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The SARS-CoV-2 variant XBB.1.5 is of concern as it has high
transmissibility. XBB.1.5 currently accounts for upwards of
30% of new infections in the United States. One year after
our group published the predicted structure of the Omicron
(B.1.1.529) variant’s receptor binding domain (RBD) and anti-
body binding affinity, we return to investigate the new mutations
seen in XBB.1.5 which is a descendant of Omicron. Using in sil-
ico modeling approaches against newer neutralizing antibodies
that are shown effective against B.1.1.529, we predict the im-
mune consequences of XBB.1.5’s mutations and show that there
is no statistically significant difference in overall antibody eva-
sion when comparing to the B.1.1.529 and other related vari-
ants (e.g., BJ.1 and BM.1.1.1). However, noticeable changes in
antibody binding affinity were seen due to specific amino acid
changes of interest in the newer variants.
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Introduction
In late November 2022, the United States Centers for Dis-
eases Control stated that they began tracking a new SARS-
CoV-2 variant known as XBB.1.5. At that time, XBB.1.5
was responsible for around 3% of all infections. Since then,
XBB.1.5 has grown to represent 30% of all infections by Jan-
uary 2023 (1, 2).
XBB.1.5 is characterized by 40 mutations in the Spike pro-
tein, 22 of which are in the receptor binding domain (RBD)
(3). The highly prevalent mutations in the RBD are shown in
Table 1 below.
A health concern is that XBB.1.5 may evade existing anti-
bodies derived from therapeutics, vaccination, and or previ-
ous Omicron (B.1.1.529) infection. It has been proposed that
XBB.1.5 is a recombinant strain of the virus from BJ.1 and
BM.1.1.1 as portions of the mutated Spike protein appear to
be from each parent strain (4, 5). However, alternative hy-
potheses such as convergent evolution may also explain the
similarity of portions of XBB.1.5’s mutated regions to those
seen in other variants (6, 7).
In our previous work on the prediction of the receptor binding
domain (RBD) structure of the Omicron variant, our process
provided robust predictions, having a root mean square de-

Mutation Sequences Prevalence
G339H 10,000 98.35%
R346T 9,992 98.27%
L368I 9,839 96.76%
S371F 9,857 96.94%
S373P 9,856 96.93%
S375F 9,860 96.97%
T376A 9,852 96.89%
D405N 9,895 97.32%
R408S 9,616 94.57%
K417N 9,329 91.75%
N440K 9,687 95.27%
V445P 9,653 94.94%
G446S 9,673 95.13%
N460K 9,757 95.96%
S477N 9,984 98.19%
T478K 9,960 97.95%
E484A 9,943 97.79%
F486P 9,919 97.55%
F490S 9,927 97.63%
Q498R 9,970 98.05%
N501Y 9,983 98.18%
Y505H 9,969 98.04%

Table 1. Prevalence of mutations in receptor binding domain of XBB.1.5. Preva-
lence is calculated as the percentage of samples (out of 10,168 from GISAID cap-
tured on February 12, 2023) that contain that mutation. Positions are numbered as
their location in the larger Spike protein. These mutations are in comparison to the
NC_045512.2 reference genome.

viation of atomic positions (RMSD) of 0.574Å between the
predicted and empirically derived Omicron RBD structure
(PDB: 7t9j) (8). Furthermore, our previous study proved use-
ful as a predictive gauge of antibody efficacy several weeks
prior to when empirical validations of the Omicron-antibody
binding changes could be performed (9).
In this study, we use the methodology in our previous work
to investigate XBB.1.5 and related variants (B.1.1.529, BJ.1,
and BM.1.1) and expand the antibodies of interest to in-
clude more recently developed anti-Omicron antibodies. At
the molecular level, we further elucidate the antibody bind-
ing and interfacing residues between three commercially-
available antibodies: bamlanivimab, bebtelovimab, and tix-
agevimab and the RBD structure of each SARS-CoV-2 vari-
ant. We consider in vitro studies with existing antibodies and
older variants to predict performance on XBB.1.5.
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Results

Given the four SARS-CoV-2 variants (B.1.1.529, BJ.1,
BM.1.1, and XBB.1.5) and 10 antibodies, 40 in silico dock-
ing experiments were performed. As shown in Figure 1, the
mean performance of the included neutralizing antibodies is
similar across the four variants, with XBB.1.5 binding results
being congruent to that of B.1.1.529. Furthermore, across the
10 antibodies tested, the binding affinities seen in XBB.1.5
are not weakened compared to B.1.1.529, nor are the differ-
ences statistically significant.
When assessing overall antibody performance against BJ.1,
we see weakened Van der Waals energies as compared to the
other three variants. This is depicted in the Uniform Manifold
Approximation and Projection (UMAP) in Figure 2 where
the position of some antibodies on the BJ.1 UMAP are in-
creased (leading to decreased binding affinity). However, de-
solvation energies and the buried surface areas are slightly
improved overall when comparing BJ.1 results to the other
three variant results.
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Fig. 1. Boxplots of antibody binding performance by SARS-CoV-2 variant. Wilcoxon
p-values are shown to assess the statistical significance of the differences between
overall variant-antibody performance.

While there are instances of overall antibody performance
increasing or decreasing in singular comparisons, we do
not see an overarching pattern that indicates that XBB.1.5

has evolved antibody evasion over B.1.1.529 (or BJ.1 and
BM.1.1.1). In other words, XBB.1.5 does not appear to have
evolved past current antibody defenses, specifically concern-
ing the ten antibody structures tested in this study.
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Fig. 2. UMAP scatter plot of antibody binding affinity metrics with a variant in each
quadrant. Note that a higher UMAP value is likely indicative of worse performance.

Structural Changes in Antibody Binding Affinity. Of the
ten antibodies tested in this study, we focus on the structural
bases in which the antibodies LY-CoV555, LY-CoV1404, and
AZD8895 work. The neutralization mechanisms of three an-
tibodies have been extensively studied. These three antibod-
ies have been available as therapeutics for treatment against
COVID-19 infections (either currently or previously in the
United States under Emergency Use Authorization) (10–12).

Bamlanivimab (LY-CoV555). As shown in Figure 3, we see a
consistent interaction between Bamlanivimab (LY-CoV555)
and the variant RBDs at R/Q493. This differs from Jones
et al. (13), which states that F490 and S494 in the RBD are
the interfacing residues in this region.

Fig. 3. Interfacing residues of interest from the LY-CoV555 antibody (in pale pink)
against the four RBD structures.
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The PyMOL structural visualizations of the potential interac-
tion residues coincides with the overall metrics returned from
the HADDOCK analyses shown in Table 2. LY-CoV555
shows the worst overall performance against BJ.1 while the
performance against B.1.1.529, BM.1.1.1, and XBB.1.5 are
quite similar. Though not shown in Figure 3, the latter three
complexes show a higher number of interfacing residues
overall than in BJ.1, thus supporting the reported affinity met-
rics.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5
HADDOCK score -105.1±8.4 -70.5±10.7 -105.3±3.1 -93.4±8.7
Van der Waals energy -87.8±5.1 -65.1±6.2 -95.3±6.1 -87.3±2.6
Electrostatic energy -237.1±14.3 -184.9±39.4 -148.7±14.1 -168.2±18.7
Desolvation energy -12±1.2 -17.1±5.2 -18.7±3.6 -13±3
Buried Surface Area 2498.1±63.6 2155.5±97.3 2462.9±68.0 2386±52.3
Average ∆G (σ) -14.78 (0.13) -14.16 (0.26) -14.59 (1.15) -14.21 (0.86)

Table 2. Docking metrics for the LY-CoV555 antibody against the four RBD variants.

Bebtelovimab (LY-CoV1404). Westendorf et al. (14) demon-
strated that Bebtelovimab (LY-CoV1404) antibody binding
affinity may not be affected by RBD mutations at E484,
F490, Q493. Shown in Figure 4, we see consistent interac-
tions from this antibody across all four variants around most
of these positions in spite of mutations.

Fig. 4. Interfacing residues of interest from the LY-CoV1404 antibody (in light purple)
against the four RBD structures.

These findings for LY-CoV1404 are congruent with the re-
ported affinity metrics from the HADDOCK analyses shown
in Table 3. Overall, HADDOCK scores are stable across the
four variant complexes. The antibody LY-CoV1494 is pre-
dicted to have a slightly weaker interaction with XBB.1.5
compared to the other three variants.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5
HADDOCK score -124±1.1 -115.4±1.8 -110.9±6.3 -109.1±8.5
Van der Waals energy -78.6±10.8 -63.9±4.7 -75.8±5.4 -74±3.0
Electrostatic energy -262.1±24.3 -337.7±27.6 -290.7±16.1 -291.8±7.3
Desolvation energy -30.5±7.1 -23±6.2 -2.7±2.8 -4.5±3.5
Buried Surface Area 2457.2±111.6 2365.5±71.9 2467.1±80.9 2454.9±65.1
Average ∆G (σ) -16.47 (0.78) -12.65 (0.53) -19.90 (0.59) -13.54 (0.88)

Table 3. Docking metrics for the LY-CoV1404 antibody against the four RBD vari-
ants.

Tixagevimab (AZD8895). For tixagevimab (AZD8895), as re-
ported in Dong et al. (15), there is a critical contact residue
at F486 on the RBD. We see this residue being interfaced in
B.1.1.529, BJ.1, and BM.1.1.1. However, the F486 residue
is mutated to proline at this position in XBB.1.5, though in-
teractions from the antibody to the adjacent RBD residues at
G485 and N487 of the RBD still occur. See Figure 5.

Fig. 5. Interfacing residues of interest from the AZD8895 antibody (in bright green)
against the four RBD structures.

From the HADDOCK metrics shown in Table 4, this F486P
mutation increases the binding affinity with the AZD8895,
especially in terms of Van der Waals and electrostatic ener-
gies. Interfacing residues are abundant across all four of these
AZD8895-RBD complexes (in addition to those shown in
Figure 5), thus providing additional agreement to the strong
affinity metrics reported by HADDOCK.

Metric B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5
HADDOCK score -93.5±4.3 -88±6.7 -84.8±3.2 -123.8±6.9
Van der Waals energy -71.5±6.6 -64.3±5.5 -86.7±3 -90.7±4.4
Electrostatic energy -230±29.9 -215.5±5.9 -150±11.3 -256.3±222.6
Desolvation energy -4.5±1.5 -8.4±5.7 -8.9±1.6 -5.5±2.8
Buried Surface Area 2259.5±49.1 2134.6±116.6 2482±46.4 2470.8±53.5
Average ∆G (σ) -12.55 (0.21) -11.76 (1.78) -13.08 (0.36) -13.01 (0.77)

Table 4. Docking metrics for the AZD8895 antibody against the four RBD variants.
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Methods
Our in silico modeling approach includes the curation or gen-
eration of the RBD structures for four SARS-CoV-2 variants
and ten neutralizing antibody structures. Next, each antibody
structure was docked against each RBD structure and binding
affinity metrics were collected for comparison.

RBD Structures. The Spike protein structure of the SARS-
CoV-2 Omicron variant (B.1.1.529) was obtained from Pro-
tein Data Bank (PDB: 7t9j) (16). This structure was then
trimmed to the RBD residues 339-528.
RBD sequences for BJ.1, BM.1.1.1, and XBB.1.5 were de-
rived from representative samples found on GISAID:

BJ.1: EPI_ISL_16182897
BM.1.1: EPI_ISL_15658180
XBB.1.5: EPI_ISL_16505393

The RBD structures of BJ.1, BM.1.1.1, and XBB.1.5
were predicted with these sequences using AlphaFold2
(ColabFold-mmseqs2 version) (17, 18). Next, the most con-
fident structure of each was used in docking analyses.

Antibody Structures. Representative antibody structures
were collected from various Protein Data Bank entries rang-
ing from antibodies derived from infected patients (or pa-
tients with breakthrough infections) or commercially avail-
able antibodies used in the treatment of COVID-19. See Ta-
ble 5.
Only a fragment antigen-binding (Fab) region of the antibod-
ies was used in the docking analyses.

Antibody Other Names PDB ID Citation
LY-CoV555 bamlanivimab, LY3819253 7kmg Jones et al.
LY-CoV1404 bebtelovimab, LY3853113 7mmo Westendorf et al.
AZD1061 cilgavimab 7l7e Dong et al.
AZD8895 tixagevimab 7l7e Dong et al.
58G6 7e3l Li et al.
CV38-142 7lm9 Liu et al.
C110 7k8p Barnes et al.
P5C3 7qtj Fenwick et al.
EY6A 7zf3 Nutalai et al.
COVOX-150 7zf8 Nutalai et al.

Table 5. List of antibodies and their source PDB IDs used in this work.

Docking. To prepare the Fab structures, we renumbered
residues according to HADDOCK’s requirements such that
there are no overlapping residue IDs between the heavy and
light chains of the Fab’s .PDB file. Residues in the Fab struc-
tures’ complementarity-determining regions (CDRs) were
selected as “active residues" for the docking analyses.
Residues in the S1 position of the RBD were selected as the
“active residues" of the RBD structures. Since all of the input
RBD .PDB files were renumbered to numbers 339-528, all of
the input RBD files share the same “active residue" numbers.
Each of the ten antibody structures where docked against
each of the four RBD structures using HADDOCK v2.4, a
biomolecular modeling software that provides docking pre-
dictions for provided structures (27).
The HADDOCK system outputs multiple metrics for the
predicted binding affinities and an output set of .PDB files

containing the antibody docked against the RBD protein.
PRODIGY, a tool to predict binding affinities using Gibbs
energy, reported as ∆G in Kcal/mol units), was also run on
each of the complexes (28).
This process resulted in forty sets of docked structures. Each
set contains many antibody-RBD complex conformations,
from which we selected the top-performing structure for
each antibody-RBD pair. We used this top-performing com-
plex for subsequent structural investigations into interfacing
residues and docking positions.
These analyses were performed on the antibody-RBD struc-
ture pairs shown in Figure 1. The multiple metrics were used
to assess the overall binding affinity changes between SARS-
CoV-2 variants across multiple representative antibodies.
Further, the docked Protein Data bank Files (PDB) were man-
ually reviewed using PyMOL (29) to search for interfacing
residues and polar contacts between the RBD and Fab struc-
tures that may indicate neutralizing activity.

Conclusions
Building on our previous work (8) in studying Omicron’s
structure, we have continued to demonstrate the utility of
in silico modeling for predicting whether antibody binding
affinity changes with the evolution of new SARS-CoV-2 vari-
ants. Given that in vitro assessment of protein structure and
antibody binding experiments are costly and take an extended
time, in silico computational modeling provides a more eco-
nomical and faster method near or at empirical resolution.
Our previous in silico results were confirmed via an empiri-
cal study reported by VanBlargan et al. (9).
With computational modeling we rapidly preditct the poten-
tial severity of a new variant and provides predictions on anti-
body binding affinity. These predictions inform public health
considerations and provide a method of rational drug design
based on expected therapeutic and vaccine (and booster) ef-
ficacy. Computational modeling can be used to rapidly infer
the public health consequences of a new variant in terms of
the loss of efficacy of antibodies, such as breakthrough infec-
tions and associated healthcare burden.
For XBB.1.5 specifically, there are residue mutations of inter-
est that may affect antibody binding of the various S1 region-
binding antibodies tested here. Comparing previous reports
on older variants concerning the three main antibodies dis-
cussed here to our computational results shows strong agree-
ment between previous empirical results and our new in silico
predictions.
For Bamlanivimab (LY-CoV555), Jones et al. (13) reported
that mutations at RBD positions V483, E484, F490, and S494
either decrease or eliminate binding and function. Our study
does not refute this, however, our computational modeling
indicates the S494 is interfaced in the BJ.1 and XBB.1.5 in-
teractions with LY-CoV555. This result suggests that this
residue does not decrease the binding affinity of the antibody.
Also, R/Q493 forms a polar interaction with LY-CoV555 in
B.1.1.529, BJ.1, and BM.1.1.1, but not XBB.1.5.
In Bebtelovimab (LY-CoV1404), Westendorf et al. (14) states
that mutations at E484 may confer advantages in antibody
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evasion capabilities for the virus. This result is supported
in our study as A484 in our four variants in this study, is
only interfaced in our docked structures for B.1.1.529 and
BM.1.1.1. We see G485 as an important interfacing residue,
forming a polar contact with LY-CoV1404 with all four RBD
variants.
Lastly, Dong et al. (15) reports that aromatic residues from
AZD8895 CDR loops form a hydrophobic pocket with the
RBD residues G485, F486, and N487. Note that in XBB.1.5
there is a F486P mutation and, interestingly, the adjacent
residues (G485 and N487) are interfaced in our predicted
complex. It is possible the proline at position 486 provides
less steric hindrance than phenylalanine, thus allowing sur-
rounding residue interaction. This result can be tested in fu-
ture studies.
The increased binding affinity of XBB.1.5 for ACE2 may
lead to increased transmissibility at the population level (30).
The results here do not indicate that we can expect increased
disease severity on an individual level for patients that avail
themselves of therapeutics and vaccination.
The climb in cases of COVID-19 disease linked to XBB.1.5
indicates that XBB.1.5 could be a very serious subvariant of
Omicron. While other studies are needed to assess trans-
missibility, virulence, pathogenicity, and other facets of vi-
ral severity and epidemiology, this study predicts that many
current therapeutic and infection-derived antibodies provide
antibody binding affinities similar to B.1.1.529 for XBB.1.5.
Thus, the results indicate that the health care outcomes
should be positive for the patients that avail themselves of
vaccines and therapeutics.

Limitations and Future Work. This work estimates poten-
tial changes in antibody neutralization effects or antibody
neutralizing affinity using in silico protein modeling and
computational docking analyses. Given the computational
and predictive nature of this study, empirical investigations
are necessary to validate these findings. However, these com-
putational approaches provide an economical, scalabl, and
rapid methodology to understand the severity of new viral
variants while the empirical work is being completed. Also,
while HADDOCK is considered state-of-the-art in terms of
protein docking, there are other docking tools that could pose
different results for the comparisons
While we tested 10 representative neutralizing antibody
structures against four variants of SARS-CoV-2, there are
many more and antibody-variant RBD complexes to be as-
sessed. In future work, we shall improve and automate our
docking pipeline to enable to large-scale prediction of anti-
body binding affinity changes across any future SARS-CoV-2
variants of interest. Also, given the dynamic nature of protein
structure conformations, alternative conformations may exist
that show other polar contacts and antibody-RBD interfaces
than those shown by the best performing HADDOCK com-
plexes. All docking outputs and results, including those not
shown in the body of this article, are available in the Supple-
mentary Materials.

Supplementary Materials
All code, data, results, docking parameters,
and protein structure files can be found on
GitHub at https://github.com/colbyford/SARS-CoV-
2_XBB.1.5_Spike-RBD_Predictions.
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Supplementary Note 1: RBD Structural Align-
ment and Comparison

Using PyMOL’s alignment tool (with 50 cycles and a cutoff
of 2.0Å)(29), we superimposed the RBD structures as shown
in Figure 6 and show RMSD metrics in Table 6.

Fig. 6. Cartoon representation of the four RBD structures aligned. B.1.1.529 (PDB:
7t9j) in teal, BJ.1 in orange, B.1.1.1 in purple, and XBB.1.5 in magenta with mutated
residues from Table 1 highlighted in yellow.

Variant B.1.1.529 BJ.1 BM.1.1.1 XBB.1.5
B.1.1.529 0 0.780 0.708 0.653
BJ.1 0.780 0 0.306 0.266
BM.1.1.1 0.708 0.306 0 0.146
XBB.1.5 0.653 0.266 0.146 0

Table 6. Alignment RMSD distance (in Ångstroms) between each variant’s RBD
structure.

Note that none of the mutations are predicted to disrupt the
overall RBD tertiary structure in the AlphaFold2-generated
structures. There are minor secondary structure changes as to
where alpha helices or the anti-parallel beta sheet may begin
or end, but overall the structures are very similar.

Looking at the main loop structure at the top of the S1 re-
gion, shown in Figure 7, the residue side chains are in similar
positions, differing only by slight angular changes with the
exception of the F486P mutation as previously mentioned.
This proline mutation does not change the overall loop’s con-
formation, but provides rigidity at this location.

Fig. 7. Side chains of the main loop at the S1 binding site for each of four RBD
structures. Residues that are mutated from the wild type reference are shown as
sticks.

Supplementary Note 2: RBD Active Residue
Predictions
Using CPORT, an interface predictor that provides a predic-
tion of active and passive residues on a given protein (31), we
evaluated the four RBD structures. This tool predicted that .
See Table 7 below.

Variant Active Residues Passive Residues

B.1.1.529

357, 359, 360, 361, 390, 391, 394,
417, 452, 453, 455, 456, 457, 470,
471, 476, 478, 479, 481, 482, 483,
484, 485, 486, 487, 489, 490, 492,
493

338, 351, 352, 355, 356, 362, 382,
383, 386, 388, 389, 396, 403, 409,
415, 416, 420, 421, 449, 450, 458,
459, 460, 461, 462, 465, 467, 468,
469, 472, 473, 474, 475, 477, 480,
494, 515, 516, 517, 518, 520, 521,
522, 523, 525, 526, 527, 528

BJ.1

449, 450, 452, 455, 456, 457, 458,
459, 460, 461, 468, 469, 470, 471,
473, 474, 475, 476, 477, 478, 483,
484, 485, 486, 487, 489, 490, 493,
494

345, 346, 347, 351, 352, 403, 417,
419, 420, 421, 422, 444, 447, 448,
453, 462, 463, 465, 466, 467, 472,
479, 480, 481, 482, 495, 496, 497

BM.1.1.1

338, 339, 357, 359, 360, 361, 362,
363, 364, 367, 388, 391, 392, 393,
394, 452, 455, 456, 472, 475, 483,
484, 485, 486, 487, 489, 490, 493,
494

340, 343, 344, 349, 351, 352, 355,
356, 366, 369, 370, 371, 372, 374,
382, 383, 384, 385, 386, 389, 390,
396, 403, 417, 421, 430, 448, 450,
457, 458, 459, 469, 470, 471, 473,
474, 476, 477, 478, 479, 480, 481,
482, 492, 495, 496, 497, 515, 516,
517, 518, 519, 523, 524, 525, 526,
527, 528

XBB.1.5

351, 357, 358, 359, 360, 361, 390,
391, 393, 417, 421, 455, 456, 457,
483, 484, 485, 486, 487,489, 493,
516, 518, 519, 520, 521, 522, 523,
525

338, 348, 352, 355, 356, 362, 364,
382, 383, 386, 388, 389, 396, 403,
409, 415, 416, 419, 420, 422, 430,
450, 452, 458, 459, 460, 461, 462,
465, 466, 467, 468, 469, 470, 471,
472, 473, 474, 475, 480, 490, 492,
514, 515, 517, 527, 528

Table 7. CPORT-predicted active and passive residues of the four RBD structures.

Also, if we look at the residues that were predicted to be ac-
tive visually, we can see that the majority of these residues
concentrate around the S1 area of the RBD. Specifically, the
loop structure on the top of the RBD that has been discussed
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heavily in this study and previous works is consistently pre-
dicted to contain multiple active residues across all four vari-
ant structures. See Figure 8.

Fig. 8. CPORT predicted active and passive residues (in red and green, respec-
tively) of the four RBD structures. Shown as the “top" of the RBD, 90° foward.

There is considerable agreement between the CPORT predic-
tions and the HADDOCK results listed in the main article.
Nearly all of the interfacing residues detected in the com-
plexes shown in Figures 3, 4, and 5 are predicted to be active
residues from CPORT. Furthermore, many of these predicted
active residues are also mentioned in Jones et al. (13), Wes-
tendorf et al. (14) and Dong et al. (15), thus further support-
ing that these residues on the top of the S1 region stand as
the likely epitope between the RBD and various neutralizing
antibodies evaluated in this study.

Supplementary Note 3: PRODIGY Results
In Figure 1, we show the top performing antibody-RBD com-
plexes’ HADDOCK and PRODIGY scores. That is, the met-
rics for the top performing complex from the top performing
HADDOCK cluster. In Figure 9 below, we show the individ-
ual PRODIGY scores of the top four complexes from the top
performing HADDOCK cluster for each antibody-RBD ex-
periment. There is agreement that no statistically significant
drop in overall antibody binding affinity in terms of ∆G as
predicted by PRODIGY.
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Fig. 9. PRODIGY binding affinity metrics for the top four clusters in each antibody-
RBD complex that resulted from the HADDOCK docking process.
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