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Abstract 

 

Developmental improvements in working memory (WM) maintenance predict many real-world 

outcomes, including educational attainment. It is thus critical to understand which WM mechanisms 

support these observed behavioral improvements, and how WM maintenance strategies might change 

through development. One challenge is that specific WM neural mechanisms cannot easily be measured 

behaviorally, especially in a child population. However, new multivariate decoding techniques have been 

designed, primarily in adult populations, that can sensitively decode the contents of working memory. 

The goal of this study was to deploy multivariate decoding techniques to decode the contents of WM in 

children. We created a simple computerized WM game for children, in which children maintained 

different categories of information (visual, spatial or verbal). We collected electroencephalography (EEG) 

data from 20 children (7-12-year-olds) while they played the game. Using Multivariate Pattern Analysis 

(MVPA) on children’s EEG signals, we reliably decoded the category of the maintained information during 

the sensory and maintenance period. In a set of exploratory reliability and validity analyses, we 

examined the robustness of these results when trained on less data, and how these patterns generalized 

within individuals throughout the testing session. Furthermore, these results matched theory-based 

predictions of WM across individuals and across ages. As the first study of its kind, our proof-of-concept 

provides a direct and age-appropriate potential alternative to exclusively behavioral WM maintenance 

measures in children. Our study demonstrates the utility of MVPA to directly measure and track the 

spontaneously-generated representational content of children’s WM.  

 

Keywords: short-term memory, multivariate pattern analyses, child development  
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Decoding the content of working memory in school-aged children 

 

Working memory (WM), the brain’s limited-capacity system which temporarily maintains information 

that is no longer physically present (Baddeley & Hitch, 1974; Cowan, 1998; Miller, 1956), has been 

recognized as the primary determinant of cognitive development in children (for review see Cowan, 

2016), and a key predictor of scholastic skills and academic achievement (e.g., Alloway & Alloway, 2010; 

Bayliss et al., 2003; Bull et al., 2008). It is known that WM performance improves with age (e.g., 

Gathercole, 1999; Gathercole et al., 2004; Salthouse, 1994), and the emergence of spontaneously used 

maintenance mechanisms in WM has been proposed as an underlying cause of such improvements (e.g., 

Camos & Barrouillet, 2011; Gathercole & Adams, 1994; Geier et al., 2009; Magimairaj & Montgomery, 

2013; Shimi & Scerif, 2017). However, the way in which some of these maintenance mechanisms are 

typically measured has made it difficult to build accurate theories of their developmental trajectory. 

Specifically, children’s WM maintenance mechanisms are usually assessed using behavioral tasks. Yet, 

the spontaneous use of maintenance mechanisms that occur covertly is difficult to assess behaviorally 

without introducing specific task manipulations. One concern is that these manipulations can bias 

whether the to-be-measured maintenance mechanisms can be detected, and how they appear to 

operate. Such methodological issues can weaken the derivation chain from hypothesis building based on 

extant theory, through their testing with a given set of methods, to yielding results that are used to build 

new theory (Meehl, 1990; Scheel et al., 2021). Since science is based on the constant continuation of this 

cycle, if one element is weak, this puts the inferences that can be drawn from the data at risk on a grand 

scale. Given the clear educational importance of understanding WM development, methods must be 

developed which accurately assess how children spontaneously maintain memoranda in WM, i.e., that 

can uncover and track children’s maintained memoranda without the use of potentially interfering task 

manipulations.   
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Issues in measuring children’s WM maintenance 

There are several different strategies that can be used to maintain different types of information in WM 

for short periods of time (e.g., Bjorklund et al., 2008; Kail & Hagen, 1977). Some of these mechanisms 

can be measured relatively simply. For example, rehearsal, which involves subvocal repetition of the 

information to be remembered (Baddeley, 1986; Conrad, 1964) can be tracked by observing lip 

movements associated with the maintained information (e.g., Elliott et al., 2021; Flavell et al., 1966). 

Accordingly, there is ample evidence that rehearsal strategies are spontaneously employed without 

being instructed, from age 7 onwards (e.g., Baddeley et al., 1998; Ferguson et al., 2002; Flavell et al., 

1966; Hitch et al., 1991). In another example, children may organize memoranda by a common category 

during a brief WM delay (Bower, 1970; Mandler, 2002). This organization strategy has typically been 

measured in children by presenting memoranda in visual forms (e.g., flashcards) that could be spatially 

grouped by categories (for procedure see e.g., Salatas & Flavell, 1976). Interestingly, only older children 

(around age 10 onwards) seem to use this strategy spontaneously (Bjorklund & de Marchena, 1984; 

Hasselhorn, 1992; Schleepen & Jonkman, 2012). However, even 4-year-olds (Sodian et al., 1986), 7-year-

olds (Lange & Jackson, 1974), and 9-year-olds (Corsale & Ornstein, 1980) are shown to organize 

memoranda when task instructions are modified to emphasize the usefulness of the underlying category 

information. Thus, specific task instructions may alter the WM maintenance strategies and influence the 

measurement of WM maintenance mechanisms. This example foreshadows the complexity of measuring 

mechanisms that are not directly visible. 

Other covert WM mechanisms cannot be easily inferred without employing specific task settings. 

One such covert mechanism is refreshing, which involves briefly reactivating to-be-remembered 

information by focusing limited internal attentional resources onto the representation (e.g., Barrouillet 

et al., 2004; Camos et al., 2018). Though it is not the only covert WM maintenance mechanism in 
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existence, it has received renewed research interest (Káldi & Babarczy, 2021; Lintz & Johnson, 2021; 

Oberauer & Souza, 2020; Vergauwe et al., 2021; Vergauwe & Langerock, 2022), and is a fitting example 

mechanism to demonstrate both the necessity to manipulate task parameters to measure it, and how 

such manipulations can interfere with its measurement. One popular way to measure refreshing is by 

varying the attentional demands of a secondary processing task (Barrouillet et al., 2009; Bayliss et al., 

2003; Bertrand & Camos, 2015; Camos & Barrouillet, 2011; Conlin et al., 2005; Oftinger & Camos, 2015, 

2017, 2018; Tam et al., 2010). In such dual-task setups, refreshing would be indexed by declines in WM 

performance in the maintenance task as a function of the attentional demands of the processing task 

(e.g., Barrouillet et al., 2009; Bayliss et al., 2003; Camos & Barrouillet, 2011; Tam et al., 2010). A key 

question has been when refreshing emerges during development, with multiple studies observing an 

impact of the attentionally demanding processing task (interpreted as the reliance on refreshing) starting 

at age 7 and becoming progressively greater with age (Barrouillet et al., 2009; Gaillard, 2011; Portrat et 

al., 2009). However, as Vergauwe and colleagues (2021) have noted, neither the emergence of 

spontaneous refreshing at age 7, nor the increases in refreshing efficiency from then onto adolescence 

are unequivocally supported in the literature. First, the detrimental effects of attentional demands on 

memory performance which are characteristic for refreshing have been observed even at 4–6 years of 

age (Bertrand & Camos, 2015; Tam et al., 2010). Second, memory performance decreases as a result of 

attentionally demanding concurrent tasks have not been found to differ much between 6-year-olds and 

8-year-olds (e.g., Conlin et al., 2005; Oftinger & Camos, 2015, 2017, 2018). Though dual-task paradigms 

have yielded mixed results on the developmental trajectory of refreshing, these paradigms have still all 

detected refreshing in children. Removing the secondary task, however, seems to make refreshing 

undetectable. Namely, in a paradigm without a dual task design, and using a different outcome measure 

than the above studies (based on Vergauwe & Langerock, 2017; see also Vergauwe & Langerock, 2022), 

Vergauwe and colleagues (2021) did not find evidence for spontaneous refreshing in children older than 
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7 years of age (see also Valentini & Vergauwe, 2023). However, the removal of the processing task could 

have had other consequences, for example rendering the paradigm less challenging for children and 

easier to understand. The results presented here demonstrate that specific paradigm design choices, for 

example the outcome measure and the inclusion of a secondary task, can influence whether or not 

refreshing can be detected in children. The contrast between paradigms with and without secondary 

tasks has the potential to upend common conceptions of WM development and refreshing as a 

maintenance mechanism. Combined with the results regarding the organization strategy, on a larger 

scale, these outcomes (as well as e.g., Brady et al., 2021) highlight the need for deeper considerations of 

methodology before testing theoretical assumptions in the WM field.  

 

Moving forward: Designing better methods for assessing WM maintenance in children 

Most studies on children’s WM mechanisms have used behavioral measures exclusively, meaning that 

detecting maintenance mechanisms was reliant either on the observable production of said mechanisms 

(for overt mechanisms), or inferences based on results under specific task settings (for covert 

mechanisms). Though such approaches have been instrumental to understanding WM development, we 

have seen that they are limited, in that it may be challenging to disentangle whether failure to detect an 

effect in children is due to a) a true absence of an effect, b) the children not being motivated to do a 

difficult task, or c) the children not understanding the instructions of the task. Therefore, it would be 

powerful to develop a measure that is independent from task demands, which would allow children to 

behave, and process information spontaneously. 

 A potential solution lies in departing from behavioral-only measures. Assessing maintenance 

mechanisms using neural measures would remove the need for introducing secondary tasks or elaborate 

instructions, thus simplifying and removing sources of bias from behavioral tasks, and allow children to 

maintain memoranda in whichever way was most natural to them. In particular, Multivariate Pattern 
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Analysis (MVPA) can index different perceptual or cognitive states, by training classifiers to distinguish 

between different patterns of activity that are distributed across the brain (Haxby et al., 2001; Norman 

et al., 2006). Multivariate analyses of electroencephalography (EEG) data, has successfully decoded the 

contents of attended information in WM (LaRocque et al., 2013), the amount of WM load (Adam et al., 

2020), individual differences in WM load and attentional focus (Karch et al., 2015), and attentional 

processes involved in the transfer of information into long-term memory (DeBettencourt et al., 2021), all 

in adults. It has less frequently been applied to neural data collected from children, though there have 

been some notable exceptions (e.g., Mares et al., 2020 [face processing in typical development]; Petit et 

al., 2020 [language processing in typical development and autism]; Lui et al., 2021 [word reading skills 

with Chinese characters]). To our knowledge, however, this method has yet to be used to elucidate WM 

processes in children, let alone WM maintenance processes in children.  

 

The current study 

In the current study, we aimed to develop a measure that can directly assess the spontaneously-

generated content of children’s WM during maintenance and track its changes over time. To do so, we 

posited that, instead of changing behavioral task parameters (i.e., without relying on difficult concurrent 

processing tasks, or hard-to-understand task instructions), we could leverage measures of brain activity 

during maintenance. We tested this hypothesis in a proof-of-concept study, combining a simple, child-

friendly, computerized working memory task with advanced analyses of electroencephalographic (EEG) 

measures. Our study design allowed us to probe the spontaneously-generated representational content 

of children’s working memory during maintenance, and throughout the course of an entire trial from 

encoding to response. The ability to decode the contents of WM from children was the key aim of our 

study, but we also went on to assess the validity and reliability of our measure through a series of 

exploratory analyses. 
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Methods 

Participants 

A total of 25 children (8 female, mean age = 9 years 4 months, SD age = 1 year 3 months, Range: 6 years 

0 months – 12 years 9 months) were recruited for the present study, through personal contacts, word of 

mouth, and the participant database of the Working Memory, Cognition and Development lab. Of this, 

five participants were excluded for failing to finish the task, failing to reach chance-level behavioral 

accuracy (50% of the total accuracy), or excessive noise in their EEG data (that could not be cleaned from 

the data such at least 200 trials remain in the dataset, e.g., due to excessive movement throughout the 

experimental task). Thus, the final sample included 20 children (7 female, mean age = 9 years and 7 

months, SD age = 1 year and 5months, Range: 7 years 0 months – 12 years and 2 months).  

Participants were tested at the EEG lab of the Faculty of Psychology and Educational Sciences of 

the University of Geneva and were offered a 20 Swiss franc voucher from a popular media store. All 

research procedures were approved by the University of Geneva Ethical Commission (approval code: 

CUREG_2021-05-49). Informed consent was obtained from parents/caregivers and verbal assent was 

obtained from children before participating in the study. 

 

Stimuli  

Stimuli belonged to one of three categories: Visual (an image of a robot), Spatial (an image of a rocket 

ship in a given spatial location on a circular grid), or Verbal (an image of a French-sounding non-word). 

These categories were selected to reflect the most commonly used stimulus categories in WM research 

(visual features, spatial location, verbal stimulus), mapping onto domain-specific dissociations of working 

memory resources as proposed in the popular multi-component model (Baddeley & Hitch, 197; 

Baddeley, 1986; Baddeley & Logie, 1999). There were 16 stimuli per category. For the spatial category, 
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there were 16 positions that a rocket could occupy on a circular display; based on the memory items 

from Ricker and Vergauwe (2020). For the visual category, there were 16 images of robots (generated by 

typing the following numbers into the ‘generate’ query space at Robohash.org: 10, 20, 30, 40, 50, 60, 70, 

80, 90, 100, 110, 120, 130, 140, 150, 160, and saved as a .png file). Finally, for the verbal category, there 

were 16 images of random nonwords generated by WinWordGen 1.0 (Duyck et al., 2004). These 

nonwords were legal bigrams with 5 letters per word drawn from Lexique.org, base language French, 

selected if a native French speaker confirmed it did not remind them of a real French word. All stimuli 

were presented centrally on a black background subtending 5 degrees of visual angle, to minimize eye 

movements.  

 

Task procedure 

The experimental task involved a single-item delayed-recognition task (Figure 1), based on the Phase 1 

task of Experiment 1 in LaRocque et al. (2013). Importantly, participants were only told to remember the 

information – there were no instructions as to how to maintain the stimuli. Each trial began with an 

inter-trial interval (ITI, average duration 1000ms), during which participants were presented with a white 

fixation dot centrally on the screen. To reduce anticipation effects, the ITIs were randomly jittered 

between 800ms to 1200ms in steps of 50ms. Next, during the Sensory period, the to-be-memorized item 

was displayed for 1000ms. Stimulus category was randomly determined on each trial. Afterwards, during 

the maintenance (Delay) period (2000ms), a central white fixation cross appeared on the screen. Then, a 

probe stimulus of the same category was displayed for 1000ms. Finally, during the Response period, a 

white question mark was displayed centrally (until the participant responded or 2000ms, whichever was 

shorter), indicating to the participants to respond. If the probe stimulus matched the to-be-memorized 

stimulus, participants were to press the ‘k’ key on the keyboard in front of them. If the probe stimulus 

did not match the previously encoded target stimulus, participants were supposed to press the ‘d’ key on 
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the keyboard. The probe stimulus matched the to-be-memorized stimulus 50% of the time. The ‘k’ and 

‘d’ keys were marked with green circular stickers. Prior to the experiment, participants were told to 

respond when they saw the question mark on the screen. There were no instructions on which hand to 

use to provide responses. To minimize blinking artefacts during the Sensory (encoding) and Delay 

(retention) periods, participants were encouraged to withhold blinking during these times, and we 

turned on the light in the testing booth for participants that had trouble withholding blinking. 

 

Figure 1. Task schematic. One trial per category (visual, spatial, verbal) is depicted. The stimuli 

for the visual category were images of robots, the stimuli for the spatial category were rockets 

in a particular location on a platform, and the stimuli for the verbal category were nonwords. 

The Baseline period was the last 300ms of the ITI, which lasted 1000ms on average. The stimuli 

were presented during the Sensory period (1000 ms), followed by a blank Delay period (2000 

ms). Then, a probe image appeared (1000 ms) that was either the same image (50% of the time) 

or a different image from the same category (50% of the time). Finally, during the Response 

period (2000 ms) a question mark appeared, and participants could respond. Categories were 

randomly intermixed across trials over the duration of the experiment. Note that the stimuli are 

shown much larger in the figure, for clarity, than they appeared in the experiment. EEG data 

0 
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were epoched so as to contain the Baseline, Sensory, and Delay periods (i.e., -300ms to 3000ms 

relative to Sensory period onset).  

 

Participants completed 128 trials per category, resulting in a total of 384 experimental trials 

across categories. To help increase children’s motivation, the task contained a background story (helping 

astronauts find their way home from an alien space base) and was presented in a game-like fashion. 

Participants could take self-timed breaks after every 48 trials. During these breaks, the participants’ total 

number of correct responses out of possible correct responses was shown on the screen, alongside the 

number of ‘blocks’ left. Before starting the paradigm, participants completed several slower practice 

trials. In total, each session took a maximum of 2h, with approximately 45 minutes of data collection.  

The experimental paradigm was programmed using the Psychopy Builder Standalone version 

2020.2.5 (Peirce et al., 2019), and presented on a 24” LCD monitor (60Hz refresh rate) in a sound-

attenuated, shielded booth. A BioSemi ActiveTwo amplifier (BioSemi Inc., Amsterdam, The Netherlands) 

was used to record EEG data from a 64-electrode BioSemi gel headcap (10/20 electrode layout). All sites 

were referenced online to electrode Cz, and re-referenced offline to the average reference. To record 

eye movements and blinks, additional electrodes were placed at the outer canthi of both eyes (for the 

horizontal electrooculogram; HEOG) and above and below the right eye (for the vertical 

electrooculogram; VEOG). Electrode impedances were adjusted to below 5 kΩ prior to the start of the 

experiment. Data were digitized at 2048 Hz. 

 

Behavioral data analyses  

Although behavioral data analyses were not the focus of the present study, we calculated accuracy 

(percentage of correct responses) over the entire task. We excluded the data of participants with 

accuracy that was lower than a level that would be obtained by pure chance (50%) from further EEG 

analyses. To estimate whether our participants could successfully complete the task, we derived the 
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average accuracy score across all participants at three different points: before any exclusions, after 

exclusions based on behavioral criteria, and after exclusions based on EEG-related criteria (i.e., the data 

retaining at least 200 trials after cleaning). 

 

EEG preprocessing  

For EEG data preprocessing, we used the Matlab-based (Natick, Massachusetts: The MathWorks Inc) 

EEGLAB software (v.2022.0, Delorme & Makeig, 2004). We first down-sampled the data to 500Hz, 

removed the DC offset, and applied a bandpass filter of 1Hz – 40Hz (12 dB/octave roll-off computed 

forward and backward to eliminate phase shift). Then, we epoched the data from -300ms to 3000ms 

relative to the onset of the stimulus for each trial, such that each epoch contained the Baseline period (-

300ms to 0ms, during the ITI), the Sensory period (0ms – 1000ms), and the Delay period (1000ms – 

3000ms; see Figure 1). A semi-automatic artefact rejection procedure was used to remove artefacts 

(transient noise, movement, skin potentials, etc.), which consisted of applying an automatic artefact 

rejection criterion of ±150μV for EEG artefacts (adapted to children’s EEG, see e.g., Melinder et al., 2010; 

Shimi et al., 2015) along with visual inspection. Next, to remove the influence of blinks, we conducted 

independent component analysis (ICA) using the ICLabel package (Pion-Tonachini et al., 2019) in EEGLAB. 

We detected those components that contained eye movements and blinks with visual inspection and 

removed only these components from the data. We discarded any electrodes contaminated by artefacts, 

based on visual inspection (maximum 13% of the electrode montage) and interpolated the missing data 

using 3-dimentional splines (Perrin et al., 1987). Our EEG analyses only included participants with over 

200 trials (67% of the total number of trials) remaining after the cleaning procedure.  

 

EEG classification 
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The main goal of this study was to examine the EEG multivariate representations for children performing 

a working memory task. We approached this goal in three ways: 1) We calculated the average 

classification accuracy during the Baseline, Sensory, and Delay periods separately (time-average 

classification). 2) We examined timepoint-by-timepoint classification over the entire trial (time-wise 

classification), and 3) We examined how classification performance trained at a specific moment in time 

generalized over other timepoints (temporal generalization classification). This three-pronged analysis 

allowed us to probe whether we can detect differences in the spontaneously-generated representational 

content of children’s working memory. First, we tested whether we could reliably decode WM content 

during delay periods, as well as other periods during the trial. Second, we tested the classification 

accuracy throughout the course of an experimental trial. Third, we further tracked the representational 

content over time by showing how long the same representational structure can be detected. 

Multivariate classification was performed within each subject by employing the MVPA-Light 

toolbox (Treder, 2020) with the linear discriminant analysis (LDA) classifier. We used each participant’s 

preprocessed single-trial voltage amplitudes as input features for the classifier. Both correct and 

incorrect response trials were included in the analysis (as in LaRocque et al., 2013), in order to maximize 

the number of trials per category, assuming that incorrect responses were made because the details of a 

given stimulus, and not its category membership, were wrongly remembered. First, for time-average 

classification, we calculated the average voltage amplitudes across each of the respective time-windows: 

-300ms – 0ms for the Baseline period, 0ms – 1000ms for the Sensory period, and 1000ms – 3000ms for 

the Delay period. We averaged across the samples (trials), with 5 samples for each average and 

demeaned the data across trials. Second, for time-wise and temporal generalization classification, we 

divided each trial into smaller 50-ms and 20-ms time-bins and calculated the mean voltage amplitudes 

for each bin (as in Adam et al., 2020).  
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For the time-average and time-wise classification analyses, we performed 100 iterations of the 

classification analyses for each time-bin (as in Adam et al., 2020). On each iteration, 2/3 of the trials were 

randomly assigned to a training set and 1/3 of the trials to a held-out test set. The classifier performance 

was determined by averaging the classification accuracy across the 100 iterations. At each time-bin, we 

also performed a null classification where, at each iteration, the labels that were associated with trials 

were randomly shuffled 1000 times. To ensure the same number of trials per category in the training and 

test set, condition labels with fewer trials were up-sampled. We ensured that the condition labels were 

balanced during classification using a stratification procedure, natively implemented in the MVPA-light 

toolbox. The outputs of the classification performance were accuracy (i.e. the proportion of correctly 

predicted class labels) and a set of confusion matrices (i.e., tables of proportions correctly predicted and 

incorrectly predicted class labels). Significance was statistically assessed against theoretical chance (33%) 

via Bonferroni-corrected one-sided t-tests at each time-bin (assuming no meaningful values that are 

below chance). As an additional assessment, we also compared decoding accuracy to empirical chance, 

which was obtained through a classification analysis on 1000 random shuffles of data labels (reported in 

the Supplementary Materials). Statistical assessment against both theoretical and empirical chance 

involved performing subject-wise permutation (see also Fahrenfort et al., 2018), with 1000 iterations per 

subject, at an alpha level of 0.05, implemented via the “mv_statistics” function of the MVPA-light 

toolbox.  

To analyze temporal generalizability, for each time point, we trained the classifier on recorded 

brain activity for the given time point and tested it on brain activity recorded at all other time points. 

Significance was statistically assessed against theoretical chance (33%) via Bonferroni-corrected one-

sided t-tests at each time-bin.  

 

Open Practices Statement 
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The behavioral data, exclusion criteria, preprocessing, analysis scripts, and study materials (stimuli and 

task design) are available at https://osf.io/jeh67/?view_only=2a9c2379a1514ce996b446cf1b0690b3. 

Due to space limitations on OSF, the raw EEG data are stored in a Zenodo repository: [to be shared after 

manuscript acceptance, per our ethics board requirements], and the preprocessed EEG data are stored 

in another Zenodo repository: [to be shared after manuscript acceptance, per our ethics board 

requirements].  

 

Results 

Behavioral results 

In a first analysis step, we verified whether participants successfully performed the task by checking their 

average behavioral accuracy results. The total sample had an average accuracy score of 87% (SD = 34%). 

After applying our behavioral exclusion criteria, the average accuracy score was 89% (SD = 32%). Finally, 

after also applying our EEG exclusion criteria, the average accuracy score was 90% (SD = 30%). This high 

accuracy demonstrates that our participants successfully performed the WM task. 

 

EEG classification 

The key goal of this study was to use multivariate pattern analysis to decode EEG data collected from 

children during a WM game. We were interested in whether multivariate EEG patterns differed when 

children maintained different categories of information (visual, spatial, and verbal). First, we examined 

the time-average EEG voltage patterns during the Baseline, Sensory, and Delay periods (Figure 2A). As 

expected, we found that decoding accuracy was above theoretical chance (33%) in the Sensory period 

(mean = 58.0%, median = 60.0%, SD = 11.1%, p = 2.77e
-09

) and the Delay period (mean = 44.4%, median = 

45.1%, SD = 8.6%, p = 7.38e
-06

), but not in the Baseline period (mean = 34.6%, median = 33.8%, SD = 

4.4%, p = 0.11). This demonstrates reliable decoding of children’s WM contents during the time when 
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children maintained information (Delay), and when they viewed information (Sensory), but also verifies 

that we were unable to decode during the moments prior to the stimulus presentation when they were 

preparing for the onset of the next trial (Baseline).  

 

Category confusability 

We next examined the classification performance of specific categories, and which categories were most 

confusable, using the confusion matrices from the time-average classification (Figure 2B). First, during 

the Baseline period, all categories at test were confusable with each other, since all of the values were 

near chance (33%). Next, during the Sensory period, we observed that verbal information was most 

accurately decoded (71%) and least confusable with either visual or spatial information. Whereas visual 

(52%) and spatial (51%) information were more confusable with each other (35%). The confusability 

patterns in the Sensory period were reechoed during the Delay period, though with less pronounced 

distinctions between the categories, consistent with slightly lower overall decoding accuracy at Delay 

than at Sensory. These results show that each category was successfully decoded, but also these 

differences between categories are consistent with theoretical distinctions between WM processes.  
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Figure 2. A) Classification accuracy of time-averaged patterns during the Baseline (gray), Sensory (green), 

and Delay (purple) periods. The mean is illustrated as a horizontal line, the median accuracy is depicted as 

a white circle, and standard error is depicted as a vertical black line. Individual data points are depicted as 

dots, and theoretical chance is represented by a dashed and dotted horizontal black line. The numerical 

average accuracy score is displayed above each violin plot. Accuracy scores that are significantly above 

chance are marked with *** if they are above the p<0.001 threshold. B) Confusion matrices for the three 

categories of information (visual, spatial, and verbal) during the Baseline, Sensory, and Delay periods. 

Training class labels are on the y-axis, and testing class labels on the x-axis. The tables show the 

proportion of trials where a category was confused with any of the other three categories.   

 

Moment-by-moment EEG classification  

To examine more fine-grained patterns of classification over time, we trained and tested multivariate 

classifiers on data from smaller time steps across the duration of a trial (Figure 3A). We subdivided each 

trial into smaller time bins (50ms) and averaged the EEG voltage patterns within each bin (the results of 

7 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2023. ; https://doi.org/10.1101/2023.02.10.527990doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.527990
http://creativecommons.org/licenses/by/4.0/


Running head: DECODING CHILDREN’S WORKING MEMORY CONTENTS                                                         18 

   

 

the 20ms time-bin averages are shown in the Supplementary Materials). The average decoding accuracy 

over the course of of a trial (without the Baseline period, i.e. 0 to 3000ms) was 48.7% (median = 49.2%, 

SD = 9.4%), which was significantly above chance (33%, p = 3.36e
-07

). Specifically, we observed significant 

above-chance decoding throughout nearly all of the Sensory period, and until almost 1500ms into the 

Delay period. All of these results were significant according to a Bonferroni-corrected t-test with 1000 

permutations (corrected p-value was 7.69e
-04

).  Consistent with our expectations, classification accuracy 

was not reliably above chance during the Baseline period. These results show that differences in 

multivariate representations of information categories are readily detectable when memoranda are 

directly observable, but also, and this is what we aimed to test here, when they are no longer physically 

present, during their maintenance in WM.  

 

Temporal generalization of EEG patterns 

Finally, we examined how children’s WM representations unfolded across time by examining how 

patterns generalized across different moments (Figure 3B). That is, we trained a multivariate classifier at 

a particular time point, and tested it on all other timepoints. We observed similar multivariate 

representations across time, particularly from the Sensory to the Delay periods of the trials: 

Representations that were detected during the early Sensory period could be traced with high accuracy 

over the entire Sensory period, and importantly, for a portion of the Delay period. This is reflected in 

reliable decoding at distant moments of time, far from the diagonal of the matrix. In sum, our results 

suggest not only that differences in observed and maintained representational content can be detected, 

but that the same representations that were formed when stimuli were observed persisted in WM for a 

portion of the maintenance period, even when the stimuli were absent. 
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Figure 3. A) Moment-by-moment classification of the category of information. The average across 

participants is depicted in a blue line (time points that were significant after Bonferroni correction are 

represented by a thicker blue line). The standard deviation is depicted in the shaded blue area. 

Theoretical chance (33%) is depicted in a black dashed horizontal line, and the onsets of the Sensory (0ms) 

and Delay periods (1000ms) relative to stimulus onset are depicted in dashed green and purple vertical 

lines, respectively. B) Temporal generalization of classification, where a classifier was trained on one time 

point and tested on all other time points. Average classification values are overlaid by a significance mask: 

dark blue fields indicate the time points at which classification did not survive the Bonferroni correction 

for multiple comparisons, while all other colors correspond to above-chance classification generalization.  
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Further exploratory analyses of reliability and validity 

To further validate our method and investigate its robustness, we conducted additional exploratory 

analyses to assess the reliability and validity of the method. First, we split our EEG data in half and 

conducted several analyses to establish the robustness of EEG decoding within and across these halves. 

Second, we compared the results of the main time-average decoding to an expected pattern based on 

our given task design (i.e., no above-chance decoding at Baseline, high above-chance decoding at 

Sensory, and lower but still above-chance decoding at Delay). Third, we compared the results of the main 

confusion matrix results to a pattern that follows classic WM theory (i.e., that verbal stimuli would be 

the least confusable with other categories, while visual and spatial stimuli would be more confusable 

with each other, though still distinct). Fourth, we investigated the relationship between decoding 

accuracy in the Sensory and Delay periods per individual, to capture the consistency of our measures 

across participants. Finally, we examined decoding accuracy as a function of age. To avoid reiterating the 

main analysis results, we will only present the results of the split-half analyses, individual difference 

analyses, and analyses of decoding accuracy by age. 

 

Split-half analyses 

In a first set of exploratory split-half analyses, we examined whether, with half as much data, we could 

still reliably decode the content of children’s WM. For each participant, we split the data into an early 

half (blocks 1 – 4 in the testing session) and a late half (blocks 5 – 8), and applied the same classification 

procedures to each half separately. Even when training/testing only within the early half, classification 

was robust during almost the whole Sensory period, and within the first 500ms of the Delay period but 

not during the Baseline period (Figure 4A). The results for the late-half showed that we reliably classified 
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data during the Sensory period and the first 500ms of the Delay period, and not during the Baseline 

period (Figure 4B).  

We also investigated the consistency or stability of the representational structures in WM 

throughout the entire session, by conducting cross-decoding analyses between the early and late halves. 

That is, the data from the early half of the session were used for training the classifier and the data from 

the late half of the session were used for testing the classifier (see e.g., LaRocque et al., 2013; Lewis-

Peacock et al., 2012). We observed reliable cross-decoding during the most of the Sensory period and 

the first 500ms of the Delay period (Figure 4C). This suggests that representational structures detected in 

the early half of the testing session were comparable to those detected in the late half of the testing 

session.    

In sum, these split-half classification results show that our method detects robust 

representations, which are furthermore stable across the testing session, lending support to the overall 

reliability and validity of the method. 
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Figure 4. Classification performance on EEG data split into early (‘blocks’ 1-4) and late (‘blocks‘ 5-8) 

halves. A) Classification results in the early half of the testing session, B) Classification results in the late 

half of the testing session and C) Cross-decoding results between the early and late halves (training the 

classifier on early half data, testing the classifier on late half data). Across all panels, average accuracy is 

depicted in a blue line (time points that were significant after Bonferroni correction are represented by a 

thicker blue line). The standard deviation is depicted in the shaded blue area. Theoretical chance (33%) is 

depicted in a black dashed line. 

 

 

Individual differences in multivariate decoding 

When it comes to individual classification performance, we had two main assumptions with regards to 

the consistency of our measures across participants. First, we assumed that classification performance 

when observing the stimulus to be remembered (i.e., during the Sensory period) should be higher than 

classification performance when maintaining said stimulus in memory in its absence (i.e., during the 

Delay). Second, we assumed that individuals with higher classification performance at Sensory than 

2 
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others will also have higher classification performance at Delay than others. To test these assumptions, 

we first compared average classification accuracy at Sensory and Delay using a paired-sample right-tailed 

t-test. Second, we quantified the strength of the relationship between classification accuracy at Sensory 

and Delay via Pearson correlation. 

The results of these analyses revealed two main patterns (Figure 5). First, classification accuracy 

was higher during the Sensory period than in the Delay period across participants (t(19) = 9.87, p = 3.23e-

09), by an average of 13.5%. Second, classification performance was highly correlated across individuals 

(r(18) = .84, p < 0.001). That is, most participants with high decoding accuracy in the Sensory period also 

tended to have high decoding accuracy during the Delay period. This suggests that our results were 

driven by patterns present across the whole sample, and that our method is consistent across individuals 

since decoding accuracy across individuals was consistent across the Sensory and Delay periods.  
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Figure 5. Individual differences in classification accuracy. Each dot depicts the average decoding accuracy 

from a participant during the Sensory and Delay periods, and dots from the same individual are connected 

by lines. The colors are organized according to the decoding accuracy during the Sensory period, from 

lowest accuracy (blue) to highest accuracy (red).  

  

Decoding across age 

Another concern could be that our results were driven by older participants, and not the entire range of 

participants. It is well-established that children’s WM performance tends to improve with age (e.g., 

Gathercole, 1999; Gathercole et al., 2004; Salthouse, 1994), and thus our above-chance decoding results 

could have stemmed from older ‘high performers’ with higher decoding accuracy. Thus, in a final 

exploratory analysis, we investigated whether classification varied as a function of age. We applied a 

linear regression between participants’ age and their average classification accuracy for the Baseline, 

Sensory, and Delay periods separately, using the “fitlm” and “anova” functions in Matlab.  

4 
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In Figure 6, decoding accuracy is shown by age. One can immediately see that successful 

decoding during Sensory and Delay periods was present at all ages, from the youngest to the oldest 

participant. Our above-chance decoding thus does not seem to be driven by high-performing older 

children. Moreover, regression analyses on decoding accuracy as a function of age did not reveal any 

significant relationship between age and decoding accuracy in any period of the trials: Baseline (R
2
 = 

0.03, p = 0.46), Sensory (R
2
 = 0.02, p = 0.57), and Delay (Delay: R

2
 = 0.03, p = 0.51). As Figure 6 indeed 

shows, in each of the periods of interest, decoding accuracy was stable across the entire age range. This 

further supports that our results were driven by patterns present across the whole sample, regardless of 

age, and lends evidence to the consistency of our method across individuals. 

 

Figure 6. Decoding accuracy as a function of age. For each period (Baseline, Sensory, and Delay) we 

examined whether there was a relationship between classification accuracy and age. The age of the 

participant is depicted along the x-axis, and the classification accuracy is along the y-axis. Each participant 

is represented by one dot in each plot. The black dashed regression line on each panel shows the 

relationship between age and classification accuracy, which was not reliable for any of the three periods. 

 

 

Discussion 

In the present study, we aimed to develop a direct neural measure of spontaneously-generated WM 

representational content in children. We developed a game-like computerized task with no maintenance

instructions. We collected EEG data from children while they performed this task, and analyzed this data 

5 
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with multivariate pattern analysis methods. We reliably decoded the category of information during a 

WM maintenance period. Furthermore, we examined the moment-by-moment classification 

performance during the maintenance period and the consistency of the representations from sensory to 

delay periods. In addition, we conducted exploratory analyses of the reliability and validity of our results. 

 

Decoding the content of children’s WM 

Although this is the first study to use MVPA on EEG signals to investigate children’s WM maintained 

memoranda, the results are comparable with the existing literature in adults. Namely, our delay period 

decoding accuracy between visual, spatial, and verbal categories in children’s EEG (44%) was comparable 

to decoding accuracy between visual, phonological, and semantic categories in young adults’ EEG 

(45.3%) in the Phase 1 task of LaRocque and colleagues (2013). This is especially impressive given that 

our sample consisted of children, a population whose WM performance is known to be lower than that 

of young adults (e.g., Gathercole, 1999; Gathercole et al., 2004; Salthouse, 1994), and whose EEG signals 

are not perfectly comparable to those of adults, due to physiological differences, higher spectral power 

in children than adults, etc. (e.g., Barriga-Paulino et al., 2011; Scerif et al., 2006). It is equally noteworthy 

that such results were obtained from an MVPA pipeline based on adult applications (e.g., the mini-block 

approach by Adam et al., 2020). Thus, even before delving into reliability and validity, these results 

already suggest that our method is appropriate for decoding children’s WM content.  

Inspired by the methodological issues in measuring children’s maintenance mechanisms, and the 

resultant theoretical confusion surrounding children’s ability to apply certain maintenance mechanisms 

spontaneously (e.g., in the case of refreshing and organization), we aimed to develop a direct method for 

tapping into the content of children’s WM. Exploring whether it is possible to infer what children are 

maintaining was the first step towards investigations of whether they apply given maintenance 

mechanisms spontaneously. As such, the results of this proof-of-concept study cannot in and of 
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themselves answer whether, or at which age, children can spontaneously refresh information. However, 

the method we propose can be used as a base for answering this and other open questions in the field of 

WM development. For one, our method is sensitive and appropriate for investigating the nature of 

neural representations in children’s WM. MVPA has already been successful at characterizing memory 

representations at different WM states in adults (e.g., Christophel et al., 2018; Lewis-Peacock et al., 

2012, 2015; Rose et al., 2016). Now that we have demonstrated that children’s WM representational 

content can also be decoded, we can manipulate the original task to investigate, for example, the 

preferred code that children use to represent given information (as Lewis-Peacock et al., 2015 did in 

adults). To tap into the maintenance mechanism that children use to maintain information, the current 

paradigm can help serve as a starting point onto which extensions can be introduced carefully. To avoid 

running into the same pitfalls as prior behavioral-only work, these extensions need not necessarily be 

interleaved secondary tasks (Barrouillet et al., 2009; Bayliss et al., 2003; Bertrand & Camos, 2015; Camos 

& Barrouillet, 2011; Conlin et al., 2005; Oftinger & Camos, 2015, 2017, 2018; Tam et al., 2010) or 

potentially unclear maintenance instructions (Bjorklund & de Marchena, 1984; Hasselhorn, 1992; Salatas 

& Flavell, 1976; Schleepen & Jonkman, 2012). Instead, one could have children maintain lists of items 

from different categories, and investigate when they think of a given category during retention (for a 

similar approach using fMRI in adults see Vergauwe et al., In prep; for a similar approach using EEG in 

adults see Jeanneret et al., 2022). We believe the current paradigm can be expanded in several ways that 

would enable both a deeper exploration of children’s WM content, and the investigation of children’s 

WM maintenance mechanisms. 

 

Exploring the reliability and validity of our approach 

Given the topic of this special issue, although our paradigm was not optimized for such analyses, and 

although such analyses are not typically conducted (or at least not always reported) in the adult 
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literature, we carried out exploratory analyses of reliability and validity to assess the use of our method 

as part of a derivation chain in the field of WM. Within such constraints, these exploratory analyses 

nonetheless added further support to the main results.  

Splitting the data into an early and late half showed two main lines of support for the 

consistency of the decoding results over time. First, the pattern of decoding accuracy in both the early 

and late halves was comparable to that of the overall pattern in the main analyses. Second, training the 

classifier on the early half data and testing it on the late half data showed that representational 

structures detected in the early half were similar to those in the late half. Both of these results suggest 

that, despite potential fatigue over the course of an experimental session, decoding is nonetheless 

reliable, and that WM representations remain similar over the course of a testing session.  

Given our task design, we expected decoding accuracy across the different stages of WM to 

follow a given pattern. At Baseline, we expected decoding not to rise above chance levels, as this period 

presumably mainly contained noise. Likewise, there was no blocking of trials by category, such that 

anticipatory category-related activity would be detected during this period. Next, the Sensory period 

involved the perception, recognition, and encoding of the information to be remembered. Since this 

information was physically present on the screen during this time, we expected decoding accuracy to be 

the highest during the Sensory period. Finally, since the Delay period involved the maintenance of 

information in WM in the absence of the to-be-remembered stimuli on the screen, we still expected 

above-chance decoding accuracy, though lower than in the Sensory period. These patterns were borne 

out by time-average results, showing that our decoding procedure correctly responded to 1) noise at 

Baseline, 2) differences between observed categories of stimuli at Sensory, and 3) differences between 

representations of maintained categories of stimuli at Delay. 

Based on classic WM theoretical accounts whereby WM is split into separate visuo-spatial and 

verbal domains (Baddeley & Hitch, 1974; Baddeley & Logie, 1999), if our method truly captured WM 
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content, the results would reveal verbal information to be distinct from visual and spatial information, 

while the latter two would be more confusable. To assess this, we examined patterns in the confusion 

matrices generated as part of the time-average analyses. We specifically observed that information 

labelled as verbal at training was the least confusable with information labelled as visual or as spatial at 

test, and that information labelled as visual and spatial at training was relatively confusable with each 

other at test. This is in line with classic theories of domain-specificity for visuo-spatial and verbal 

information (Baddeley & Hitch, 1974; Baddeley & Logie, 1999), and suggests that our method measured 

actual maintained WM content. 

The last two analyses confirmed that our results were not driven by a subset of participants, but 

by consistent values across the entire sample. Namely, we observed that the majority of participants had 

slightly higher decoding at Sensory than at Delay, and that those individuals that had high decoding 

accuracy at Sensory also had high decoding accuracy at Delay. Further, the age of the participants did not 

influence decoding, as classification accuracies were evenly distributed across participants regardless of 

age.  

Taken together, these results suggest that our method is reliable across time within a testing 

session, across individuals. Further, they suggest that our method measured what we set out to 

measure, that is, differences in the content of children’s WM.  

 

Limitations 

An inherent limitation of our study was that its design and resource allocation were optimized for the 

main analyses, and aim to provide a proof of concept of decoding children’s WM content, but not for our 

analyses of reliability and validity. For instance, our task was designed to be easy to complete 

successfully across the 7-12 age range. In addition, our sample size (n=20) was appropriate for a proof-

of-concept study, but relatively small for regression analyses (20 participants). Now that our proof of 
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concept appears to have been successful, future studies should include retests and replications in larger 

samples. 

 Another potential issue with our design lies in its lack of masks, i.e., irrelevant stimuli that would 

overwrite the contents of sensory memory, and prevent such sensory representations from driving the 

decoding results. We intentionally refrained from adding any additional information other than the to-

be-remembered items and their probes, both to keep the task as simple as possible, and to prevent any 

potential biasing effects resulting from masks (see “attractive bias” in Lorenc et al., 2021). A point that is 

rarely acknowledged in the use of masks is that they can function as external distractors (i.e., irrelevant 

stimuli that should not be attended; reviewed in Rademaker et al., 2015, p. 1-2). Since children are 

known to be more susceptible to visual distraction than adults (e.g., Plude et al., 1994; Trick & Enns, 

1998), we did not wish to risk replacing sensory memory effects with potential distractor effects. This 

point notwithstanding, our current design does not let us directly assess whether the representational 

content at maintenance consists merely of a persisting sensory trace. However, that would be unlikely, 

since the perceptual and informational content of a stimulus only seem to persist for a maximum of 

500ms after stimulus offset (Irwin & Yeomans, 1986; Massaro & Loftus, 1996; Sperling, 1960), and we 

found significant decoding for much longer (around 1500ms into the Delay period), consistent with 

comparisons of sensory memory and WM such as Cappiello & Zhang, 2016). This, together with our 

exploratory analysis results, suggest that our method does truly capture maintained representational 

content in WM.  

 

Conclusion 

The current study demonstrates that children’s WM contents can be decoded using EEG MVPA together 

with a simple behavioral paradigm, in a manner that is promising in terms of reliability and validity. 

Though the main insights the study provides are what children are maintaining rather than how, the 
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framework we developed as part of this study can serve as a base for investigations of maintenance 

mechanisms, or questions related to representational content. As such, this study provides a much-

needed stepping stone for strengthening the derivation chain in the field of WM development.  
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