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 2 

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique 24 

biodiversity. Various organisms show different adaptative strategies in this habitat, but how 25 

viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and 26 

Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes 27 

encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral 28 

database, we investigate the biogeography and functional repertoire of these viruses at a global 29 

scale. We first confirm the existence of an ecological barrier that clearly separates polar and 30 

nonpolar viral communities, and demonstrate that temperature drives dramatic changes in the 31 

virus–host network at the polar/nonpolar boundary. Ancestral niche reconstruction suggests 32 

that adaptation of these viruses to polar conditions has occurred repeatedly over the course of 33 

evolution, with polar-adapted viruses in the modern ocean being scattered across their 34 

phylogeny. Numerous viral genes are specifically associated with polar adaptation, although 35 

most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results 36 

suggest that giant viruses adapt to cold environments by changing their functional repertoire, 37 

and this viral evolutionary strategy is independent of the polar adaptation of their hosts. 38 

 39 
Main 40 

Polar regions are recognized as among the coldest environments on Earth, with strong 41 

seasonal variations in light cycles. Nevertheless, these regions could nourish a diverse range of 42 

creatures, from microscopic organisms to large animals, thanks to the primary production by 43 

phytoplankton. Organisms adapted to polar environments exhibit distinctive physiological or 44 

morphological characteristics, which augment their fitness in these extreme but lush 45 

environments. For example, polar bears show characteristic morphological traits whose 46 

underlying genetic variations occurred in their ancestral gene pools1. Both Arctic and Antarctic 47 

fishes encode antifreeze proteins that allow them to maintain physiological activity in cold 48 
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waters2,3, while some psychrophilic bacteria produce oxygen-scavenging enzymes or modify 49 

their membrane fatty acid composition4,5.  50 

How do viruses adapt to polar environments? In the ocean, viruses are the most 51 

abundant biological entities6 and play important roles in the regulation of microbial host 52 

communities, carbon and nutrient cycling, and horizontal gene transfer among organisms7–10. 53 

Recent metagenomic studies have revealed that both Arctic11,12 and Antarctic13,14 environments 54 

harbour diverse viruses, with an elevated diversity of prokaryotic dsDNA viruses in the Arctic 55 

Ocean11. A large proportion of Arctic-specific genes from these viruses were suggested under 56 

positive selection based on their mutation patterns. This implied a role for gene repertoire in 57 

viral adaptation, although most of those genes were of unknown function. It is also known that 58 

phylogenetically closely related viruses can display different responses in their infection 59 

dynamics to varying temperature15,16, suggesting that virus–host systems adapt to thermal 60 

changes. Another study showed that a prokaryotic virus reduced its genome in response to 61 

decreased culture temperature17. These studies imply possible adaptive mechanisms of viruses 62 

to low temperature or polar ecosystems. However, our knowledge on such viral adaptations is 63 

still limited.  64 

In our previous study, we revealed a remarkable shift in the community composition of 65 

eukaryotic dsDNA viruses from nonpolar to polar biomes18. These viruses, classified in phylum 66 

Nucleocytoviricota (“giant viruses”), are known for their large genomes encoding hundreds to 67 

thousands of genes19,20. These viruses are ancient21, diverse22,23, abundant24,25, and active26 in 68 

the ocean. Despite the existence of a clear polar/nonpolar barrier for these viruses, the 69 

underlying genomic and ecological mechanisms are unknown. How frequently these viruses 70 

have crossed this polar barrier over evolutionary time also remains unclear. As the genomes of 71 

Nucleocytoviricota dynamically evolve by losing and gaining different functions19,27, we 72 

hypothesized that adaptation to polar environments impacts their gene repertoire.  73 
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In this study, we investigated genomes of eukaryotic large DNA viruses to characterize 74 

their genome-level adaptations to polar environments. We leveraged recently reconstructed 75 

viral and eukaryotic environmental genomes from the multidisciplinary Tara Oceans 76 

international research project28,29. The viral genomic data include environmental genomes of 77 

viruses from phylum Nucleocytoviricota and a recently discovered phylum, Mirusviricota28. 78 

We first assess the existence of a polar barrier for giant viruses by analysing viral 79 

community composition and by computing robust temperature optima for viruses and their 80 

predicted hosts. We then perform ancestral state reconstruction for polar and nonpolar niches 81 

along the phylogenomic tree of these viruses to quantitatively estimate the adaptive 82 

evolutionary events. Finally, we delineate the functions that are specific to “polar” viruses and 83 

present evidence that viral genomic adaptation to low temperature is independent from the 84 

adaptation of their hosts. 85 

 86 

Results and Discussion 87 

Polar barrier for giant viruses 88 

We investigated the biogeography of giant virus genomes from the Global Ocean 89 

Eukaryotic Viral (GOEV) database28. Their abundance profiles across Tara Oceans samples 90 

from different size fractions (Supplementary Fig. 1a,b; Supplementary Table 1) revealed 1,380 91 

viral genomes that showed signals (>25% of the genome length was mapped by reads, see 92 

methods in our previous paper28) in at least one sample out of 928 samples (The details of 93 

biogeography were in the supplementary text; Supplementary Fig. 1-3). The presence/absence 94 

distribution of viral genomes across biomes revealed a large number of genomes specific to 95 

the Polar biome. Out of 569 genomes detected in polar regions, 262 (46.05%) were exclusive 96 

to the Polar biome (Supplementary Fig. 4a). Accordingly, biome-based classification of viral 97 

communities (i.e., Polar, Coastal, Trades, and Westerlies) had significant explanatory power 98 
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for community variation (Supplementary Fig. 4b,c; ANOSIM, P < 0.01). The R value increased 99 

from 0.4021 to 0.6141 after merging three nonpolar biomes, demonstrating the existence of a 100 

clear polar barrier for giant virus communities. The viral communities of Arctic regions were 101 

also characterized by their relatively high abundances showing peaks in cumulative coverage 102 

plots for different size fractions (Supplementary Fig. 1b). The major groups of viruses in this 103 

area were Algavirales, followed by Imitervirales as in other areas of the ocean (Supplementary 104 

Fig. 2c). 105 

We inferred a virus–plankton network through co-occurrence analysis to further 106 

characterize the polar barrier in the context of virus-host interaction. In this analysis, we 107 

combined our virus genome data with previously reconstructed marine eukaryotic genome 108 

data29. In total, 2,135 virus–eukaryote associations (edges) were inferred in the network, with 109 

the majority (91.94%) of them being positive associations (Fig. 1a; Supplementary Table 3). 110 

Virus–eukaryote pairs with strong associations (edge weight ≥ 0.4) showed significantly higher 111 

protein similarities between their genomes than those without strong associations (no edges or 112 

edges with weight <0.4) (Wilcoxon rank-sum test, P = 1×10−13) (Fig. 1b). Such an increase of 113 

sequence similarity can be due to horizontal gene transfers between viruses and hosts30,31, 114 

supporting the prediction of true virus–host relationships in the reconstructed network. A 115 

previous study revealed that the structure of the network for marine eukaryotes and prokaryotes 116 

correlates with the temperature optima of species32. By estimating robust temperature optima 117 

for individual viruses and eukaryotes33, we identified a strong correlation between the 118 

temperature optima and the structure of the virus–eukaryote network (Fig. 1a). A dramatic 119 

structural change in the network at the temperature-dependent polar/nonpolar boundary is the 120 

source of the uniqueness of polar viral communities. 121 

Latitudinal diversity gradients are characterized by relatively low polar and high 122 

temperate biodiversity34 and are widespread across all ranges of marine microorganisms35. 123 
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Previous studies revealed a similar latitudinal diversity gradient for giant viruses35, but not for 124 

prokaryotic dsDNA viruses11,35 and RNA viruses36. In this study, various diversity gradient 125 

patterns were observed among viruses of different size fractions and main taxonomic groups 126 

(Supplementary Fig. 1d; Supplementary Fig. 5). The reasons underlying the Arctic diversity 127 

hotspots for some viruses (e.g., viruses in large size fractions and mirusviruses) may reflect 128 

their host ranges as previously suggested35. Notably, eukaryotic nodes (i.e., potential hosts) 129 

associated with viruses showed a pattern distinct from the general diversity gradient trend with 130 

increasing diversity towards high latitudinal regions (Supplementary Fig. 6). 131 

 132 

Potential hosts for polar viruses 133 

A phylogeny-informed filtering method, Taxon Interaction Mapper (TIM)37,38, was 134 

applied to the edges of the network to assign predicted host taxa to viral clades. This method 135 

assigned predicted host taxa (five taxa in total) to 34 viral clades (Supplementary Fig. 7a). 136 

These predictions are summarized in Supplementary Fig. 7b and included known virus–host 137 

relationships: Mesomimiviridae (from Imitervirales) and Phaeocytales39–41; Mesomimiviridae 138 

and Pelagomonadales42,43; and Prasinovirus (from Algavirales) and Mamiellales44,45.  139 

Recent discoveries of giant endogenous viral elements (GEVEs) that are widespread 140 

across different eukaryotes demonstrated the impacts of giant viruses’ infection on host 141 

genome evolution46–49. We systematically analysed insertions of genomes of giant viruses and 142 

their satellite viruses (i.e., virophages) in marine eukaryotic genomes29. Among the five 143 

eukaryotic taxa predicted to contain viral hosts, the diatom order Chaetocerotales showed the 144 

largest number of insertion signals of both giant viruses and virophages (Supplementary Fig. 145 

7b), suggesting infection of dsDNA viruses in these diatoms. Because only ssDNA and ssRNA 146 

viruses have been reported to infect species of diatoms50, we further analysed draft genomes of 147 

two isolated Chaetoceros species51,52, revealing three putative GEVEs in C. tenuissimus and 148 
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one GEVE in C. muelleri. Two viral DNA polymerase genes detected in the Chaetoceros 149 

genomes were phylogenetically placed close to Asfuvirales and Imitervirales clades 150 

(Supplementary Fig. 7c), corroborating the virus–host relationships of 151 

Imitervirales/Chaetocerotales and Asfuvirales/Chaetocerotales predicted by our phylogeny-152 

informed co-occurrence method. Because chaetocerotalid diatoms are abundant and diverse in 153 

both the Arctic and Southern Oceans53,54, this unidentified virus–host relationship may account 154 

for the diversity of giant viruses in high-latitude regions.  155 

 156 

Recurrent polar adaptations throughout viral evolution 157 

To investigate viral adaptation across the polar barrier, we assigned ecological niche 158 

categories, either “Polar” or “Nonpolar”, to individual viral genomes. Of 1,380 viral genomes, 159 

450 genomes were classified as Polar, while 818 genomes were classified as Nonpolar (Fig. 160 

2a,b). 111 genomes were labelled “Unknown” because of their ambiguous distribution patterns. 161 

This ecological niche assignment was consistent with the robust temperature and latitude 162 

optima (Supplementary Fig. 8a). We then investigated the niche category assignment in the 163 

phylogenomic tree of viruses and found numerous clades of Polar viruses scattered across the 164 

tree (Fig. 3a). One Polar clade included an Arctic-original metagenome-assembled genome 165 

(MAG) and organic lake phycodnaviruses derived from an Antarctic organic lake14 166 

(Supplementary Fig. 8b). Emiliania huxleyi viruses, known to occur at high latitudes, were also 167 

assigned to Polar clades. All six genomes of Proculviricetes28, a recently discovered class-level 168 

group recovered exclusively from the Arctic and Southern Oceans, were classified as Polar 169 

viruses. These examples corroborate the reliability of the ecological niche assignment using 170 

global-scale abundance profiles. 171 

We then performed Polar/Nonpolar state reconstruction for ancestral nodes in the tree 172 

using a maximum likelihood approach (see Methods). As a result, 118 Nonpolar-to-Polar and 173 
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95 Polar-to-Nonpolar niche adaptations were inferred along the branches of the tree (Fig. 2a). 174 

These adaptations thus occurred recurrently throughout the evolution of these viruses starting 175 

from the root of the tree, which was inferred as Nonpolar. Yet, our data could not exclude the 176 

possibility of a polar-origin scenario due to the difficulty in determining the root of the tree of 177 

giant viruses. The divergence of these viruses is estimated to predate the divergence of 178 

eukaryotes21,23. Most of the reconstructed niche adaptations occurred relatively recently after 179 

the formation of genera, but some adaptations were inferred to have occurred during the early 180 

stage of evolution, corresponding to order-level divergence (Fig. 2c). 181 

 182 

Polar-specific viral functions and their phylogenetic distributions 183 

Genomic adaptation (i.e., adaptation by alteration of gene repertoire) to polar regions 184 

was investigated based on functions encoded in the viral genomes. We first annotated genes in 185 

the viral genomes with the KEGG Orthologs (KOs). For KOs (n = 1591) that were observed in 186 

more than four genomes, we calculated robust temperature and latitude optima (Supplementary 187 

Table 4). The temperature optima ranged from −1.54 °C to 27.31 °C, and the latitude optima 188 

from 5.25 ° to 78.96 °. The distribution of these values revealed two major groups of KOs: one 189 

distributed in high-latitude/low-temperature regions (n = 314, 19.74%) and another in lower-190 

latitude/higher-temperature regions (n = 1,277, 80.26%) (Fig. 3a). The 314 Polar-specific 191 

genes had temperature optima below 10 °C and latitude optima above 50 °. The temperature 192 

and latitude optima for conserved core genes of giant viruses were found in the second group, 193 

being distributed at around 13–14 °C and 37–40 °, respectively. 194 

We then calculated the phylogenetic diversity of individual KOs using the viral 195 

phylogenomic tree as a reference to assess the breadth of their phylogenetic distribution 196 

(Supplementary Fig. 9a). Overall, Polar-specific KOs showed a relatively low phylogenetic 197 

diversity (median = 6.94) compared with other KOs (median = 9.67) (Wilcoxon rank-sum 198 
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 9 

test, P < 0.01), indicating relatively narrow phylogenetic distributions of the Polar-specific 199 

KOs. To further characterize the phylogenetic distributions of the 314 Polar-specific KOs, we 200 

examined the strength of phylogenetic signals in their distribution using a model comparison 201 

approach (see Methods). This analysis revealed that the reference phylogenomic tree has 202 

insufficient explanatory power for the phylogenetic distribution of 193 Polar-specific KOs 203 

(61%) out of the 314 KOs (chi-squared test, P < 0.05). It is thus inferred that additional 204 

factors rather than speciation history impacted the phylogenetic distribution of these KOs; 205 

environmental conditions or associated host distributions could be such factors. 206 

 207 

Polar-specific viral functions and metabolic pathways 208 

The proportion of polar-specific KOs (among all genes with KO annotations in a viral 209 

genome) was significantly higher in Polar genomes (15.84% on average) compared to 210 

Nonpolar (6.95%) and Unknown (7.93%) genomes (Supplementary Fig. 9b; Kruskal-Wallis 211 

test, P < 0.01). Among Polar-specific KOs, ceramide glucosyltransferase (K00720) and 212 

dihydrofolate reductase (K18589) were exclusively distributed in polar genomes. Ceramide 213 

glucosyltransferase catalyzes sphingolipid glycosylation, indicating the biosynthesis of viral 214 

sphingolipids may improve the fitness of polar viruses55. Dihydrofolate reductase could 215 

provide dTMP pools for low GC content viruses, and a possible role of this function is to 216 

facilitate the replication of viruses in the persistent infections56. Additionally, nitrate 217 

transporter (K02575) had a high ratio of polar to nonpolar phylogenetic diversity (ratio = 7.96), 218 

thus showing a comparatively wide phylogenetic distribution in Polar genomes. The nitrate 219 

transporter pathway has a role in assimilating extracellular nitrate/nitrite, implying a potential 220 

role for Polar viruses to reprogram host metabolism to fit the nitrate-deficient polar oceans57. 221 

Some metabolic functions, including CoA biosynthesis (4'-phosphopantetheinyl transferase) 222 
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and secondary metabolite biosynthesis (hydroxymandelonitrile lyase and 2-polyprenyl-6-223 

hydroxyphenyl methylase), also showed a high phylogenetic diversity for Polar genomes. 224 

At the pathway level, we found that six pathways were significantly enriched in Polar 225 

KOs (Fig. 3b; Fisher's exact test, P < 0.05). Biosynthesis of unsaturated fatty acids, was found 226 

to be the most significantly enriched with polar KOs. A high proportion of unsaturated fatty 227 

acids is known as an adaptive trait for bacteria inhabiting low temperature and high pressure 228 

environment58. Giant viruses isolated from high latitude areas are known to encode enzymes 229 

for the biosynthesis of unsaturated fatty acid41 and may rewire the host physiology of fatty 230 

acid55. The N-glycan biosynthesis pathway also had a relatively high ratio of Polar-specific 231 

KOs. N-glycan influences the virus replication cycle, including virus recognition and virus 232 

release59. Neuroactive ligand-receptor interaction was the pathway most significantly enriched 233 

with polar specific KOs, implying the ability of polar viruses to regulate signal transduction. 234 

Collectively, these results underscore the importance of membrane-related pathways, including 235 

unsaturated fatty acid and specific membrane-related functions, in polar virus–host interactions. 236 

 237 

Other potential polar adapted functions  238 

In addition to the above statistical analyses based on the temperature and latitude 239 

optima, we performed an enrichment analysis of KOs by examining their presence in Polar and 240 

Nonpolar genomes at different evolutionary scales to capture a variety of situations in the 241 

phylogenetic distributions of KOs. Specifically, this analysis was performed at four different 242 

lineage levels (i.e., root, main group, family, and genus). The analysis revealed 265 functions 243 

that were significantly enriched in Polar genomes inside at least one lineage (Fisher's exact test, 244 

P < 0.05; Supplementary Table 4). These KOs enriched in Polar viral genomes showed lower 245 

temperature optima than other KOs (Supplementary Fig. 9c; Wilcoxon rank-sum test, P < 0.01). 246 

For a finer-grained observation, we focused on one Mesomimiviridae clade, containing a 247 
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similar number of Polar (n = 32) and Nonpolar (n = 40) genomes scattered in a subtree of the 248 

phylogenomic tree. In this example, four functions were found in more than five genomes from 249 

different Polar clades (Fig. 4a). Three of them (K01627, K00979, K06041) co-occurred in the 250 

same genomes and formed a near-complete CMP−KDO biosynthesis module in the 251 

lipopolysaccharide biosynthesis pathway (Fig. 4b). Lipopolysaccharides are the main 252 

component of the Gram-negative bacterial outer membrane, and enzymes of CMP−KDO 253 

biosynthesis were found in the genome of Cafeteria roenbergensis virus60. This result suggests 254 

that the genomes in the examined Polar clade have adapted to the polar environment by coating 255 

virions with bacteria-like glycoconjugate to enhance their interactions with Polar hosts. 256 

The KO system can annotate only functionally known genes, and therefore we 257 

calculated robust temperature and latitude optima for gene cluster communities, de novo 258 

clusters of viral genes28. The result indicated a slightly higher proportion of Polar-specific gene 259 

clusters (26.43%) than obtained by KO annotations (19.74%) (Fig. 4c; Supplementary Fig. 260 

10a), indicating the presence of genes of unknown function that show Polar-specific 261 

distributions. We also found that Polar genomes have a slightly but significantly higher 262 

proportion of Alanine-rich low-complexity regions than Nonpolar and Unknown genomes 263 

(Supplementary Fig. 9d; Dunn's test, P < 0.05, following a significant Kruskal-Wallis test, P = 264 

0.0002). These low-complexity sequences potentially have an anti-freeze function, as alanine-265 

rich helical structure is one of the significant characteristics of type I antifreeze proteins for ice 266 

growth inhibition61. Additionally, the proportion of Polar viral genomes that encoded antifreeze 267 

protein homologs (n = 7, 1.6%) was higher than the genomes of other groups (n = 6, 0.65%), 268 

although the difference was not statistically significant (P > 0.05). 269 

 270 

Polar-specific functions in microbial-eukaryotes 271 
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Finally, to examine whether genomic adaptation occurs in eukaryotic plankton in polar 272 

regions and to test if the adaptation is related to the one in viruses, we calculated the 273 

temperature and latitude optima for KOs (n = 11,988) assigned to genes in eukaryotic genomes. 274 

A similar pattern of Polar and Nonpolar KO groups was identified, although the proportion of 275 

the Polar KO group (n = 523, 4.36%) was much smaller than that for viruses (19.74%) (Fig. 276 

4c; Supplementary Fig. 10b). Interestingly, of the 523 KOs in the eukaryotic Polar group, only 277 

four were found in the viral Polar group. These were PPM family protein phosphatase, L-278 

galactose dehydrogenase, transcription factor S, and ATP-dependent DNA helicase DinG. This 279 

result indicates that most Polar viral functions do not exhibit the same temperature/latitude 280 

optima seen in eukaryotic genomes. The result further suggests that virus–host horizontal gene 281 

transfer is not the primary driver of viral polar adaptation, and that genomic adaptations are 282 

uncoupled between viruses and eukaryotes.  283 

 284 

Conclusions 285 

Functional repertoire is considered an important trait for the adaptation of organisms. 286 

Previous discoveries of functionally related genes in viruses55,62 indicated that functional 287 

repertoire could also be important for adaptive evolution of viruses. However, this has rarely 288 

been addressed for large and giant DNA viruses at a wide geographic scale as compared with 289 

cellular organisms. Thanks to the recent progress in metagenomics, we investigated the links 290 

between the biogeography, host types, and gene repertoire of viruses infecting marine 291 

eukaryotes. We confirmed the existence of a strong polar/nonpolar barrier for these viruses and 292 

revealed size fraction-dependent Arctic diversity hotspots for some virus groups, which may 293 

reflect a high diversity of their hosts in cold environments. Temperature was an important 294 

factor that shaped the virus–host interactions of polar environments. Consistent with these 295 

findings, our analyses suggested a presently unidentified virus–host relationship between polar 296 
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diatoms and giant viruses. Our phylogenomic tree and ancestral state reconstruction revealed 297 

back-and-forth adaptations between lower- and higher-temperature niches that occurred 298 

recurrently throughout the long evolutionary course of these viruses. Numerous functions, 299 

especially ones related to host interactions, were found to be specific to viral polar adaptation, 300 

but most of them were not identified as polar-specific functions in eukaryotes. Furthermore, 301 

the gene repertoire of these large DNA viral genomes appears more evolutionarily flexible and 302 

responsive to temperature change than that of eukaryotic genomes. The discovery of this 303 

difference in gene repertoire between polar and nonpolar viruses infecting marine eukaryotes 304 

prompts concern about the influence of climate warming on the marine ecosystem, given the 305 

importance of these viruses in regulating their host communities and biogeochemical cycling. 306 

  307 
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Methods  308 

Global Ocean Eukaryotic Viral (GOEV) database 309 

Metagenomic datasets and environmental data are provided in Supplementary Table 1. 310 

The Global Ocean Eukaryotic Viral (GOEV) database contained 1,817 viral genomes28,30,63. 311 

Taxonomic inference, read mapping, gene call and gene annotation of the GOEV were 312 

performed in a previous work28. 1380 detected viruses were classified into six main taxonomic 313 

groups: five orders (i.e., Algavirales, Asfuvirales, Imitervirales, Pandoravirales, and 314 

Pimascovirales) and the newly discovered phylum, Mirusviricota. Six different size fractions 315 

were used in this study: 0.22–1.6 µm or 0.22–3.0 µm (“Pico”), 0.8–5 µm (“Piconano”), 5–20 316 

µm (“Nano”), 20–200 µm (“Micro”), 200–2,000 µm (“Macro”), and 0.8–2,000 µm (“Broad”). 317 

The size fraction below 0.22 µm was excluded in this study because of the low relative 318 

abundance and high overlap with species from the Pico size fraction. Mean coverage of these 319 

viruses was transformed into RPKM (Reads Per Kilobase of exon per Million mapped reads) 320 

using the formula: numReads / (genomeLength/1000 * totalNumReads/1,000,000). RPKM 321 

profile was used for the ecological analyses in this study. 322 

 323 

Phylogenetic tree construction 324 

Phylogenetic trees used in this study were reconstructed using IQ-TREE v.1.6.264. The 325 

viral species tree was reconstructed with the site-specific frequency PMSF model following a 326 

best-fitting model according to the BIC from the ModelFinder Plus option. The PolB tree was 327 

of Nucleocytoviricota reference genomes and Chaetoceros genomes was reconstructed with 328 

the LG+F+I+G4 model. Tree structure manipulation and analysis were done using ETE3 329 

toolkit v.3.1.165. iTOL v.6 was used to visualize the phylogenetic trees66. Phylogenetic 330 

diversity was calculated using the ‘pd’ function in the R package ‘picante’67 for polar and 331 

nonpolar genome subsets.  332 
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 333 

Ecological analyses 334 

Diversity analyses were performed using R v.4.0.168 in Rstudio v.1.3.95969. To evaluate 335 

the diversity of each sample, the richness (number of MAGs), Shannon’s index and Pielou’s 336 

evenness were calculated with the package ‘vegan’70. Compositional variation among 337 

samples was assessed with a non-metric multidimensional scaling (NMDS) ordination based 338 

on Bray-Curtis dissimilarity. Samples with low viral abundance and richness produce outliers 339 

that reduce the readability of the NMDS ordination plot. To avoid such a bias, samples for 340 

which the sum of cumulative coverage was less than 10 or richness was less than 5 (set as the 341 

cutoff threshold) were removed from the compositional variation analyses. Statistical 342 

significance of differences among the sample groups (size fractions and biomes) was tested 343 

using an ANOSIM (analysis of similarities) with 9,999 permutations. The significance 344 

threshold was set to a p-value of 0.01. The plots and maps of sampling stations were generated 345 

by packages ‘ggplot2’71 and ‘rgdal’72. 346 

 347 

Gene annotation and clustering 348 

Genes were predicted using Prodigal v.2.6.373 within anvi’o v6.174 with the default 349 

parameters. Gene cluster communities were classified through the AGNOSTOS75 workflow. 350 

Those two steps were performed and described in a previous work28. For functional annotation, 351 

genes were assigned to KEGG Orthologs (KOs) using eggNOG-mapper v.2.1.576 (“Diamond” 352 

with an E-value cut-off of 1.0×10−5). Viral marker genes were searched with in-house HMM 353 

profiles from NCVOG (nucleocytoplasmic virus orthologous genes)77 and GVOG (giant virus 354 

orthologous groups)22 databases using HMMER v.3.2.1 (http://hmmer.org) with an E-value of 355 

1×10−3. 78Antifreeze proteins were detected using InterProScan v.5.44-79.078. Low-complexity 356 
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regions of protein sequences were identified using the option ‘-qmask seg’ in usearch 357 

v.11.0.66779. 358 

 359 

Virus–plankton interaction network 360 

We determined the relative abundance matrix for the virus MAGs from the Pico size 361 

fractions and relative abundance matrices for eukaryotic MAGs from five cellular size fractions 362 

(Piconano, Nano, Micro, Macro, and Broad). To create the input files for network inference, 363 

we combined the viral matrix with each of the eukaryotic matrices (corresponding to different 364 

size fractions), and only the samples represented by both viral and eukaryotic MAGs were 365 

placed in new files. Relative abundances in the newly-generated matrices were normalized 366 

using centred log-ratio (clr) transformation after adding a pseudo-count of one to all matrix 367 

elements because zero cannot be transformed in clr. Normalization and filtering were 368 

separately applied to viral and eukaryotic MAGs.We then removed the MAGs that had fewer 369 

than three sample observations. Network inference was performed using FlashWeave 370 

v.0.15.080 with Sensitive mode to set a threshold of α < 0.01 as the statistical significance and 371 

without the default normalization step. All detected pairwise associations were then assigned 372 

a weight that ranged between −1 and +1. The network was visualized with Cytoscape v.3.7.181 373 

using the prefuse force-directed layout. Proteins between linked genome pairs were aligned 374 

using BlastP in Diamond v.2.0.682 with an E-value cut-off of 1.0×10−50. 375 

 376 

Host prediction 377 

First, we pooled network associations from five size fractions by keeping the best positive 378 

or negative associations (i.e., the edges with the highest absolute weights). We used a 379 

phylogeny-guided filtering approach, Taxon Interaction Mapper (TIM)37, to predict the host 380 

using the global nucleocytoplasmic large DNA virus (NCLDV)–eukaryote network. TIM 381 
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provides a list of nodes in the viral tree and associated NCBI taxonomies (order, class, and 382 

phylum) of eukaryotes that show significant enrichment in the leaves under the nodes. All the 383 

virus–eukaryote associations were mapped on the viral phylogenetic tree to calculate the 384 

significance of the enrichment of specific associations using TIM, and the result was visualized 385 

with iTOL v.6. 386 

 387 

Endogenous viral signals 388 

We searched the viral signals in 713 genomes from the eukaryotic environmental genomes 389 

database using VirSorter2 v.2.2.329,83. Both NCLDV and Lavidaviridae (virophage) genomic 390 

insertions (or co-binning) were searched using --min-score 0.85 and 0.95 for NCLDV and 391 

virophage, respectively. We next obtained long-read assembled genomes of two Chaetoceros 392 

isolates, C. muelleri 52and C. tenuissimus 51. Giant Endogenous Viral Elements (GEVEs) were 393 

detected using ViralRecall v.2.1 (-s 5 -w 10)84. Nucleocytoviricota DNApolB sequences in 394 

Chaetoceros genomes were detected using HMMER v.3.2.1 search against an in-house 395 

DNApolB database. Chaetoceros-originating DNApolB sequences were manually 396 

concatenated if they were in the same contig and had continuous gene IDs. Chaetoceros-397 

originating DNApolBs were aligned with other reference NCLDV DNApolBs using MAFFT-398 

linsi v.7.45385, and the phylogenetic tree was constructed using IQ-TREE as described above64. 399 

 400 

Size index 401 

Each Tara Oceans metagenome corresponds to a specific filtering size fraction (Pico, 402 

Piconano, Nano, Micro, Macro, and Broad size fractions as defined above), which were sorted 403 

as a list by increasing size. An index constant was set for each size fraction from small to large: 404 

Pico = 1, Piconano & Broad = 2, Nano = 3, Micro = 4, Macro = 5 (the Broad and Piconano 405 

size fractions were merged because of their similar relative abundances and lack of Arctic 406 
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samples for the Piconano fraction). We calculated the size index for a given genome by first 407 

multiplying the RPKM of the genome in a sample by the corresponding index constant, then 408 

dividing the sum of the products by the overall sum of the RPKMs of the genomes from all 409 

samples. 410 

 411 

Biome and size niche 412 

Each sample was associated with one specific marine biome (Coastal, Trades, Westerlies, 413 

or Polar). To investigate the difference between polar and nonpolar regions, we pooled Coastal, 414 

Trades, and Westerlies samples as “Nonpolar”. First, we assigned each genome to Polar or 415 

Nonpolar if a genome was exclusive to either nonpolar or polar biomes. Additionally, on the 416 

basis of RPKM profiles, we calculated the significance using the Wilcoxon rank-sum test. 417 

Adjustments for multiple testing were performed using the Benjamini-Hochberg (BH). The 418 

significance threshold was set to a corrected P-value of 0.05. Similar assignments were 419 

performed for two size fractions: intercellular (Pico-size) and intracellular (Piconano, Nano, 420 

Micro, Macro, and Broad).  421 

 422 

Robust ecological optimum and tolerance 423 

We calculated the robust ecological optimum for a genome (or a gene), which reflects the 424 

optimal living condition regarding a given environmental parameter and a tolerance range 425 

around this optimum defined by lower and upper bounds32,33. For each genome (or a gene), we 426 

computed the proportion of RPKM in a given sample relative to the sum of RPKM over all 427 

samples. We then used these proportions to populate a weighted vector of a fixed size (n = 428 

10,000) with environmental values accordingly. The ecological optimum is then defined as the 429 

median value (Q2) of this vector, and the tolerance (niche) range is given by the interquartile 430 

range (Q3 to Q1; some environmental parameter values were missing [nonavailable (NA)] for 431 
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some samples). To avoid inferring spurious ecological optima and tolerance ranges for 432 

genomes (or genes) for which there were many missing values, we set a minimum threshold of 433 

10 observations with non-NAs and a minimum fraction of 30% non-NA values. 434 

 435 

Ancestral states estimation and Relative Evolution Divergency 436 

Ancestral states of Nonpolar and Polar viruses were estimated using the function “ace” 437 

(Ancestral Character Estimation) in the R package ‘ape’86. The input files were a rooted 438 

phylogenetic tree based on the four-hallmark gene set described above. In the tree, we retained 439 

only viruses with biome assignments of Polar or Nonpolar, and excluded viruses with 440 

“Unknown” biomes. We used type = “discrete”, method = “ML”, and model = “ER” (one-441 

parameter equal rates model). The ancestral states were analysed based on a series of likelihood 442 

values for Polar and Nonpolar. Relative Evolutionary Divergence (RED) values were 443 

calculated using the “get_reds” function in the package “castor”87. 444 

 445 

KO enrichment in Polar viral genomes  446 

“Polar”, “Nonpolar”, or “Unknown” biome niche was assigned to each viral genome as 447 

described previously. For individual lineages at four taxonomic levels (root, main group, 448 

family, and genus), the enrichment of a given KO in Polar genomes assessed using Fisher’s 449 

exact test in SciPy v.1.7.188. Adjustments for multiple testing were performed using the 450 

Benjamini-Hochberg (BH). The significance threshold was set to a corrected P-value of 0.05. 451 

 452 

Phylogenetic signal of functions 453 

We hypothesized that the phylogenetic distributions of some polar specific functions 454 

(i.e., “trait distribution”) could be better explained in part by environment selection rather 455 

than only by speciation history. We therefore compared two models, (i) the Brownian motion 456 
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model (Pagel’s lambda = 1, used as the null hypothesis in which the distribution of a trait is 457 

simply explained by species tree) and (ii) the Lambda model (0 ≤ Pagel’s lambda ≤ 1; lambda 458 

= 0 corresponds to the lack of phylogenetic signal in the distribution of a trait), by the 459 

likelihood ratio test using the function “fitContinuous” in an R package “geiger”89. The p-460 

values to reject the null hypothesis were calculated by assuming chi-squared distribution with 461 

1 d.f. for the likelihood-ratio test statistic and adjusted using the BH procedure. The threshold 462 

was set to a corrected p-value of 0.05 463 
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  694 
 695 

 696 
Fig. 1 | Virus–plankton interaction network. a, Five individual networks inferred using input 697 
matrices for the relative frequencies of eukaryotes (five size fractions) and giant viruses (Pico-698 
size fraction). The best positive or negative association (i.e., the edges with the highest absolute 699 
weights between two genomes) were selected to build the integrated network. Node colour 700 
represents the temperature optima of each genome for viruses and eukaryotes. A total of 1,347 701 
nodes (567 eukaryotes and 780 viruses) are in the network. Of these nodes, 1,191 nodes (554 702 
eukaryotes and 637 viruses) are coloured according to their temperature optima. b, The 703 
distribution of pairwise sequence similarity of proteins (one protein from the eukaryotic 704 
genome and one from the viral genome). Blue line indicates the distribution for pairs with a 705 
strong virus–eukaryote association in the network (edge weight of ≥ 0.4), while the red line is 706 
for pairs lacking a strong association. The two distributions are significantly different (P = 707 
1×10−13, Wilcoxon signed-rank test). 708 
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 710 
Fig. 2 | Inferred ancestral polar and non-polar niches for viruses. a, Ancestral “Polar” and 711 
“Nonpolar” states were estimated using the phylogenetic tree based on a one-parameter equal 712 
rates model. The outermost layer shows the taxonomy of six main groups. The boxplots in the 713 
second layer show the temperature optima of the viral genomes. Only polar and nonpolar 714 
genomes were included in the tree. b, The treemap diagram shows the number of viruses 715 
assigned to Polar, Nonpolar or “Unknown” biomes. Colours indicate the main taxonomic 716 
groups. c, Histograms of Relative Evolutionary Divergence (RED) values for the nodes at 717 
which “polar” or “nonpolar” adaptation events were inferred.  718 
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 28 

 720 
Fig. 3 | Ecological niche of KEGG Orthologs (KOs) and polar-enriched pathways. a, 721 
Distribution of the temperature optima and latitude optima for KEGG Orthologs (KOs) found 722 
in viral genomes. Colours of dots represent the Polar or Nonpolar niche for each KO. Bars 723 
indicate the tolerance ranges of temperature (horizontal) and latitude (vertical). Histograms 724 
show the distributions of temperature and latitude optima. b, Ratio of Polar KOs in each 725 
pathway. Black-framed circles correspond to pathways in which Polar KOs were significantly 726 
enriched (P < 0.05, Fisher's exact test). The overall ratio of Polar KOs to all KOs is indicated 727 
by a dotted line. 728 
 729 
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 730 
Fig. 4 | Independent genomic adaptation of giant viruses. 244 functions (KOs) were 731 
enriched at individual lineages. One example was given in a, Four KOs that were present 732 
exclusively in more than five Polar genomes in a selected Mesomimiviridae clade. Three of 733 
them (K01627, K00979, K06041) were encoded in the same genomes and formed a near-734 
complete CMP−KDO biosynthesis module shown in b, Schematic of the three Polar enzymatic 735 
steps in the CMP–KDO biosynthesis module. c, Proportion of Polar and Nonpolar specific 736 
functions (KOs and GCCs) in viruses and eukaryotes.  737 
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