echo (TE) = 33.1 ms, 2-mm isotropic voxel resolution, flip 
angle = 52°, and multiband acceleration factor = 8). For functional brain network connectivity 
(FC) estimation, the minimally preprocessed resting-state fMRI data from the HCP (Glasser et 
al., 2013) were used. As additional denoising strategy, nuisance regression as explained in 
Parkes et al. (2018, strategy no. 6) with 24 head motion parameters, eight mean signals from 
white matter and cerebrospinal fluid and four global signals was applied. To estimate structural 
brain network connectivity (SC), we used data from the minimally preprocessed DWI (TR = 
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5520 ms, TE = 89.5 ms, 1.25 mm isotropic voxel resolution, multiband acceleration factor = 3, 
b = 1000, 2000, 3000 s/mm2, and 90 directions/shell) provided by the HCP (Glasser et al., 
2013; Van Essen et al., 2013) and ran the MRtrix pipeline for DWI processing (Civier et al., 
2019; Tournier et al., 2019), which includes bias correction, modeling of white matter fibers via 
constrained spherical deconvolution (Tournier et al., 2007), and tissue normalization 
(Dhollander et al., 2021). Probabilistic streamline tractography was carried out to render 
streamlines through white matter which terminate in grey matter (R.E. Smith et al., 2012). 
Additionally, filtering of streamlines was performed to only retain the streamlines that fit the 
estimated white matter orientations from the diffusion image (Glasser et al., 2013; R. E. Smith 
et al., 2013; Tournier et al., 2012). 
 
2.5. Functional and structural brain network connectivity 
Functional and structural brain networks were constructed by first dividing the brain into 360 
cortical regions based on the multimodal parcellation scheme of Glasser et al. (2016). Note 
that two brain regions (left and right hippocampus) were excluded as they were regarded as 
subcortical regions in the preprocessing pipeline, thus resulting in 358 regions (i.e., nodes). 
Individual-specific FC matrices were computed by using the Fisher z-transformed Pearson 
correlations between BOLD time courses extracted from all possible pairs of brain regions. FC 
matrices were first constructed for all available resting-state scans separately and averaged 
afterwards (Cole et al., 2014; S. M. Smith et al., 2013). SC matrices were symmetric and 
defined by the SIFT2 streamline density weights between all pairs of brain regions (R.E. Smith 
et al., 2015). 
 
2.6. SC-FC coupling 
SC-FC coupling was operationalized by comparing each individual FC matrix with eight 
matrices. These eight matrices were computed based on the individual SC matrix using two 
major approaches to model potential functional interactions arising from SC, i.e., similarity and 
communication models. Table 2 provides a short description of all resulting similarity and 
communication measures.  
 

2.6.1. Similarity measures 
In general, similarity measures are computed based on the SC matrix and represented in 
similarity matrices that express the resemblance of regional structural connectivity profiles. 
More specifically, an entry in the similarity matrix reflects how the structural connections of 
brain region 𝑖	(defined by a matrix column) align with the structural connections of brain 
region 𝑗 (defined by another matrix column). No additional information about putative 
signaling strategies is implemented in the calculation of similarity matrices. Each individual 
weighted SC matrix was transformed into two similarity matrices representing two distinct 
similarity measures. These were: 

 
2.6.1.1. Cosine similarity (CoS) 
Cosine similarity assesses the resemblance between two brain regions’ connectivity 
profiles (matrix columns) based on their orientation in an 𝑁 − 1 dimensional connectivity 
space, where	𝑁 is the number of brain regions, i.e., 358. We computed the cosine 
similarity of the angle between two vectors 𝑥 = 	 [𝑥*, … , 𝑥-] and 𝑦 = 	 [𝑦*, … , 𝑦-]	 as 
𝐶𝑜𝑆34 = 	

3∙4
∥3∥∙∥4∥

, where vectors are region-specific connectivity profiles for all possible 

pairs of brain regions (Han et al., 2012). 
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2.6.1.2. Matching index (MI) 
Matching index measures the similarity of regional connectivity profiles between pairs of 
brain regions while excluding their mutual connections (Hilgetag et al., 2000, Goñi et al., 
2014). For each individual SC matrix 𝐴 with elements (matrix entries) 𝐴89, Γ8 = 𝑗: 𝐴89 > 0  
describes the set of regions that are all directly connected to region 𝑖. The matching 

index between the two regions 𝑖 and 𝑗 is then calculated as 𝑀𝐼89 =
@A	"\$	∩A	$\"@
@A	"\$∪A	$\%@

, where the 

term Γ8\9 refers to the neighbors of region 𝑖 except region 𝑗. 
 

2.6.2. Communication measures  
Communication measures quantify the ease of communication between pairs of brain 
regions under a certain signaling strategy (i.e., communication model like shortest path 
routing, diffusion, or navigation) and are represented in communication matrices. 
Specifically, each individual weighted SC matrix was transformed into six communication 
matrices representing six distinct communication measures. These were: 

 
2.6.2.1. Communicability (G) 
Communicability considers that neural signaling unfolds as a diffusive broadcasting 
process, assuming that information can flow along all possible walks between two brain 
regions (Andreotti et al., 2014; Seguin et al., 2020). It can be defined as the weighted 
sum of all walks of all lengths between two respective regions (Estrada and Hatano, 
2008), where an edge is the connection between two brain regions and a walk is a 
sequence of traversed edges. This measure accounts for all possible connections 
between regions but incorporates walk lengths (𝑙F) and penalizes the contribution of 
walks with increased lengths. For weighted networks, SC matrices (𝐴) are first 
normalized as 𝐴I = 	𝐷K*/M𝐴𝐷K*/M, where 𝐷	 is the degree diagonal matrix (Crofts and 
Higham, 2009). The normalized matrix is then exponentiated to calculate the 

communicability as 𝐺 =	𝑒P’ or 𝐺 = ∑ P’&'

S'!
U
FSVW ,	where each walk is inversely proportional 

to its length thus 1-step walks contribute P’
(

*!
, 2-step walks P’

)

M!
 and so on. 

 
2.6.2.2. Mean first passage time (MFPT) 
Mean first passage time between brain region (node) 𝑖 and 𝑗 refers to the expected 
number of steps that it takes for a random walk starting at node 𝑖 to arrive at node 𝑗 for 
the first time (Goñi et al., 2013; Noh and Rieger, 2004). If the graph of the structural brain 
network is defined as 𝐺XY and composed by a set of 𝑛 nodes 𝑈 =	 {1, … , 𝑛}, then the 
graph’s connectivity is described by a 𝑛 × 𝑛 symmetrical connectivity matrix 𝐴	 = 	 _𝐴89`, 
where 𝐴89 defines the edges of the network and 𝑘8 depicts the number of direct neighbors 
(𝑘8 = 	∑ 𝐴899 ) (Goñi et al., 2013). The mean first passage time depends on a specific 
stochastic model, a Markov Chain, which is describing a sequence of possible events in 
which the probability of each event depends only on the state of the previous event 
(Gagniuc, 2017). A Markov Chain 𝑀 ≡ (𝑆𝑡, 𝑄) consists of a set of states 𝑆𝑡 = {𝑠𝑡*, … , 𝑠𝑡f} 
and a matrix of transition probabilities 𝑄 =	 _𝑞89` characterizing the probability of going 
from one state 𝑠𝑡8 to another state 𝑠𝑡9 in one step (Goñi et al., 2013). A graph (i.e., 
structural brain network) can be expressed as a Markov chain, where states 𝑆𝑡 =
{𝑠𝑡*, … , 𝑠𝑡f} correspond elementwise to the set of nodes 𝑈 =	 {1, … , 𝑛}. The probability of 
going from one state 𝑠𝑡8 to another state 𝑠𝑡9 is denoted by 𝑞89 = 	

P"$
h"

, where it is assumed 
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that there is equal probability of choosing one of the 𝑘8 edges (Goñi et al., 2013). 
Ultimately, the mean first passage time of 𝐺XY, where nodes 𝑈 =	 {1, … , 𝑛} stand for 
states 𝑆𝑡 = {𝑠𝑡*, … , 𝑠𝑡f} of the Markov Chain is denoted by 𝑀𝐹𝑃𝑇l = _𝑚𝑓𝑝𝑡89` and can 
be computed from the fundamental matrix 𝑍 = _𝜁89` and the fixed row probability vector 

𝑣 as 𝑚𝑓𝑝𝑡89 = 	
s$$Ks"$

t
, 𝑖 ≠ 𝑗 (Goñi et al., 2013). The probability vector 𝑣 is the left 

eigenvector associated with the eigenvalue of 1 that corresponds to the stationary 
solution of the Markov process and the fundamental matrix 𝑍 is defined as 𝑍 =
(𝐼 − 𝑄 + 𝑉)K*, where 𝐼 is an 𝑛 × 𝑛 identity matrix (each element on principal diagonal is 
1 and the other elements 0), 𝑄 is the transition matrix and 𝑉 is an 𝑛 × 𝑛 matrix, where 
each column corresponds to the probability eigenvector 𝑣 (Goñi et al., 2013).  

 
2.6.2.3. Flow graphs (FG) 
Flow graphs are transformations of a network’s SC matrix (𝐴) in which dynamic flows are 
embedded into the weights of edges (Lambiotte et al., 2011). More specifically, a flow 
graph characterizes the probability that a random walker is located at a specific position 
in the network between region 𝑖 and 𝑗 at a specific time point 𝑡x	(Markov time = 10 in our 
case). For a random walk with dynamics specified by 𝑝8 = −∑ 𝐿89𝑝99 , a flow graph is 
given by 𝐹𝐺(𝑡x)89 = (𝑒Kz*{)8𝑗𝑘9.The matrix 𝐿 is the normalized Laplacian whose 
elements are given by 𝐿89 = 𝐷 − 𝐴/𝑘, where 𝑘 = ∑ 𝐴899  is the degree of a node and 𝐷 is 
the degree diagonal matrix (square matrix with a diagonal containing the elements of 𝑘). 
Thus, the variable 𝑝8 represents the probability of finding a random walker on the edge 
between brain region 𝑖 and brain region 𝑗 and the element 𝐹𝐺(𝑡x)89 ultimately represents 
the probabilistic flow of random walkers at time 𝑡x between two respective nodes 
(Zamani Esfahlani et al., 2022).  

 
2.6.2.4. Search information (SI)  
Search information is a measure of network navigability in the absence of global 
knowledge (Goñi et al., 2014) and is related to the probability that a random walker will 
travel between two nodes via their shortest path (i.e., the path connecting two nodes via 
fewest intermediate stations/nodes). This probability increases with an expanding 
number of paths that are available for a certain communication process to take place 
(Avena-Koenigsberger et al., 2018; Goñi et al., 2014). Given the shortest path between 
brain regions 𝑠 (source node) and 𝑡	(target node): 𝜋}→z = {𝑠, 𝑖, 𝑗, … , 𝑙,𝑚, 𝑡}, the probability 
of taking this shortest path is expressed as 𝐹(𝜋}→z) = 𝑓}8 × 𝑓89 × …	× 𝑓Sx × 𝑓xz,	where 	

𝑓89 =
P"$
∑ P"$$

	and 𝑖, 𝑗, 𝑙	and 𝑚 are nodes along the shortest path. The information that is then 

necessary to access the shortest path from 𝑠 to 𝑡 is 𝑆𝐼(𝜋}→z) = 	 logM	[𝐹(𝜋}→z)] (Goñi et 
al., 2014).  

 
2.6.2.5. Path transitivity (PT) 
Path transitivity also captures the accessibility of shortest paths (from source node 𝑠 to 
target node 𝑡) within a network but accounts particularly for the frequency of detours that 
are available along a shortest path which would enable the signal to traverse back onto 
that path after leaving it (Avena-Koenigsberger et al., 2018; Goñi et al., 2014). Path 
transitivity is independent of the directionality of the path and defined as 𝑃𝑇(𝜋}→z) =
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M∑ ∑ x"$$∈,"∈,
|�|(|�|K*)

, where 𝑚89 is the matching index between respective nodes on the shortest 

path as defined in Goñi et al. (2014). 
 

2.6.2.6. Path length (PL) 
Path length is an indicator of how easily signals can be transmitted between two regions 
via their shortest path, since longer paths are more susceptible to noise, have longer 
delays in transmission and are energetically more expensive (Avena-Koenigsberger et 
al., 2018; Rubinov and Sporns, 2010). In a network, each edge is associated with a cost 
𝐶 (difficulty of traversing) and for weighted networks, this cost can be obtained by 
transforming the weight 𝜔 of each edge into a measure of length through 𝐶 = 𝜔K*. The 
shortest path between two respective nodes (source node 𝑠 and target node 𝑡) is the 
sequence of edges 𝜋}→z = �𝐴}8, 𝐴89, … , 𝐴xz	� minimizing the sum 𝐶}8 + 𝐶89 + ⋯+ 𝐶xz	
(where	𝐶}8 is the cost of traversing the edge between region 𝑠 and 𝑖) and 𝑖, 𝑗 and 𝑚 are 
nodes along the shortest path.  
 

Note that as mean first passage time, path length, and search information capture difficulty of 
communication (instead of ease of communication like the other five measures), the respective 
communication matrices were transformed to ensure that each matrix entry reflects the ease 
of communication between brain regions and effect sizes of all measures can be interpreted 
in equal directions. For mean first passage time and path length, this transformation was 
performed by replacing all matrix entries with their element-wise reciprocal (𝑀f�F =
1/𝑀��8�8f�S). For SI, matrices were inverted by flipping signs for all matrix entries (𝑀f�F = 	−1 ∗
𝑀��8�8f�S). The communication matrices for mean first passage time, flow graphs, and search 
information are asymmetric, implying that ease of communication between region 𝑖	and 𝑗 is not 
necessarily equal to the ease of communication between region 𝑗 and 𝑖 (Seguin et al., 2019). 
Thus, respective communication matrices were symmetrized to ensure that correlating matrix 
columns vs. matrix rows would not yield different results with regards to the regional coupling 
values. 
 
Table 2  

Overview of the two similarity measures and the six communication measures used to 
operationalize structural-functional brain network coupling 

Similarity Measure Description 
Cosine Similarity (CoS) Similarity of connectivity profiles based on vector orientation. 

 
Matching Index (MI) Measure of overlap between pairs of brain regions based on their 

connectivity profiles. 
 

Network Communication 
Measure 

 

Communicability (G) Communication via diffusive broadcasting, where all walks (sequence of 
traversed edges) of all lengths in a network are considered and the 
contribution of each walk is inversely proportional to its length. 
 

Mean First Passage Time (MFPT) 
*** 

Expected number of steps that a random walk must evolve to move from 
one brain region to another brain region. 
 

Flow Graphs (FG) * Probabilistic flow of random walkers between brain regions.  
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Search Information (SI) *** Probability that a random walker will travel between two nodes via their 
shortest path.  
 

Path Transitivity (PT) Frequency of available detours along a path. Dependent on the number 
of recursive edges that enable a signal to traverse back onto the shortest 
path. 
 

Path Length (PL) ** Length of the shortest possible path between brain regions. 
 

 
Note: Measures whose matrices were modified after computation are marked with an asterisk 
(* = matrices were symmetrized, ** = matrices were inverted; *** = matrices were symmetrized 
and inverted, see Methods).  
 
For the computation of similarity and communication matrices we followed examples provided 
by Zamani Esfahlani et al. (2022), applying functions from the Brain Connectivity Toolbox 
(Rubinov and Sporns, 2010). To compute subject- and brain region-specific SC-FC coupling 
values, we separately compared each individual’s similarity and communication matrices to 
their FC matrix (one at a time; eight comparisons in total). This was done by correlating 
(Pearson correlation) all regional connectivity profiles (matrix columns representing the 
connections of one brain region to all other brain regions) of the respective similarity or 
communication matrix with the corresponding regional connectivity profile of the FC matrix. 
Each of the eight comparisons resulted in 358 individual coupling values (rC, one per brain 
region), thus yielding eight distinct measures approximating SC-FC coupling that are referred 
to as coupling measures. A workflow of the procedure is illustrated in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Workflow of deriving eight different measures of SC-FC brain network coupling. (A) For 
the operationalization of SC-FC coupling, DWI and fMRI data were parcellated into 358 brain 
regions based on a multimodal parcellation scheme (Glasser et al., 2016). (B) Structural 
connectivity matrices were transformed into similarity matrices (SM) and communication 
matrices (CM) expressing two distinct similarity measures and six distinct communication 
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measures that model plausible functional interactions on top of structural connections (Table 
2). (C) Functional connectivity matrices were constructed by computing Pearson correlations 
of regional BOLD time courses from four 15-min resting-state fMRI sessions. (D) Each 
individual’s two similarity matrices and each individual’s six communication matrices were then 
compared separately (one at a time) with the individual’s functional connectivity matrix by 
correlating regional connectivity profiles (matrix columns) of the respective similarity or 
communication matrix with the same region’s connectivity profile in the functional connectivity 
matrix. Each of the eight comparisons resulted in 358 individual coupling values (rC, one per 
brain region) thus yielding eight coupling measures. SC = Structural Brain Network 
Connectivity; FC = Functional Brain Network Connectivity; BOLD = Blood Oxygen Level 
Dependent; SM = Similarity Measure; CM = Communication Measure; G = Communicability; 
MFPT = Mean First Passage Time; MI = Matching Index. For illustration purposes, only three 
out of the eight similarity and communication matrices are shown in Fig. 1B. [color; 2-column 
fitting image] 
 
2.7. Grouping of coupling measures 
To better understand the underlying signal transmission processes, the six coupling measures 
derived from the comparison of communication matrices to FC matrices were grouped based 
on conceptual similarity of the specific signal transmission strategy that is proposed by each 
underlying communication model (Avena-Koenigsberger et al., 2018). Specifically, different 
models of neural communication can be placed on a spectrum depending on how much 
information is necessary for each communication process to take place. On one end of the 
spectrum are routing processes requiring full knowledge of network topology (e.g., target 
region and location of shortest paths), and on the other end are diffusive processes that 
operate solely on the basis of local properties (Avena-Koenigsberger et al., 2018, 2019). Thus, 
coupling measures were grouped into a) diffusion-based coupling measures (communicability, 
mean first passage time and flow graphs), b) coupling measures based on path accessibility 
(search information, path transitivity), and c) routing-based coupling measures (path length). 
Similarity-based coupling measures (cosine similarity and matching index) were considered as 
separate group. 
 
2.8. SC-FC coupling strength across the cortex 
The pattern of SC-FC coupling strength across the cortex was analyzed by first identifying the 
similarity or communication measure per brain region that was able to most frequently explain 
the highest variance (R2) in FC across all participants. This group-general mask was 
subsequently used to extract individual brain region-specific coupling values that were then 
averaged across all participants to visualize the overall SC-FC coupling pattern. Note that the 
approach of selecting region-specific coupling measures based on highest explained variance 
in FC was solely used for visualization purposes but not for further statistical analyses.  
 
2.9. Brain-average SC-FC coupling  
Individual coupling measure-specific brain-average coupling values were computed by taking 
the mean of all 358 region-specific individual coupling values (rC) for each of the eight coupling 
measures, previously computed by correlating region-specific connectivity profiles (as 
explained above). Consequently, we obtained eight brain-average coupling values per 
participant, one for each coupling measure. 
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2.10. Association between brain-average SC-FC coupling and GCA 
To assess the relationship between brain-average SC-FC coupling and individual differences 
in GCA, partial correlations between cognitive ability scores and the individual brain-average 
coupling values (eight values per participant) were computed controlling for the influences of 
age, gender, handedness, and in-scanner head motion (operationalized as mean framewise 
displacement). Statistical significance was accepted at p < .05 and we corrected for multiple 
comparisons by applying the Bonferroni correction (eight comparisons: significant p < .006). 
 
2.11. Association between region-specific SC-FC coupling and GCA 
As previous reports revealed that the preferred communication strategy (measures best 
explaining FC) varies critically between different brain regions (Betzel et al., 2022; Zamani 
Esfahlani et al., 2022), we next developed an approach to investigate the association between 
SC-FC coupling and GCA on a brain region-specific level by taking this variation into 
consideration: For each coupling measure separately, region-specific coupling values (rC) from 
all participants (N = 1030) were correlated with individual cognitive ability scores, resulting in 
eight correlation coefficients (rG) per brain region reflecting brain region-specific associations 
of the eight coupling measures with GCA. A main goal of this approach was to examine which 
coupling measure per brain region was most or least able to account for individual differences 
in GCA. Again, partial correlations were computed controlling for age, gender, handedness, 
and in-scanner head motion (operationalized as mean framewise displacement). 
 
As such correlative approaches result in extremely large numbers of comparisons (multiple 
comparisons problem) and are prone to overfitting (see Cwiek et al., 2022; Yarkoni and 
Westfall, 2017), a cross-validated predictive modeling approach was developed that a) 
accounts for brain region-specific differences in the preferred communication strategy and b) 
best prevents overfitting by creating a small number of features (instead of using all possible 
predictors as e.g., in a multivariate regression without regularization or feature selection) and 
by implementing a thorough cross-validation scheme.  
 

2.11.1. Feature construction - node-measure assignment (NMA) 
The features of our prediction model were individual- and brain region-specific coupling 
values (rC) that were selected on the basis of group-average node-measure assignment 
(NMA) masks. Such group masks reflect general region-specific preferences of coupling 
strategies with respect to GCA. More specifically, based on the correlation coefficients (rG) 
from the analysis of region-specific SC-FC coupling and GCA for each brain region (see 
paragraph above), the coupling measures with the largest positive and negative magnitude 
associations with GCA were selected. This resulted in one group-based positive NMA mask 
and one group-based negative NMA mask, each assigning one coupling measure to one 
brain region and thus determining which (out of eight) individual coupling values served as 
input for the prediction model for a given brain region (Fig. 2A).  
 
To assess for visualization purposes the coupling strength corresponding to the positive 
and negative NMA masks, brain region-specific coupling values in the positive and negative 
individual NMAs were separately averaged across all participants, thus yielding a group-
average map of regional coupling values (i.e., coupling strength) for the positive and 
negative NMA, respectively. 
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2.11.2. Cross-validated prediction framework 
A 5-fold cross-validated multiple linear regression model was implemented to predict 
individual cognitive ability scores. Specifically, the sample was split into five folds by 
simultaneously ensuring equal distributions of subjects with respect to GCA (via stratified 
folds) and by accounting for family relations. Then, the model was trained on 80% of the 
sample (Ntrain ~ 825) and afterwards used to predict cognitive ability scores in the withheld 
20% of the sample (Ntest = ~	205). This procedure was repeated five times so that every 
subject was part of the test set once and received one predicted cognitive ability score (Fig. 
2B). The predictor variables of the linear regression model: 
 

𝑦 = 	𝛽W +	𝛽*𝑋* + 𝛽M𝑋M + 𝜖 
 
were a) brain-average coupling values from the individual positive NMAs (X1) and b) brain-
average coupling values from the individual negative NMAs (X2), 
where 𝛽W is the y-intercept, 𝛽f is the slope (or regression coefficient), 𝜖 is the error term and 
y the predicted intelligence score. Note that we used the positive and negative NMAs built 
in the training sample to extract individual coupling values in the respective test sample. 
This step is important to keep the training and test sets strictly independent from one 
another and to avoid leakage of information between folds. All input parameters were 
normalized before model building, and confounding variables (age, gender, handedness, 
and in-scanner head motion) were regressed out with linear regression from all variables 
(brain-average coupling values from the individual positive and negative NMAs; cognitive 
ability scores) for each training sample. The regression model of the training sample was 
then applied to the test sample of the respective fold.  
 
As a result of the 5-fold cross-validated prediction, each individual was part of the test set 
once and thus received a predicted cognitive ability score. Model performance was 
assessed by correlating observed and predicted cognitive ability scores across the whole 
sample. The 5-fold cross-validated prediction was repeated 100 times with different training-
test data splits and prediction performance was averaged across all 100 runs. To assess 
the significance of the prediction, a non-parametric permutation test with a total of 1000 
iterations as recommended by Dubois et al. (2018) was performed. Specifically, individual 
cognitive ability scores were permuted, and models were trained with these permuted 
scores by applying exactly the same approach as outlined above. Performance of the model 
trained on the permuted cognitive ability scores was then compared to model performance 
using the true values. This procedure was conducted 10 times for each different training-
test data partition, yielding 1000 total repetitions. The p-value indicating statistical 
significance was calculated by evaluating how often the model trained on the permuted 
scores was better at predicting the observed scores. 
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Fig. 2. Workflow of the predictive modeling framework used to predict individual cognitive 
ability scores from region-specific SC-FC coupling. (A) In general, prediction models were built 
using two input predictor variables that were derived from individual’s coupling values (rC) 
extracted by using group-based positive and a negative node-measure assignment (NMA) 
masks. For the creation of the group-based positive and negative NMA masks, the coupling 
measure with the largest positive and negative magnitude associations between coupling 
measures with GCA (rG) per brain region across all participants was selected. These group-
based NMA masks defined which individual-specific coupling values were chosen for each 
brain region and the two predictors for the linear regression model were computed by taking a 
brain-average across each individual’s positive NMA (predictor 1) and negative NMA (predictor 
2). (B) For the 5-fold internal cross-validation, the model was trained on four folds (80%; Ntrain 
~ 825) of the sample and then used to predict cognitive ability scores in the withheld fold (20%; 
Ntest = ~	205) of the sample. To avoid data leakage between cross-validation folds, the group-
based positive and negative NMA masks built in the training sample were used to extract 
individual coupling values in the respective test sample. This procedure was repeated five 
times and prediction accuracy was assessed by correlating predicted and observed cognitive 
ability scores. Equal distribution of subjects in folds with respect to GCA and family relations 
was guaranteed by using stratified folds. (C) For the cross-sample model generalization test, 
the prediction model was built using data from the complete main sample (HCP) and then 
tested on an independent sample (replication sample, AOMIC). Here, group-based positive 
and negative NMA masks were generated based on data from the complete main sample. 
HCP = Human Connectome Project; AOMIC = Amsterdam Open MRI Collection; NMA = Node-
Measure Assignment; GCA = General Cognitive Ability. [color; 2-column fitting image] 

 
2.12. External replication 
To test the robustness of our results, all analyses were repeated in a completely independent 
sample that differs in the measure of GCA, data acquisition and preprocessing (AOMIC, Snoek 
et al., 2021). Specifically, we used data from the ID1000 sample (N = 928) consisting of healthy 
subjects of age 19-26 (483 female, 826 right-handed, mean age = 22.8 years). All MRI data 
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were acquired with a gradient-echo EPI sequence on a Philips Intera 3T scanner with a 32-
channel head coil. Three diffusion-weighted scans and one functional (BOLD) MRI scan were 
recorded. Importantly, in this sample no resting-state fMRI scan was conducted as participants 
were passively watching a movie clip consisting of uneventful natural scenes that has been 
demonstrated to allow for good approximation of intrinsic connectivity (Vanderwal et al., 2017). 
FMRI scans were obtained without multi-slice acceleration (TR = 2200 ms, TE = 28 ms, 3-mm 
isotropic voxel resolution, and flip angle = 90°). The fMRI data were downloaded in the 
minimally preprocessed form and further preprocessed similarly as in the main sample. 
Structural imaging data were acquired from diffusion weighted imaging (median TR = 6312 
ms, TE = 74 ms, 2-mm isotropic voxel resolution, b = 1000 s/mm2, and 32 directions/shell) and 
preprocessed using the same steps applied to the HCP data to model white matter fibers but 
using a maximum spherical harmonics order of six. Further details on image acquisition and 
preprocessing are described in Snoek et al. (2021). GCA was operationalized with an 
established intelligence measure, i.e., the Intelligence Structure Test (IST), assessing verbal, 
numerical and figural abilities (Beauducel et al., 2010). More specifically, the summed scores 
of the three measures crystallized intelligence, fluid intelligence and memory were used. After 
subject exclusion based on missing demographic, neuroimaging or behavioral data, low quality 
of structural images and motion exclusion based on framewise displacement (same criteria as 
in the main sample), 567 subjects remained in the replication sample (age 19-26, 300 female, 
500 right-handed, mean age = 22.8 years). The following analyses were repeated in the 
replication sample: a) SC-FC coupling operationalized with similarity measures and 
communication measures, b) investigation of associations between brain-average SC-FC 
coupling and cognitive ability scores, c) investigation of associations between region-specific 
SC-FC coupling and cognitive ability scores with an internally cross-validated prediction 
framework. Individual raw IST-scores were used for the correlative analyses between GCA 
and measure-specific brain-average SC-FC coupling values. For the predictive analyses, IST 
scores were normalized. 
 
Finally, a cross-sample model generalization test was conducted (Fig. 2C). Specifically, we 
evaluated whether our prediction model that accounts for region-specific variations in the type 
of SC-FC coupling built in the main sample (HCP) could also predict individual cognitive ability 
scores in the replication sample (AOMIC). Model performance was evaluated by correlating 
the predicted with the observed cognitive ability scores. Significance of the prediction was 
assessed with a permutation test. Specifically, cognitive ability scores in the main sample 
(HCP) were permuted and the model was trained with these permuted scores. Prediction 
performance of the model trained on the permuted scores was then compared to model 
performance using the true values. This procedure was repeated 1000 times. The p-value 
indicating statistical significance was calculated by evaluating how often the model trained on 
the permuted values was better at predicting the observed scores. 
 
2.13. Ethical approvals 
For the main sample, all study procedures were approved by the Washington University 
Institutional Review Board (details see Van Essen et al., 2013). For the replication sample, 
study procedures were authorized by the Ethics Review Board of the department of 
Psychology at the University of Amsterdam (details see Snoek et al., 2021). Written informed 
consent in accordance with the declaration of Helsinki was obtained from all participants of the 
main sample and the replication sample.  
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2.14. Data Availability Statement 
All analyses were implemented in Python (version 3.4) and MATLAB (Version R2021a). Data 
of the main sample can be accessed under https://www.humanconnectome.org/study/hcp-
young-adult/data-releases/ and data from the replication sample can be obtained under 
https://openneuro.org/datasets/ds003097. All analysis code for the current study is available 
on GitHub: DWI preprocessing: https://github.com/civier/HCP-dMRI-connectome; fMRI 
preprocessing: https://github.com/faskowit/app-fmri-2-mat; computation of latent g-factor: 
https://github.com/jonasAthiele/BrainReconfiguration_Intelligence; operationalization of SC-
FC coupling with communication measures: https://github.com/brain-networks/local_scfc; 
main analysis and replication analysis as implemented in the current study: 
https://github.com/johannaleapopp/SC_FC_Coupling_Cognitive_Ability.  

 
3. Results 

3.1. General cognitive ability and SC-FC coupling  
Individual GCA was operationalized as latent g-factor from 12 cognitive scores with bi-factor 
analysis (Dubois et al., 2018; Thiele et al., 2022) using data from 1086 subjects from the HCP 
(Van Essen et al., 2013). In the replication sample (AOMIC), cognitive ability was assessed 
with the Intelligence Structure Test (IST, Beauducel et al., 2010). Both measures were 
approximately normally distributed (see Supplementary Fig. S1). In the HCP, the g-factor 
ranged between -2.60 and 2.40 (M = 0.08; SD = 0.89) and in the replication sample, the sum 
score of the IST ranged between 78 and 295 (M = 202.85; SD = 39.01). 
 
Individual-specific SC-FC brain network coupling was operationalized with two similarity 
measures and six communication measures (computed based on each individual SC matrix) 
that were set in relation to each individual’s FC, resulting in 358 individual- and region-specific 
coupling values (rC) for each of the eight coupling measures (see Methods and Fig. 1). A group-
average SC-FC coupling map (Fig. 3) was calculated by first identifying the similarity or 
communication measure per brain region that was able to most frequently explain the highest 
amount of variance (R2) in the respective region’s functional connectivity profile across all 
participants. Subsequently, this group-general mask was used to extract individual brain 
region-specific coupling values (R2) that were then averaged across subjects (see Methods). 
In line with previous reports (Baum et al., 2020; Griffa et al., 2022; Gu et al., 2021; Vázquez-
Rodríguez et al., 2019; Zamani Esfahlani et al., 2022), highest coupling was observed in 
somatomotor and visual areas (average maximal R2 ~ .3), while lowest coupling was identified 
in parietal and temporal regions (average maximal R2 ~ .075). Note that the here used 
approach (selecting measures based on highest coupling strength) allowing for individual 
variability in the measure chosen per brain region was solely used for visualization purposes 
(Fig. 3, Supplementary Fig. 3, and Supplementary Fig. 8), but not for further statistical 
analyses. In the subsequent correlative and predictive analyses, region-specific coupling 
measures were selected based on the strongest association with GCA by using cross-
validated group-general masks (the positive NMA and the negative NMA).  
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Fig. 3. Group-average whole-brain pattern of SC-FC coupling strength. This figure illustrates 
the cortical distribution of coupling strength based on the region-specific similarity or 
communication measure (computed based on structural connectivity) able to explain the 
highest amount of variance in functional connectivity most frequently across all participants in 
the main sample (HCP). This group-general mask was subsequently used to extract individual 
region-specific coupling values (R2) and a group-average map of the regional coupling strength 
was created by averaging across all participants’ coupling values. Note that this approach was 
solely used for visualization purposes but not for further statistical analyses. In correlative and 
predictive analyses, the coupling measure was determined by a group-general mask (i.e., the 
positive and negative NMAs) based on the strongest association with GCA. These latter masks 
were also cross-validated in all predictive approaches to prevent any data leakage between 
training and test samples. [color; single column fitting image] 

 
3.2. General cognitive ability is associated with brain-average SC-FC coupling operationalized 
with path transitivity  
GCA was significantly associated with brain-average SC-FC coupling (subject-specific 
average across all regional coupling values per coupling measure) operationalized with the 
communication measure path transitivity (r = .10, p = .002, corrected for multiple comparisons). 
All other associations between brain-average coupling and GCA were of negligible effect sizes 
and did not reach statistical significance (all r < .09, all p > .006; Table 3).  
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Table 3 

Relationship between general cognitive ability and brain-average SC-FC coupling 

Measure to Compute SC-FC Coupling  
 

Main Sample – HCP r (p) 

Cosine Similarity (CoS) .05 (.115) 

Matching Index (MI)  .07 (.031) 

Communicability (G) .04 (.247) 

Mean First Passage Time (MFPT) .03 (.415) 

Flow Graphs (FG) .08 (.010) 

Search Information (SI) .02 (.588) 

Path Transitivity (PT) .10 (.002)* 

Path Length (PL) .05 (.095) 

 
Note: Main sample N = 1030. Partial correlations between cognitive ability scores and 
individual measure-specific brain-average coupling (measure-specific average of coupling 
values from all brain regions) controlled for age, gender, handedness, and in-scanner head 
motion. Significant associations passing the Bonferroni-corrected threshold (eight 
comparisons) are marked with an asterisk (* = p < .006).  
 
3.3. The relation between general cognitive ability and SC-FC coupling varies between 
different brain regions  
As previous research suggests that preferred communication strategies differ between brain 
regions (Betzel et al., 2022; Zamani Esfahlani et al., 2022), we next developed a cross-
validated prediction framework that a) allows to examine the relationship between GCA and 
region-specific SC-FC coupling, b) avoids the multiple comparisons problem, and c) tests if 
individual cognitive ability scores can be predicted by region-specific SC-FC coupling. 
Features for the prediction model were individuals’ brain region-specific coupling values (rC) 
that were selected by applying group-average node-measure assignment (NMA) masks. For 
the internally cross-validated prediction model, we computed for each training sample one 
NMA mask with the largest positive and one NMA mask with the largest negative magnitude 
associations between coupling measures and GCA (rG; see Methods and Fig. 2A). These 
training sample-based masks were used for all subjects of the corresponding test sample to 
extract individual-specific coupling values that were then averaged separately for the positive 
and negative individual NMA and represent the model features. For the cross-sample model 
generalization test, additional NMA masks were generated based on data from the complete 
main sample (N = 1030). These latter masks are illustrated in Fig. 4A and confirm that the 
GCA-associated type of coupling (as indicated by different coupling measures) as well as the 
associated coupling strength (Fig. 5) varies across the cortex. For the positive NMA, highest 
coupling was observed in frontal areas, while lowest coupling was identified in somatomotor 
and visual areas. For the negative NMA, highest coupling was detected in somatomotor and 
visual areas, while lowest coupling was observed in parietotemporal areas. Notably, as region-
specific measures (ultimately defining the prediction model features, i.e., the individual 
coupling values that were extracted based on these measures) were selected based on their 
association with general cognitive ability, the creation of NMA masks served as means to 
investigate which coupling measure was most or least able to account for individual differences 
in GCA. 
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To better visualize the distribution of coupling measures in the NMA masks, the eight coupling 
measures were grouped based on conceptual similarity into a) diffusion-based coupling 
measures (communicability, mean first passage time, flow graphs), b) coupling measures 
based on path accessibility (search information, path transitivity), c) routing-based coupling 
measures (path length), and d) coupling measures based on similarity (cosine similarity, 
matching index). The grouped positive NMA mask revealed that coupling measures based on 
similarity of the structural connectivity profiles were selected predominantly in dorsotemporal 
regions and coupling measures based on path accessibility were selected primarily for frontal 
regions, but also for a widely distributed set of brain regions (Fig. 4B). The grouped negative 
NMA revealed that coupling measures based on similarity were only very seldomly chosen, 
while coupling measures based on diffusion were selected for many brain regions and 
especially frequently in frontal brain regions (Fig. 4B). The spatial relation of GCA-associated 
coupling measures for the positive and negative NMA to the seven functional network partition 
of Yeo et al. (2011) is listed in Supplementary Table S1. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 4. General cognitive ability is associated with brain region-specific SC-FC coupling. (A) 
Group-based positive and negative node-measure assignment (NMA) masks as used in the 
cross-sample model generalization test. These were created by identifying the coupling 
measure with the largest positive and negative magnitude associations with GCA (rG) per brain 
region across all participants of the main sample (N = 1030), depicting the measure per brain 
region best explaining individual differences in GCA. Note that to thoroughly prevent overfitting, 
for the 5-fold internal cross-validation, NMAs were created separately for each training sample 
of each cross-validation loop and could thus slightly differ from the whole sample-based masks 
shown in this illustration. Individual-specific coupling values (rC) were then extracted with these 
masks, i.e., the group-based NMA mask defined which individual-specific coupling value (one 
out of eight different coupling values, see Methods) was extracted for each brain region and 
used for further analyses. (B) For illustration purposes, coupling measures were grouped 
based on conceptual similarity of the proposed signaling mechanism. The grouped positive 
NMA mask revealed that coupling measures based on similarity were chosen predominantly 
in dorsotemporal regions and coupling measures based on path accessibility were selected 
primarily for frontal regions, but also for a widely distributed set of brain regions. The grouped 
negative NMA mask showed that coupling measures based on similarity were only very 
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seldomly selected, while coupling measures based on diffusion were chosen for many brain 
regions and especially frequently in frontal brain regions. HCP = Human Connectome Project; 
NMA = Node-Measure Assignment. [color; 1.5-column fitting image] 

 

 

 

 

 

 

 
 
 

 

 

 

Fig. 5. Group-average region-specific SC-FC brain network coupling strength corresponding 
to the node-measure assignment (NMA) masks as used in the cross-sample model 
generalization test. These were created by identifying the coupling measure with the largest 
positive and negative magnitude associations with GCA (rG) per brain region across all 
participants of the complete main sample (N = 1030). For each participant, individual-specific 
coupling values were extracted using the group-based NMA masks, resulting in two individual 
brain maps (for the positive and negative NMA mask, respectively) containing one coupling 
value (rC) for each brain region. This figure illustrates a group-average map of these individual 
regional coupling values. HCP = Human Connectome Project; NMA = Node-Measure 
Assignment. [color; 1.5-column fitting image] 

 
3.4. Region-specific SC-FC coupling predicts general cognitive ability scores in unseen 
individuals 
The prediction model based on linear regression with two predictors, i.e., brain-average across 
each individual positive NMA (predictor 1) and across each individual negative NMA (predictor 
2; see Methods), succeeded to significantly predict individual cognitive ability scores (5-fold 
cross-validation; correlation between observed vs. predicted cognitive ability scores: r = .25, 
R2 = .06, p < .001 by permutation test). A scatterplot depicting the relationship between 
predicted and observed cognitive ability scores is illustrated in Supplementary Fig. S2A. For 
completeness, the performances of this model to predict individual cognitive performance 
scores (see Table 1) that were used to compute the latent g-factor are listed in Supplementary 
Table S2.  
 
3.5. External replications suggest robustness of findings and model generalizability   
To ensure that our research findings are robust and generalizable to the population, all 
analyses were replicated in an independent sample, i.e., the AOMIC ID1000 cohort (N = 567, 
Snoek et al., 2021). Similar as in the main sample, general cognitive ability was significantly 
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positively associated with brain-average coupling operationalized with path transitivity (r = .16, 
p < .001). Again, all other brain-average coupling measures were not significantly correlated 
with GCA (Supplementary Table S3). The group-average whole-brain pattern of SC-FC 
coupling strength is illustrated in Supplementary Fig. S3 and brain maps visualizing the positive 
and negative NMAs are shown in Supplementary Fig. S4. Coupling strengths corresponding 
to the NMAs are visualized in Supplementary Fig. S5. The 5-fold cross-validated multiple linear 
regression model with input features created with the same strategy as in the main sample 
(see Methods) was also able to significantly predict individual cognitive ability scores within the 
replication sample (correlation between observed vs. predicted scores r = .17, R2 = .03, p = 
.002 by permutation test, Supplementary Fig. S6). 
 
Model generalizability was tested with a cross-sample model generalization test. To this aim, 
the complete main sample (N = 1030) was used for model building and the prediction model 
was then tested with input data from the replication sample (N = 567, Fig. 2C). The model 
based on the HCP data was able to significantly predict individual cognitive ability scores also 
in the AOMIC sample (correlation between observed vs. predicted scores r = .19, R2 = .04, p 
< .001 by permutation test; Supplementary Fig. S2B). 
 
3.6. Post-hoc analyses 
Several post-hoc analyses were performed (on the main sample only) to further evaluate the 
robustness of our findings and to enhance their interpretation. 
 
At first, since it is an established finding that GCA is significantly positively associated with total 
brain volume (see e.g., McDaniel, 2005; Pietschnig et al., 2015), and individual cognitive ability 
scores indeed correlated significantly with total intracranial volume also in our sample (r = .33, 
p < .001), all analyses were repeated with total intracranial volume as additional control 
variable. Correlative results investigating the relationship between brain-average coupling and 
GCA were highly similar (Supplementary Table S4). Also, the correlation between predicted 
and observed cognitive ability scores in the 5-fold cross-validated prediction framework 
remained significant (r = .21, R2 = .04, p < .001 by permutation test). 
 
Second, the group-average SC-FC coupling pattern (Fig. 3) indicates overall higher SC-FC 
coupling in brain areas associated with unimodal neural processing (somatomotor and visual 
areas) and lower coupling in areas associated with multimodal processing (frontal, parietal and 
temporal areas). Further, the region-specific assignment of coupling measures in the group-
average node-measure assignment masks (NMAs; Fig. 4) also points to differences between 
unimodal and multimodal brain areas. To evaluate this pattern statistically, a principal gradient 
referred to as Margulies gradient (specified by Margulies et al., 2016; Supplementary Fig. S7), 
which situates each brain region on a spectrum between unimodal regions serving primary 
sensory and motor tasks (negative values) and multimodal regions serving complex 
heteromodal activity (positive values), was tested for its numerical association with a) the 
group-average region-specific SC-FC coupling strength (Fig. 3) and b) the assignment of 
coupling measures in the positive and negative NMA mask (Fig. 4). The vector describing the 
group-average region-specific SC-FC coupling strength (R2) and the Margulies gradient were 
significantly negatively correlated (Pearson correlation; r = -.45, p < .001 by spin permutation 
testing), thus supporting the post-hoc assumption that higher SC-FC coupling is more likely to 
be present in unimodal brain areas while lower SC-FC coupling is predominant in multimodal 
brain areas. Associations with the pattern of coupling measure assignment in the positive and 
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negative NMA were analyzed by comparing Margulies gradient values from brain regions of 
the four coupling measure groups (diffusion, path accessibility, routing and similarity; Fig. 4B) 
with a one-way ANOVA and Tukey’s HSD test for multiple comparisons (Supplementary Table 
S5). Results indicate that in the positive NMA, routing-based measures were predominantly 
selected in multimodal areas (i.e., positive group-average of Margulies gradient values) while 
similarity-based measures were frequently chosen in unimodal areas (i.e., negative group-
average of Margulies gradient values). In the negative NMA, similarity-based measures were 
selected in multimodal areas while routing-based measures were chosen in unimodal areas. 
 
Third, it was ensured that the regression of global signals applied in the fMRI preprocessing 
did not affect the results. Therefore, a control analysis was implemented where SC-FC 
coupling was operationalized similarly as in the main analysis, but fMRI preprocessing was 
conducted without global signal regression (see Parkes et al., 2018, strategy no. 7). Results 
were very similar between both preprocessing strategies (correlation between the two vectors 
depicting the brain region-specific SC-FC coupling strength with and without global signal 
regression: r = .98, p < .001; see Supplementary Fig. S8). Group-based positive and negative 
NMA masks were also re-computed across the complete sample. Supplementary Fig. S9 
highlights that the NMAs were nearly identical. Finally, the correlation between predicted and 
observed cognitive ability scores in the 5-fold cross-validated prediction model developed 
based on information from region-specific SC-FC coupling with or without global signal 
regression was comparable: r = .25 vs. r = .23, both p < .001 by permutation test. Overall, 
these results suggest that applying global signal regression during fMRI preprocessing does 
neither affect the region-specific SC-FC coupling pattern significantly nor does it influence the 
associations with general cognitive ability markedly.  
 
Fourth, we tested which particular features drove the performance of the prediction model. To 
answer the question if there exists a single communication measure underlying significant 
prediction, we reran the internally cross-validated prediction model in the main sample and 
excluded one measure from the selection process (creation of positive or negative NMA) at a 
time. Prediction performances (predicted vs. observed general cognitive ability scores) were 
all in a similar range (r = .21 - .26; Supplementary Table S6) revealing that there exists no 
particular coupling strategy that outweighs the others. Additionally, we were interested in the 
question whether the significant performance of the prediction model depends on the positive 
network feature, the negative network feature, or on both. Therefore, we reran the internally 
cross-validated prediction model in the main sample while excluding one of the two features 
at a time (Supplementary Table S7). Only using information from coupling measures that are 
positively associated with GCA (positive network feature only) still enabled significant 
prediction of individual general cognitive ability scores (correlation between observed vs. 
predicted scores r = .21; p = .001), while only using information from coupling measures 
negatively associated with general cognitive ability (negative network feature only) was not 
sufficient to significantly predict individual differences in GCA (r = .03; p = .238). However, 
combining both features generated the best prediction performance (r = .25; p < .001) and 
reveals most about the relationship of SC-FC coupling and GCA expanding on previous reports 
(see e.g., Baum et al., 2020). 
 
As outliers in the region-specific SC-FC coupling data could have potentially influenced the 
performance of the prediction model, especially because features were constructed by taking 
an average across all values, we lastly implemented two additional control analyses to 
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ascertain that this was not the case. To get a first impression of the quantity of outliers (defined 
as elements > 3SD away from the mean) in region-specific coupling values, the NMA masks 
computed across the complete sample (see Fig. 4) were used to extract individual values. 
Across all individual region-specific coupling values (1030*358) in the positive NMAs, the 
percentage of outliers with respect to other coupling values from the same brain region was 
0.42% while in the negative NMAs, the respective percentage was 0.36%. These percentages 
are in line with what would be expected in normally distributed data. Nevertheless, we tested 
for any potentially remaining impacts of outliers on prediction model performance by rerunning 
the internally cross-validated prediction model whilst eliminating outliers in training sample-
specific and test sample-specific individual NMAs before computing the individual average 
values that were used as model features. As expected, removing these outliers did not have a 
noticeable influence on prediction performance (correlation between observed vs. predicted 
scores r = .25; p < .001). 
 
In sum, the post-hoc control analyses suggest that a) our findings were not confounded by 
individual differences in total brain volume, b) the overall SC-FC coupling pattern and the 
assignment of coupling measures in the NMAs both correspond to the unimodal-multimodal 
macroscale cortical organization as defined by the Margulies gradient (Margulies et al., 2016), 
c) the here reported results do not depend on whether or not global signal regression was 
applied during the preprocessing of the fMRI data, d) the significant prediction of GCA scores 
from region-specific SC-FC coupling information does not depend on a single coupling 
measure, but the positive network feature is mostly driving the significant prediction, and e) 
that the performance of the prediction model is not noticeably influenced by outliers in the 
region-specific SC-FC coupling data.  
 
4. Discussion  
The aim of this study was to investigate if individual variations in structural-functional brain 
network coupling (SC-FC coupling) are associated with individual differences in general 
cognitive ability (GCA). We used data from the Human Connectome Project (HCP; N = 1030) 
and operationalized SC-FC coupling with two similarity measures and six communication 
measures. At the whole-brain level, higher GCA was associated with stronger SC-FC coupling, 
but only for path transitivity as communication strategy. By focusing on brain region-specific 
variations in coupling measures and by accounting for positive and negative associations with 
GCA, we showed that individual cognitive ability scores can be predicted from SC-FC coupling 
within a cross-validated prediction framework. Notably, all analyses were replicated in an 
independent sample and the prediction model built in the main sample also succeeded to 
significantly predict cognitive ability scores in the replication sample (N = 567), together 
suggesting high robustness of study findings and cross-sample generalizability of the 
prediction model.  
 
4.1. SC-FC coupling has a unique distribution across the human cortex 
The spatial pattern of group-average SC-FC coupling observed in our study highly resembled 
the distribution reported in prior studies, i.e., highest coupling was observed in visual and 
somatomotor areas and lowest coupling in parietal and temporal areas (Baum et al., 2020; Gu 
et al., 2021; Vázquez-Rodríguez et al., 2019; Zamani Esfahlani et al., 2022). In addition to 
previous reports, our post-hoc analysis revealed that higher coupling was prevalent in 
unimodal areas while lower coupling was predominant in multimodal areas. Differences in 
microstructure (e.g., intracortical myelination and laminar differentiation) along the gradient 
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spanning from unimodal to multimodal areas (Huntenburg et al., 2017; Margulies et al., 2016; 
Paquola et al., 2019; Vázquez-Rodríguez et al., 2019), which are thought to be rooted in the 
rapid evolutionary expansion of the human cortex (Buckner and Krienen, 2013), might 
represent one possible explanation for this observation. More specifically, it can be speculated 
that the untethering of brain structure and function in multimodal areas, as indexed by lower 
SC-FC coupling, results from the frequent reconfiguration of local microcircuitry and overall 
less signaling constraints as required for polysensory integration (Buckner and Krienen, 2013; 
Vázquez-Rodríguez et al., 2019).  
 
4.2. SC-FC coupling via path transitivity is associated with general cognitive ability 
At the whole-brain level, variations in SC-FC coupling operationalized with the communication 
measure path transitivity were positively associated with individual differences in GCA. On the 
one hand, the extent to which two brain regions show synchronized activity (i.e., are 
functionally connected) is thought to be related to the ease of which neural signals can 
propagate based on the underlying structural connections (Goñi et al., 2014). On the other 
hand, path transitivity measures this ease of communication by reflecting the accessibility of 
the shortest structural path based on the number of available detours carrying neural signals 
back to the shortest path when the direction is lost. Higher correspondence between path 
transitivity derived from structural connectivity and functional connectivity could therefore imply 
that signal transmission, leading to functional interactions between two brain regions, is 
operating more closely along transitive structural paths. The availability of local detours, 
quantified by path transitivity, may counteract signal dispersion and create feedback loops to 
recurrently stabilize signals and thus enable signals to re-access the shortest path after having 
left, which may support efficient communication (Goñi et al., 2014). From a more theoretical 
point of view, one of the most popular neurocognitive theories of intelligence differences, the 
Neural Efficiency Hypothesis of Intelligence (NEH, Haier et al., 1988; Neubauer and Fink, 
2009) explicitly assumes that people with higher intelligence scores require less brain 
activation while performing cognitive tasks and are therefore more capable of efficient neural 
processing (Dunst et al., 2014; Neubauer and Fink, 2009). The results reported here inform 
this theory by proposing how efficient neural processing in individuals with higher cognitive 
ability may depend on interactions between brain structure and brain function.  
 
4.3. Regional specificity in communication strategies facilitates cognition 
The finding that communication measures associated with GCA vary critically between 
different brain regions complements previous research proposing that information integration 
in the brain is not just facilitated by one unique signaling mechanism but that regional variability 
of communication strategies is evident (Betzel et al., 2022), that it improves the prediction of 
individual functional connectivity (Zamani Esfahlani et al., 2022) and ultimately of human traits 
(Seguin et al., 2020). The regional variability of preferred communication strategies can also 
be interpreted against the background of psychological theories and recent studies indicating 
that individual variation in the coordinated action of several cognitive processes including 
working memory, long-term memory, cognitive flexibility, and processing speed underlies 
differences in general cognitive ability (Duncan et al., 2020; Frischkorn et al., 2019; Guilford, 
1967; Kovacs and Conway, 2016; Neisser et al., 1996). More specifically, visual inspection of 
the node-measure assignments and the results of post-hoc analyses suggest that in 
multimodal areas that have frequently been associated with such higher-order cognitive 
functions (Betzel et al., 2022; Dosenbach et al., 2007), a higher prevalence of directed 
communication strategies (coupling measures based on routing and path transitivity) is 
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associated with higher GCA. In contrast, in unimodal areas a lower prevalence of directed 
communication strategies was associated with higher GCA (Supplementary Table S5). More 
directed signaling strategies operating along the shortest path could contribute to faster and 
more efficient information integration in multimodal areas, while the disadvantage of directed 
signaling strategies in unimodal areas needs to be clarified by future research, e.g., whether 
directed processes might not always be possible and thus diffusive processes would be 
preferable, especially when final destinations of the signals are unknown. Nevertheless, our 
results support that both such effects, i.e., higher prevalence of directed communication 
strategies in multimodal areas and lower prevalence of directed communication strategies in 
unimodal brain areas facilitate higher GCA. 
 
4.4. Cross-validation and independent replication support robustness and generalizability of 
findings  
Successful prediction of individual cognitive ability scores based on the combination of 
information from multiple brain areas reinforces established neurocognitive models of 
intelligence including the Parieto-Frontal Integration Theory (P-FIT, Jung and Haier, 2007; 
Basten et al., 2015) and the Multiple Demand Theory (Duncan, 2010) as well as recent 
investigations (Barbey, 2018; Hilger et al., 2020; Thiele et al., 2022) suggesting that a 
distributed network of brain regions underlies individual differences in GCA. From a 
methodological point of view and especially important against the background of the replication 
crisis in psychological science (Open Science Collaboration, 2015; Poldrack et al., 2020, 
2017), predictive approaches using two independent samples for model building and model 
testing reduce the danger of overestimating effect sizes by fitting sample-specific variance, as 
often the case in correlative approaches (overfitting; Cwiek et al., 2022; Yarkoni and Westfall, 
2017). Latest guidelines critically assessing machine learning practices in neuroimaging 
emphasize the particular importance of replication in an external and thus completely 
independent dataset compared to internal cross-validation (Cwiek et al., 2022; Marek et al., 
2022). Repeated subsampling within the same dataset (internal cross-validation) often still 
overestimates the reproducibility of effects, due to variance that is shared between sub-
samples. This shared variance is, however, not attributable to the same scaling on the variable 
of interest (e.g., general cognitive ability) but rather originates from the application of the same 
methodology during e.g., preprocessing or the existence of common patterns of biases 
inherent to the whole dataset (Poldrack et al., 2020; Tervo-Clemmens et al., 2023). To 
circumvent this pitfall and to best demonstrate generalizability of study results, independent 
out-of-sample evaluation seems to be the best solution (Poldrack et al., 2020; Tervo-
Clemmens et al., 2023). Our study that combines internal cross-validation, the replication of 
findings in an independent sample as well as a cross-sample model generalization test, follows 
these best practices. Being able to successfully predict individual GCA scores in the 
independent replication sample, despite different imaging states and general cognitive ability 
measures, implies high robustness of findings as well as generalizability of the here developed 
prediction model.  
 
5. Limitations and future directions 
Several limitations need to be mentioned. At first, the age range of participants in this study is 
restricted to young adults (HCP age range 22-37; AOMIC age range 19-26). To assess the 
generalizability of our results to the whole population, future studies should include subjects 
with a broader age range. Second, neuroimaging data in general is susceptible to many 
sources of potential noise (e.g., in-scanner head motion, physiological confound signals, 
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thermal noise) and degrees of freedom in preprocessing strategies can affect study outcomes. 
However, we have implemented state-of-the art methods and preregistered our analysis 
strategy to reduce these effects. Third, there are well known limitations to the reconstruction 
of structural connectivity using fiber tractography that cannot be prevented with our current 
methodology but need to be considered when interpreting research findings (Schilling et al., 
2019; Thomas et al., 2014). Fourth, the observed effect sizes in this study are, according to 
Cohen (1988), small. However, they lie in the range of what has been recently proposed as 
maximum reachable effect size for brain-behavior relationships (DeYoung et al., 2022; Marek 
et al., 2022). Further, note that although cognitive ability measures provide at least moderate 
reliability (Colom, 2004), the reliabilities of neuroimaging measures are suggested to be rather 
low (Dennis et al., 2012; Hawco et al., 2018; Noble et al., 2019). Considering that the 
magnitude of an association between two measures is limited by the multiplication of both 
measures’ reliabilities and we do not only investigate the association between one behavioral 
variable and one neurobiological variable, but use a neurobiological variable (SC-FC coupling) 
already representing a combination of two measures, we consider our observed effect sizes 
to be close to what can be expected when applying the currently available methodology. Fifth, 
it is important to note that even though there is evidence that communication models reflect 
patterns of regional co-activation (Goñi et al., 2014), they only provide putative descriptions of 
communication processes in the brain. Also, we restricted our analyses to two similarity 
measures and six communication measures that have been used frequently but various other 
metrics to assess SC-FC coupling are available as well. Future research could profit from 
including an extended amount or the combination of communication measures (see Betzel et 
al., 2022 for a valuable framework allowing to combine multiple models). Further, it is important 
to highlight that the measure selection process used to generate the NMA masks is not 
dependent on a threshold, i.e., the measure selected per brain region is not necessarily 
significantly associated with general cognitive ability which should be considered with respect 
to our interpretations relating certain communication strategies to GCA. Sixth, FC was 
estimated using data from resting-state and passive movie watching fMRI. Even though 
resting-state fMRI has previously been related to individual differences in cognition (Basten et 
al., 2015), further exploration of the relationship between SC-FC coupling and GCA during 
active task demands may provide novel information about task-specific communication 
strategies. Seventh, we limited our analyses to large-scale cortical brain regions as it is not 
clear so far how different signal-to-noise ratios, as evident in subcortical or hippocampal brain 
regions (Maugeri et al., 2018; Polders et al., 2011; Vizioli et al., 2021), might affect the 
computation of communication and similarity measures. However, as subcortical and 
hippocampal brain regions are suggested to play a critical role in cognitive processing (see 
e.g., Axmacher et al., 2010; Burgess et al., 2002; Colom et al., 2013), prospective 
methodological studies comprehensively addressing this question are required.  
 
Overall, we recommend future research to make use of samples with an increased age range, 
to apply comprehensive replication strategies improving the robustness of research findings, 
to consider an extended selection of communication measures, to investigate SC-FC coupling 
during cognitive demands, and to develop means to validly investigate the relationship 
between SC-FC coupling and GCA also in rather small and medially located brain regions such 
as the hippocampus.  
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6. Conclusion 
This study investigated the question whether individual variations in structural-functional brain 
network coupling (SC-FC coupling) are associated with individual differences in general 
cognitive ability (GCA). We used two large openly available datasets and state-of-the-art 
operationalizations of SC-FC coupling allowing for insights into different neural communication 
strategies. At the whole-brain level, higher general cognitive ability was linked to stronger SC-
FC coupling but only when considering path transitivity as communication strategy. Accounting 
for region-specific variations in communication strategies within a cross-validated prediction 
framework enabled significant prediction of individual cognitive ability scores from SC-FC 
coupling. Finally, despite distinct imaging states, different preprocessing pipelines and another 
assessment of general cognitive ability, all results replicated in an independent sample and 
the model developed in the main sample also predicted individual cognitive ability scores in 
the replication sample. This supports the robustness of our findings as well as the 
generalizability of the here developed prediction model. Taken together, our results reveal 
brain region-specific structure-function coupling strategies as neural correlate of individual 
differences in cognitive ability and provide insights into the basis of efficient information 
processing as fundamentally implicated in human cognition.  
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