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Abstract: 

Transcriptome prediction models built on European-descent individuals' data are less accurate 
when applied to different populations because of differences in linkage disequilibrium patterns 
and allele frequencies. We hypothesized multivariate adaptive shrinkage may improve cross-
population transcriptome prediction, as it leverages effect size estimates across different 
conditions - in this case, different populations. To test this hypothesis, we made transcriptome 
prediction models for use in transcriptome-wide association studies (TWAS) using different 
methods (Elastic Net, Matrix eQTL and Multivariate Adaptive Shrinkage in R (MASHR)) and 
tested their out-of-sample transcriptome prediction accuracy in population-matched and cross-
population scenarios. Additionally, to evaluate model applicability in TWAS, we integrated 
publicly available multi-ethnic genome-wide association study (GWAS) summary statistics 
from the Population Architecture using Genomics and Epidemiology Study (PAGE) and Pan-
UK Biobank with our developed transcriptome prediction models. In regard to transcriptome 
prediction accuracy, MASHR models had similar performance to other methods when the 
training population ancestry closely matched the test population, but outperformed other 
methods in cross-population predictions. Furthermore, in multi-ethnic TWAS, MASHR models 
yielded more discoveries that replicate in both PAGE and PanUKBB across all methods 
analyzed, including loci previously mapped in GWAS and new loci previously not found in 
GWAS. Overall, our study demonstrates the importance of using methods that benefit from 
different populations’ effect size estimates in order to improve TWAS for multi-ethnic or 
underrepresented populations. 
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1. INTRODUCTION 
 

Through genome-wide association studies (GWAS), many associations between single 
nucleotide polymorphisms (SNPs) and diverse phenotypes have been uncovered1. However, 
most GWAS to date have been conducted on individuals of European descent, even though they 
make up less than one fifth of the total global population2,3. Ancestry diversity in human genetic 
studies is important because as linkage disequilibrium and allele frequencies differ among 
populations, associations found within European ancestry individuals may not reflect 
associations for individuals of other ancestries and vice versa3. Some efforts to increase ancestry 
diversity in human genetics studies include the NHLBI Trans-Omics for Precision Medicine 
(TOPMed) consortium4, the Population Architecture using Genomics and Epidemiology 
(PAGE) study5, the Human Heredity and Health in Africa (H3Africa) initiative6, and the Pan-
ancestry genetic analysis of the UK Biobank (PanUKBB7). 

  
Alongside GWAS, transcriptome-wide association studies (TWAS) test predicted gene 

expression levels for association with complex traits of interest, identifying gene-trait associated 
pairs8. Different TWAS methods, such as PrediXcan and FUSION, work by estimating gene 
expression through genotype data using transcriptomic prediction models built on expression 
quantitative trait loci (eQTL) data9,10. Similarly to GWAS, TWAS are also negatively affected 
by ancestry underrepresentation, as gene expression prediction models for use in TWAS are 
often trained in European descent datasets, which reduces the power of studies conducted with 
individuals of other ancestries11,12. Still, we expect the underlying biological mechanisms of 
complex traits to be shared across human populations11, and thus prediction methods that 
account for allelic heterogeneity and better estimate effect sizes can improve the discovery rate 
and interpretation of TWAS across populations. 

  
Here, we used genomic and transcriptomic data from the Multi-Ethnic Study of 

Atherosclerosis (MESA)13 multi-omics pilot study of TOPMed to build TWAS prediction 
models (Figure 1). Using three different methods to estimate effect sizes, Elastic-Net14,15, Matrix 
eQTL16, and multivariate adaptive shrinkage (MASHR)17, we built population-specific 
transcriptomic prediction models for four MESA-defined populations – African American, 
Chinese, European, and Hispanic/Latino – across three blood cell types and evaluated their 
prediction performance in the Geuvadis18 cohort using PrediXcan9. From there, we used S-
PrediXcan19 to apply our models to GWAS summary statistics of 28 complex traits from the 
multi-ethnic PAGE5 study and PanUKBB7. We hypothesized that MASHR may improve 
transcriptome prediction and increase the number of TWAS hits in comparison to the other 
methods, as it leverages effect size estimates across different conditions - in this case, different 
populations - to adjust effect sizes. In agreement to that, our results indicated that in cross-
population predictions, MASHR models have a higher transcriptome prediction accuracy than 
Elastic Net and Matrix eQTL models. Furthermore, in our TWAS, MASHR models discovered 
the highest number of associated gene-trait pairs across all population models. These findings 
illustrate that leveraging genetic diversity and effect size estimates across populations can help 
improve current transcriptome prediction models, which may increase discovery and replication 
in association studies in underrepresented populations or multi-ethnic cohorts.   

 
 
2. METHODS 

a. Training dataset 
 
To build our transcriptome prediction models, we used data from the Multi-Ethnic Study 

of Atherosclerosis (MESA)13 multi-omics pilot study of the NHLBI Trans-Omics for Precision 
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Medicine (TOPMed) consortium. This data set includes genotypes derived from whole genome 
sequencing and transcripts per million (TPM) values derived from RNA-Seq for individuals of 
four different populations – African American (AFA), Chinese (CHN), European (EUR), and 
Hispanic/Latino (HIS) – for three different blood cell types: peripheral blood mononuclear cells 
(PBMC, ALL n = 1287, AFA n = 334, CHN n = 104, EUR n = 528, HIS n= 321), CD16+ 
monocytes (Mono, ALL n = 395, AFA n  = 75, EUR n = 221, HIS n = 99), and CD4+ T-cells (T 
cells, ALL n = 397, AFA n = 75, EUR n = 224, HIS n = 98).   

 
b. Genotype and RNA-Seq QC 

 
We performed QC on each MESA tissue-population pair separately. For the genotype 

data4 (Freeze 8, phs001416.v2.p1), we excluded INDELs, multi-allelic SNPs, and ambiguous-
strand SNPs (A/G, C/T), and removed the remaining variants with MAF < 0.01 and HWE < 1 x 
10-6 using PLINK20 v1.9. For chromosome X, filtering by HWE was only applied in variants 
found within the pseudoautosomal regions based on GRCh38 positions. Furthermore, for the 
non-pseudoautosomal region of X, male dosages were assigned either 0 or 2. After QC, the 
numbers of non-ambiguous SNPs remaining were: AFA = 15.7M; CHN = 8.4M; EUR = 9.7M; 
HIS = 13.2M. 

  
For the RNA-Seq data, we also performed QC separately by tissue-population. First, we 

removed genes with average TPM values < 0.1. For some individuals, RNA expression levels 
were measured at two different time points (Exam 1 and Exam 5); thus, after log-transforming 
each measurement and adjusting for age and sex as covariates, we took the mean of the two time 
points (or the single adjusted log-transformed value, if expression levels were only measured 
once), performed rank-based inverse normal transformation, and adjusted for the first 10 
genotype and 10 expression PCs. To estimate genotype and expression principal components, 
we used PC-AiR21, which accounts for sample relatedness, known or not. For each tissue, we 
removed genes absent in at least one population. After QC, we had 17,585 genes in PBMC, 
14,503 in Mono, and 16,647 in T cells. 

 
c. Gene expression cis-heritability estimation 

 
We estimated gene expression heritability (h2) using cis-SNPs within the 1Mb region 

upstream of the transcription start site and 1Mb region downstream of the transcription end site. 
Using the genotype data filtered only by HWE P-value > 1 x 10-6, for each tissue-population 
pair, we first performed LD-pruning with a 500 variants count window, a 50 variants count step, 
and a 0.2 r2 threshold using PLINK20 v1.9. Then, for each gene, we extracted cis-SNPs and 
excluded SNPs with MAF < 0.01. Finally, to assess cis-SNP expression heritability, we 
estimated the genetic relationship matrix and h2 using GCTA-GREML22 with the “--reml-no-
constrain” option. We considered a gene heritable if it had a positive h2 estimate (h2 - 2*S.E.  > 
0.01 and p-value < 0.05) in at least one MESA population. In total, 9,206 genes were heritable 
in PBMC, 3,804 in Mono, and 4,053 in T cells. Only these genes are included in the final 
models and were analyzed in the results. 

 
d. Transcriptome prediction models 

 
With the aforementioned genotype and gene expression data, we built transcriptome 

prediction models for each MESA tissue-population pair, and for each gene we considered cis-
SNPs as defined in the previous section. Additionally, we only considered SNPs present in the 
GWAS summary statistics of the Population Architecture using Genomics and Epidemiology 
(PAGE) study5 to build our prediction models to make sure that there would be a high overlap 
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between SNPs in the transcriptome models and SNPs in the GWAS summary statistics. After 
merging with PAGE SNPs, the average numbers of SNPs left in our dataset were: AFA = 
12.8M; CHN = 6.2M; EUR = 7.4M; HIS = 10.5M.  

 
We built our population-based models using three different approaches. The first one 

consists of a cross-validated elastic-net (EN) regression using the glmnet package in R14,15, with 
mixing parameter α = 0.5. We considered EN as our baseline model, as it has been previously 
used to make transcriptome prediction models for the TOPMed MESA data23.  

 
The second method implemented was mash (Multivariate Adaptive Shrinkage)17 in R 

(MASHR). Unlike EN, MASHR does not estimate weights by itself; rather, it takes zscore (or 
weight and standard error) matrices as input and adjusts them based on correlation patterns 
present in the data, allowing for both shared and population-specific effects. We ran MASHR 
for each gene at a time, using cis-SNPs weights estimated by Matrix eQTL16 and MESA 
populations as different conditions (Figure 2A). Then, we split MASHR-adjusted weights 
according to their respective populations, and selected the top SNP (lowest local false sign rate) 
per gene to determine which SNPs would end up in the final models (Figure 2B). In order to 
make population-based models, we used population-specific effect sizes, taken from the 
corresponding MASHR output matrices. 

 
The third and last method was based on the effect sizes estimated by Matrix eQTL16 using 

the linear regression model. We used the same approach taken to build the MASHR models, but 
the key difference is that we made the models using the unadjusted effect sizes.  

 
e. Assessing transcriptome prediction performance 

 
To evaluate the gene expression prediction performance of all our transcriptome 

prediction models, we used DNA and lymphoblastoid cell lines RNA-Seq data from 449 
individuals in the Geuvadis18 study. Individuals within the testing dataset belong to five 
different populations (Utah residents with Northern and Western European ancestry (CEU), n = 
91; Finnish in Finland (FIN), n = 92; British in England and Scotland (GBR), n = 86; Toscani in 
Italy (TSI), n = 91; Yoruba in Ibadan, Nigeria (YRI), n = 89), which we analyzed both 
separately and together (ALL). Similarly to our training dataset, we performed rank-based 
inverse normal transformation on the gene expression levels, and adjusted for the first 10 
genotype and 10 expression PCs. With the Geuvadis genotype data and our transcriptome 
prediction models, we used PrediXcan9 to estimate gene expression levels, and compared the 
estimated values to the adjusted, measured expression levels using Spearman correlation.  

 
f. Applications in association studies 

 
To test the applicability of our transcriptome prediction models in multi-ethnic 

association studies, we applied S-PrediXcan19 to GWAS summary statistics from the Population 
Architecture using Genomics and Epidemiology (PAGE) study5. The PAGE study consists of 
28 different phenotypes tested for association with variants within a multi-ethnic, non-European 
cohort of 49,839 individuals (Hispanic/Latino [n=22,216], African American [n=17,299], Asian 
[n=4,680], Native Hawaiian [n=3,940], Native American [n=652] or Other [n=1,052]). Since we 
tested multiple phenotypes and transcriptome prediction models, we considered genes as 
significantly associated with a phenotype if the association p-value was less than the Bonferroni 
corrected GWAS significance threshold of 5e-8.  
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To replicate the associations found in PAGE, we also applied S-PrediXcan19 to 
PanUKBB7 GWAS summary statistics (N=441,331; European [n=420,531], Central/South 
Asian [n=8,876], African [n=6,636], East Asian [n=2,709], Middle Eastern [n=1,599] or 
Admixed American [n=980]). For similarity purposes, we selected summary statistics of 
phenotypes that overlap with the ones tested in PAGE (Table S1). As previously described, a 
gene-trait pair association was considered significant if its p-value was less than the Bonferroni 
corrected GWAS significance threshold of 5e-8. Furthermore, we deemed significant gene-trait 
pair associations as replicated if they were detected by the same MESA tissue-population model 
and had the same direction of effect in PAGE and PanUKBB. To assess if the gene-trait 
association pairs reported in our study are novel or not, we compared them to studies found in 
the GWAS Catalog1 (All associations v1.0.2 file downloaded on 11/9/2022). 
 

3. RESULTS  
a. Increased sample sizes improve gene expression cis-heritability estimation 

With the goal of improving transcriptome prediction in diverse populations, we first 
determined which gene expression traits were heritable and thus amenable to genetic prediction, 
using genome-wide genotype and RNA-Seq data from three blood cell types (PBMCs, 
monocytes, T cells) in TOPMed MESA. We estimated cis-heritability (h²) using data from four 
different populations (African American - AFA, Chinese - CHN, European - EUR, and 
Hispanic/Latino - HIS). Variation in h² estimation between populations is expected due to 
differences in allele frequencies and LD patterns; however, we show that larger population 
sample sizes yield more h² estimates (Figure 3). For instance, with the EUR dataset (n = 528), 
we assessed h² for 10,228 genes, however, we estimated h² for 8,765 genes using the AFA 
dataset (n = 334) (Figure 3A). Moreover, we see a great impact on the CHN population, which 
has the smallest sample size. For that population, we managed to estimate h² for only 3,448 
genes. The same pattern repeats when analyzing only the heritable genes (h² lower bound > 
0.01). In EUR, 6,902 genes were deemed heritable, whereas in AFA and CHN the amount of 
heritable genes is 5,537 and 1,367, respectively (Figure 3B). Thus, larger sample sizes are 
needed to better pinpoint h² estimates, especially in non-European populations. In total, 
analyzing the union across all populations’ results, we detected 9,206 heritable genes in 
PBMCs, 3,804 in monocytes, and 4,053 in T Cells.  
 

b. MASHR models improve cross-population prediction performance 

To improve TWAS power for discovery and replication across all populations, we sought 
to improve cross-population transcriptome prediction accuracy. For this, we used data from four 
different populations and built gene expression prediction models using three different methods 
(Elastic Net (EN), Matrix eQTL, and multivariate adaptive shrinkage in R (MASHR)). We 
chose EN as a baseline approach for comparison in our analysis, as it has been previously 
shown to have better performance than other common machine learning methods such as 
random forest, K-nearest neighbor, and support vector regression24. Matrix eQTL estimates 
univariate effect sizes for each cis-SNP-gene relationship and we developed an algorithm to 
include top SNPs from each population, but population-estimated effect sizes in each 
population’s model (Figure 1). Matrix eQTL effect sizes are the input for MASHR, which we 
hypothesized might better estimate cross-population effect sizes, due to its flexibility in 
allowing both shared and population-specific effects17,25. By filtering our models to include only 
genes with positive h² (h² lower bound > 0.01) in at least one population, we saw that among all 
methods used, we obtained more gene models in MatrixeQTL and MASHR in comparison to 
EN, especially in the CHN population model (Figure 4A).  
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To evaluate model performance at population-matched and cross-population 
transcriptome predictions, we used data from the Geuvadis study, which comprises individuals 
of West African or European descent. We defined “population-matched predictions” as the 
scenarios in which the transcriptome model MESA training data and Geuvadis test data have the 
closest genetic distance with available data, and we defined “cross-population predictions” as 
any other pairs (Figure S1). Focusing on Geuvadis GBR and YRI populations, which have 
similar sample sizes and are of distinct continental ancestries, we observed that MASHR models 
significantly outperform EN models in cross-population transcriptome predictions, considering 
genes with expression predicted by both methods, as seen in the AFA-GBR and EUR-YRI 
MESA-Geuvadis populations pairs (Figure 4B). We also see a higher prediction performance by 
the CHN and HIS MASHR models in comparison to EN, regardless of the Geuvadis population 
analyzed. However, in population-matched scenarios (AFA-YRI and EUR-GBR), prediction 
performance does not significantly differ between MASHR and EN methods. Similar results 
were obtained when comparing Matrix eQTL and EN (Figure S2A). Regarding MASHR and 
Matrix eQTL models, both methods perform the same in almost all cases, except for EUR-YRI 
and all CHN predictions, in which MASHR performed better (Figure S2B). Overall, across all 
Geuvadis populations, MASHR models either performed better or the same as EN and 
MatrixeQTL models in both population-matched or cross-population transcriptome prediction 
scenarios (Table S2).   

 
c. Leveraging effect sizes across different populations improves discovery rate in multi-

ethnic TWAS 
 

In order to investigate the applicability of the models we built in multi-ethnic TWAS, we 
used S-PrediXcan with GWAS summary statistics of 28 complex traits from PAGE and 
PanUKBB. We show that across all tissue-population models, MASHR identified the highest 
number of gene-trait pair associations (205) that replicated in both PAGE and PanUKBB (P < 
5e-8), followed by Matrix eQTL (172)  and EN (93) (Table S3). When analyzing the total 
number of discoveries separately for each population, MASHR had the highest number of gene-
trait pairs in most population models, with large discrepancies found in AFA and CHN models 
when comparing MASHR and EN (Figure 5A). Additionally, when comparing gene-trait pairs, 
we saw that most MASHR hits were shared between population models (Figure 5B), whereas in 
EN, the models have higher population-specific discoveries (Figure 5C). These findings suggest 
that MASHR models show high consistency and also suggest that TWAS results are not as 
affected by the MASHR population model used as compared to EN.  

 
To contextualize our models’ findings, we investigated whether the discovered gene-trait 

pairs had been previously reported in any studies in the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/home). We saw that across 72 distinct gene-trait pairs associations 
found (totaling 475 across all models), 19 (26.39%) have not been reported in the GWAS 
Catalog, and therefore may be novel associations that require further investigation (Table S3). 
Out of those potential new biological associations, most of them (13) were discovered with 
MASHR AFA models (Table S3). Furthermore, out of the 53 distinct known GWAS catalog 
associations discovered, MASHR models identified most of them (Table S3). For instance, 
MASHR EUR models found 34 known associations, followed by MASHR AFA with 33, and 
MatrixeQTL with 32 (Figure S3).   
 
 
4. DISCUSSION 
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In this work, we sought to build population-based transcriptome prediction models for 
TWAS using data from the TOPMed MESA cohort using three distinct approaches. We saw 
that although the AFA and HIS populations' datasets contained the highest numbers of SNPs 
after quality control, EUR yielded the highest number of gene expression traits with significant 
heritability estimates across all tissues analyzed. This is most likely due to the higher sample 
size in EUR in comparison to AFA and HIS, as larger sample sizes provide higher statistical 
power to detect eQTLs with smaller effects26. Test data sample size has also been shown to 
positively correlate with gene expression prediction accuracy27.  

 
In addition to sample size, gene expression prediction accuracy is known to be greater 

when the training and testing datasets have similar ancestries12,23,27,28; however, non-European 
ancestries are vastly underrepresented in human genetics studies2,3, which compromises the 
ability to build accurate TWAS models for them. Thus, using data from the Geuvadis cohort, we 
evaluated the transcriptome prediction performance of our models and found out that MASHR 
models either significantly outperformed EN and MatrixeQTL models, or had similar 
performance. Previous studies have shown that by borrowing information across different 
conditions, such as tissues17 or cell types29, MASHR identifies shared- or condition-specific 
eQTLs, which can enhance causal gene identification25, as well as improve effect size 
estimation accuracy17. Similarly, by leveraging effect size estimates across multiple populations, 
MASHR improved cross-population transcriptome prediction without compromising 
population-matched prediction accuracy.  

 
Discovery and replication of TWAS associations are also related to the ancestries of the 

transcriptome prediction model training dataset and ancestries of the TWAS sample dataset11. 
Thus, we assessed the applicability of our models in TWAS using S-PrediXcan on PAGE and 
PanUKBB GWAS summary statistics and found out that across all tissues and populations, 
MASHR models yielded the highest number of total gene-trait pairs associations, with MASHR 
AFA reporting the highest number. In this manner, it seems that although MASHR improved 
gene expression prediction accuracy for all populations analyzed, using transcriptome prediction 
models that match the ancestries of the GWAS dataset still yields the highest number of TWAS 
discoveries, which is in agreement with many previous works11,30–33. Furthermore, by 
investigating which associations had been previously reported in the GWAS Catalog, we saw 
that most new discoveries were found by MASHR models. Some of these possible new 
discoveries are unique to MASHR models and have been corroborated previously, such as 
YJEFN3 (also known as AIBP2) and triglycerides, whose low expression in zebrafish increases 
cellular unesterified cholesterol levels34, consistent with our S-PrediXcan effect size directions 
(PAGE effect size = -0.522, p-value = 6.07e-16; PanUKBB effect size = -0.860, p-value = 
7.12e-86). Additionally, we also saw that MASHR models showed higher consistency than EN, 
which means that TWAS results are not as affected by the population model used as EN. 

 
One limitation of our TWAS is that we used transcriptome prediction models trained in 

PBMCs, monocytes and T cells, and those tissues might not be the most appropriate for some 
phenotypes in PAGE or PanUKBB. Additionally, because of the smaller sample sizes for some 
populations in our training dataset, h² and eQTL effect sizes estimates have large standard 
errors, which may affect the ability of MASHR to adjust effect sizes across different conditions 
based on correlation patterns present in the data. Regardless of that, our results mainly 
demonstrate that we can implement cross-population effect size leveraging using a method first 
applied to do cross-tissue effect size leveraging - and improve cross-population transcriptome 
prediction accuracy in doing so. Thus, increasing sample size for underrepresented populations 
will improve current MASHR TWAS models’ performances, as well as increase genetic 
diversity in the data. MASHR is most useful when population effects are shared, as 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2023. ; https://doi.org/10.1101/2023.02.09.527747doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/


 

demonstrated by the more consistent S-PrediXcan results, but population-specific effects are 
also relevant. For instance, a study in a large African American and Latino cohort discovered 
eQTLs only present at appreciable allele frequencies in African ancestry populations33. 
Moreover, since our MASHR and MatrixeQTL models focus on the top SNPs, we might not be 
including enough eQTLs in the models, especially for those genes whose expression is 
genetically regulated by multiple eQTLs with small effects.  
 
 In conclusion, our results demonstrate the importance and the benefits of increasing 
ancestry diversity in the field of human genetics, especially regarding association studies. As 
shown, sample size is valuable for assessing gene expression heritability and for accurately 
estimating eQTL effect sizes, and thus some populations are negatively affected due to the lack 
of data. However, by making transcriptome prediction models that leverage effect size estimates 
across different populations using multivariate adaptive shrinkage, we were able to increase 
gene expression prediction performance for scenarios in which the training data and test data 
have distant (“cross-population”) genetic distances with available data. Additionally, when 
applied to multi-ethnic TWAS, the aforementioned models yielded more discoveries across all 
methods analyzed, even detecting well-known associations that were not detected by other 
methods. Thus, in order to further improve TWAS in multi-ethnic or underrepresented 
populations and possibly reduce health care disparities, it is necessary to use methods that 
consider shared and population-specific effect sizes, as well as increase available data of 
underrepresented populations.    
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6. DATA AVAILABILITY 

 
All scripts used for analyses are available at 

https://github.com/danielsarj/TOPMed_MESA_crosspop_portability. MESA populations 
prediction models and raw S-PrediXcan TWAS output files are available at 
https://doi.org/10.5281/zenodo.7551845. TOPMed MESA data are under controlled access in 
dbGaP at https://www.ncbi.nlm.nih.gov/gap/ through study accession phs001416.v2.p1. 
Geuvadis expression data is at Array Express (E-GEUV-1) and genotype data is at 
http://www.internationalgenome.org/. PAGE GWAS summary statistics are available in the 
GWAS Catalog at https://www.ebi.ac.uk/gwas/publications/31217584. PanUKBB GWAS 
summary statistics are available at https://pan.ukbb.broadinstitute.org/phenotypes/index.html.  
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Figure Legends & Supplementary Data 
 

 
Figure 1: Overall study methodology. Using TOPMed MESA as a training dataset, we built 
population-based transcriptome prediction models using three different methods (Elastic Net, 
Matrix eQTL, and Multivariate adaptive shrinkage). With these transcriptome models, we 
evaluated their out-of-sample transcriptome prediction accuracy using the GEUVADIS dataset. 
Additionally, we assessed their applicability in multi-ethnic TWAS using GWAS summary 
statistics from the PAGE Study and PanUKBB. AFA = African American, CHN = Chinese, 
EUR = European, HIS = Hispanic/Latino. 
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Figure 2: Design of the methodology implemented to make MASHR models. (A) Using 
effect sizes estimated using Matrix eQTL within each population dataset, we combined them 
across genes, with the different populations as conditions, to use as input for MASHR. The 
output matrixes contain adjusted effect sizes. (B) For each population, we selected the top SNP 
(lowest local false sign rate) per gene. Then, we concatenated the Gene-top SNP pairs across 
populations to determine which SNPs would end up in the final models. Lastly, to make our 
population-based transcriptome prediction models, we used population-specific effect sizes, 
taken from the corresponding MASHR output matrices. AFA = African American, CHN = 
Chinese, EUR = European, HIS = Hispanic/Latino.  
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Figure 3: PBMC gene expression cis-heritability estimates across MESA populations. (A) 
Gene expression cis-heritability (h²) estimated for different genes across different MESA 
population datasets. Only genes with significant estimated h² (p-value < 0.05) are shown. Gray 
bars represent the standard errors (2*S.E.). Genes are ordered on the x-axis in ascending h² 
order, and colored according to the h² lower bound (h² - 2*S.E.). (B) Number of significant 
heritable genes (p-value < 0.05 and h² lower bound > 0.01) within each population dataset, by 
sample size. AFA = African American, CHN = Chinese, EUR = European, HIS = 
Hispanic/Latino.  
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Figure 4: Comparison of MESA population transcriptome prediction models. (A) The 
number of genes in each MESA population model, by method and tissue. (B) Prediction 
performance (Spearman’s rho) of MASHR and EN PBMC MESA population models in 
Geuvadis GBR and YRI populations. Only genes with expression predicted by both methods for 
each MESA-Geuvadis population pair are shown. Differences in performance assessed through 
Wilcoxon rank sum tests; ns = not significant, *** =  p-value ≤ 0.001, **** = p-value ≤ 0.0001.  
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Figure 5: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 
GWAS summary statistics. (A) Total number of significant gene-trait pairs discovered by each 
MESA population model (considering the union of the three tissues), by method. (B) Number of 
significant gene-trait pairs discovered by MASHR MESA population models (considering the 
union of the three tissues). (C) Number of significant gene-trait pairs discovered by EN MESA 
population models (considering the union of the three tissues).  
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Figure S1: Genotype principal component analysis. Plot of the first two principal 
components of TOPMed MESA populations with Geuvadis populations. AFA = African 
American (TOPMed), CEU = Utah residents with Northern and Western European ancestry 
(Geuvadis), CHN = Chinese (TOPMed), EUR = European (TOPMed), FIN = Finnish in Finland 
(Geuvadis), GBR = British in England and Scotland (Geuvadis), HIS = Hispanic/Latino 
(TOPMed), TSI = Toscani in Italy (Geuvadis), YRI = Yoruba in Ibadan, Nigeria (Geuvadis). 
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Figure S2: Prediction performance of MESA population models in Geuvadis GBR and 
YRI populations. (A) Prediction performance (Spearman’s rho) of EN and MatrixeQTL PBMC 
MESA population models in Geuvadis GBR and YRI populations. Only genes with expression 
predicted by both methods for each MESA-Geuvadis population pair are shown. Differences in 
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performance assessed through Wilcoxon rank sum tests; ns = not significant, ** = p-value ≤ 
0.01, **** = p-value ≤ 0.0001. (B) Prediction performance (Spearman’s rho) of MASHR and 
MatrixeQTL PBMC MESA population models in Geuvadis GBR and YRI populations. Only 
genes with expression predicted by both methods for each MESA-Geuvadis population pair are 
shown. Differences in performance assessed through Wilcoxon rank sum tests; ns = not 
significant, **** = p-value ≤ 0.0001.  
 

 
Figure S3: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 
GWAS summary statistics that have been reported in the GWAS catalog. Total number of 
significant gene-trait pairs discovered by each MESA population model (considering the union 
of the three tissues), by method.  
 
Table S1: PAGE and PanUKBB summary statistics used in this study.  

Table S2: Summary of every MESA training to Geuvadis test population transcriptome 
prediction, with number of genes with expression predicted and median Spearman’s rho. The 
second sheet contains Wilcoxon rank sum tests p-values for all methods comparisons.  
 
Table S3: Compiled S-PrediXcan gene-trait pair discoveries, significant in PAGE and 
PanUKBB GWAS summary statistics with the same direction of effect. 

Table S4: List of NHLBI TOPMed consortium members. 
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