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Abstract 

 Background: 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide 

association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) 

appearing in non-coding genomic regions in CVDs. The SNPs may alter gene expression by 

modifying transcription factor (TF) binding sites and lead to functional consequences in 

cardiovascular traits or diseases. To understand the underlying molecular mechanisms, it is 

crucial to identify which variations are involved and how they affect TF binding. 

Methods: 

The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to 

identify regulatory SNPs, which alter the binding behavior of TFs and link GWAS SNPs to 

their potential target genes for six CVDs. The human induced pluripotent stem cells derived 

cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) and self-organized 

cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and 

cardiac contractility were assessed. 

Results: 

By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD 

GWAS data. These were associated with hundreds of genes, half of them non-coding RNAs 

(ncRNAs), suggesting novel CVD genes. We experimentally tested 40 CVD-associated non-

coding RNAs, among them RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1, 

which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. Further 

experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker 

genes, reduced hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac 

contractility in hiPSC-CMs and MCOs. 

Conclusions: 
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IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size 

and cardiac function in our disease models. Our data suggest ncRNA IGBP1P1 as a 

potential therapeutic target to improve cardiac function in CVDs. 

Key Words: ncRNA, Cardiovascular disease, regulatory SNPs, IGBP1P1 

 

Introduction 

Cardiovascular diseases (CVDs) are among the most common causes of death in 

the world. Finding novel molecular biomarkers is an important research goal, to 

enable development of novel early detection, treatment and intervention strategies.  

Recently, non-coding RNAs (ncRNAs) have been found to play important roles in 

cellular processes related to many CVDs.1–3 The ncRNA HERNA1 (hypoxia-inducible 

enhancer RNA 1), which is produced by direct hypoxia-inducible factor 1α binding to 

an hypoxia response element, modulates the cardiac growth, metabolic, and 

contractile gene program in pressure-overload heart disease.4 Similarly, the ncRNA 

CARMEN is derived from a human super-enhancer (SE) and regulates 

cardiomyocyte differentiation and homeostasis in human cardiac precursor cells.5 

Moreover, inhibition of the ncRNA MEG3 (maternally expressed gene 3) decreased 

cardiac fibrosis and improved diastolic performance by targeting cardiac matrix 

metalloproteinase-2 (MMP-2).6 

Different approaches can be used to associate a ncRNA with the pathology of a 

CVD. Genome-wide methods have been especially successful using different types 

of assays measuring RNA,7,8 genome,9 epigenome10 variation or image-measured 

physiological differences11 in disease models or from patient data directly.  
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Genome data in the form of mutations, such as single nucleotide polymorphisms 

(SNPs), that are associated with CVDs through genome-wide association studies 

(GWAS), provide an interesting source of information for detection of relevant 

ncRNAs. In particular, because many mutations found associated with CVDs reside 

outside of protein-coding genes and their functional role is often unknown.9 However, 

it is difficult to connect SNPs that reside in the non-coding regions of the genome 

with potential biological functionality.  

One promising direction for deciphering the functional role of such non-coding SNPs 

are variant annotation methods that use transcription factor (TF) binding or 

epigenetic information such as DNase1-seq, ATAC-seq or histone ChIP-seq 

data.12,13 To predict TF binding, different approaches exist using position weight 

matrices (PWMs),14,15 that are available for the majority of human TFs, or more 

complex methods such as deep learning based models16,17, which are currently more 

limited due to lack of TF-specific data. Specific statistical methods have been 

developed to assess whether a SNP has a regulatory effect on TF binding.18–20 

Alternatively, SNPs can be categorized as functionally important by a computational 

model that assesses whether changes in the DNA sequence will affect gene or 

epigenome activity more generally.21–23 In other words, all these methods assess 

whether a SNP is likely to have a regulatory effect and may allow to predict the 

tissue and cell-type relevance of such an effect.24–26 

While prioritization of regulatory SNPs (rSNPs) with approaches mentioned above is 

important and an area of active research, another problem is to associate rSNPs 

with their potential target genes. Several approaches for linking regions to target 

genes exist using diverse data types,27,28 such as the Activity-by-Contact model29 or 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2023. ; https://doi.org/10.1101/2023.02.12.528184doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.12.528184


5 
 

STITCHIT.30 For example, the EpiRegio database31 contains 2.4 million regulatory 

elements (REMs) that were linked to human target genes using STITCHIT utilizing 

paired DNase1-seq and RNA-seq data of several cell types. 

Here, we present a characterization of ncRNAs that can be linked to genetic 

mutations associated with the CVDs, including Aortic stenosis, Coronary artery 

disease, Cardiomyopathy, Cardiac arrhythmia, Myocardial infarction or Myocardial 

ischemia. By using an algorithm to detect rSNPs as part of the SNEEP pipeline, 

hundreds of cardiovascular associated ncRNAs have been identified that harbor 

rSNPs in their gene-regulatory elements. To study the functions of some interesting 

ncRNAs we used two models: the 2D human induced pluripotent stem cells (hiPSCs) 

derived cardiomyocytes (hiPSC-CMs) model and 3D human cardiac organoids, 

which display a similar microenvironment and contractile function to the human 

heart. Through assessing the cardiomyocyte size and contractile function response 

to pathophysiologic stress, our data demonstrated that ncRNA immunoglobulin 

(CD79A) binding protein 1 pseudogene 1 (IGBP1P1) drives cardiac hypertrophy and 

contractile dysfunction. 

Methods 

Collection of GWAS SNPs of cardiovascular diseases 

We have collected the significant SNPs from the NHGRI-EBI GWAS catalog32 for the 

following search terms including all the available child traits: Coronary artery disease 

(EFO_0000378), Aortic stenosis (EFO_0000266), Cardiac arrhythmia 

(EFO_0004269), Cardiomyopathy (EFO_0000407), Myocardial infarction 

(EFO0000612) and Myocardial ischemia (EFO0005672). All GWAS were downloaded 

on 10/26/2020 (see also Table S5).  
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For each set of GWAS SNPs, we have obtained correlated SNPs that are in linkage 

disequilibrium (LD) with any of the original SNPs. We used the LDProxy Tool33 and 

extracted the proxy SNPs via their API functionality. Proxy SNPs with an R2 >= 0.75 

and within a window of +/- 500 000 bp centered around the original SNP were added 

to the GWAS SNPs. The combined set of proxy and lead SNPs was used as input set 

to SNEEP.  

Detection of regulatory SNPs 

To detect regulatory SNPs, we applied the SNEEP pipeline 

(https://github.com/SchulzLab/SNEEP) separately for each of the 6 cardiac GWAS. 

SNEEP (SNP exploration and analysis using epigenomics data) is a computational 

pipeline which identifies rSNPs along with the affected TFs and further links the rSNPs 

to putative target genes.  

To compute whether or not a SNP alters the binding behavior of a TF, a differential 

binding score is determined, which is the log-odds ratio between the binding affinity of 

the wildtype sequence (containing the wild type allele) and the mutated sequence 

(containing the alternative allele).20 For the log-odds ratio a differential binding p-value 

is computed. The approximation of the p-value depends on the characteristics like 

length, CG content etc. of the used TF PWM-motifs. Therefore, one needs to estimate 

a scale value per motif using the script estimateScalePerMotif.sh from the SNEEP 

pipeline. To estimate the scale parameter values, we used 200 000 sampled SNPs 

from the dbSNP database34, and removed flanking bases of the PWMs with an entropy 

higher than 1.9, resulting in the following command:  

bash estimateScalePerMotif.sh 200000 <pathToMotifs> <outputDir> <motifNames> 

1.9 
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To run SNEEP, 632 human TF PWM-motifs in transfac format were gathered from the 

JASPAR database (version 2020)35 and over 2.4 million regulatory elements linked to 

their putative target genes were downloaded from the EpiRegio database31 

(https://doi.org/10.5281/zenodo.3758494,file: REMAnnotationModelScore_1.csv.gz).  

Next, we applied the main SNEEP pipeline per GWAS with a differential binding p-

value cutoff of 0.001:  

 ./differentialBindingAffinity_multipleSNPs -o <SneepOutputDirectory> -n 10 -p 0.5 -c 

0.001 -r  <EpiRegio_REMs>  -g <mappingEnsemblIdToGeneNameForREMs>  -j 100  

-l 123 -i <pathToSneepDirectory>  -s <estimatedScalesFromPreviousStep>   

<pathToJasparMotifs>  <InputSnpsPerCardiacGWAS>  <pathTohg38.fa> 

The SNEEP result is provided in Table S6. 

Identification of disease associated genes using rSNPs 

As part of the analysis of SNEEP, all rSNPs that overlap regulatory elements from 

Epiregio constitute a candidate disease gene. From the SNEEP output file protein-

coding and non-coding genes were extracted that have overlapping rSNPs in their 

regulatory elements. Non-coding genes were understood to be all genes not labeled 

with the biotype ‘protein coding’ or ‘TEC’ (primary assembly annotation, version 39, 

downloaded from GENCODE).36  

To label which protein-coding genes are already associated with the studied diseases 

(Figure 2B, black dots), we used the disease2gene functionality of the R package of 

DisGeNET:  

disease2gene(disease  = <studiedDisease>, database = "ALL", score = c( 0,1)) 
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The studiedDisease parameter needs to be provided as UMLS CUI identifiers. We 

used C1956346 (CAD), C0003811 (Cardiac arrhythmia), C1449563 (Cardiomyopathy, 

Familial Idiopathic), C0151744 (Myocardial ischemia), C0027051 (Myocardial 

infarction) and C0340375 (Subaortic stenosis) as studiedDisease (see also Table S2).  

Identification of co-expressed genes for non-coding genes and disease 

enrichment 

We conducted a co-expression analysis using the gene expression profiles of 9,662 

GTEx RNA-seq samples.37 We compared the expression of protein-coding genes with 

the non-coding genes using the Spearman correlation coefficient as the similarity 

metric (Table S7). This allowed us to obtain a ranked list of protein-coding genes most 

similar to the expression of a selected non-coding gene in the GTEx data.  

For each non-coding gene the top 10 co-expressed protein coding genes were 

extracted, varying this number did not change the further results. The joint set of all 

protein-coding genes that are co-expressed to any of the non-coding genes found for 

the same disease via the GWAS analysis, were considered to perform a disease 

enrichment analysis. The analysis was done separately for the resulting co-expressed 

protein-coding gene sets derived from Cardiac arrhythmia, CAD and Cardiomyopathy 

using the function disease_enrichment from the R package of DisGeNET.38 

disease_enrichment( entities = <coExpressedProteinCodingGenesPerGWAS>, 

vocabulary = "HGNC", database = "ALL" ) 

From the resulting list of enriched diseases (Table S3), as part of the enrichment 

computation, cardiac phenotypes were selected and visualized as a dot plot using 

ggplot2 (Figure 3C). For the GWAS Aortic stenosis, Myocardial infarction and 
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Myocardial ischemia we did not apply the disease enrichment analysis because of the 

low number of associated non-coding genes (less than 30).  

Preparation and maintenance of human iPSC-CMs 

Human induced pluripotent stem cells (hiPSCs) were purchased from Cellular 

Dynamics International (CMC-100-010-001) and cultured according to the 

manufacture’s protocol. The human iPSC-derived cardiomyocytes (hiPSC-CMs) were 

reprogrammed using the STEMdiffTM Cardiomyocyte Differentiation Kit (STEMCELL 

Technologies) as recommended by the manufacturer. Briefly, human iPSCs were 

plated at cell density of 3.5×105 cells/well on Matrigel coated 12-well-plates using 

mTeSRTM medium supplemented with 5µM ROCK inhibitor (Y-27632, STEMCELL 

Technologies) for 24 h. After 1 day (-1), the medium was replaced with fresh TeSR™ 

medium. To induce cardiac differentiation, the TeSR™ medium was replaced with 

Medium A (STEMdiff™ Cardiomyocyte Differentiation Basal Medium containing 

Supplement A) at day 0, Medium B (STEMdiff™ Cardiomyocyte Differentiation Basal 

Medium containing Supplement B) at day 2, Medium C (STEMdiff™ Cardiomyocyte 

Differentiation Basal Medium containing Supplement C) at day 4 and day 6. On day 8, 

medium was switched to STEMdiff™ Cardiomyocyte Maintenance Medium with full 

medium changes every 2 days, to promote further differentiation into mature 

cardiomyocyte cells. All experiments were performed in the hiPSC-CMs at day 40. 

Hypoxic condition was achieved by using the Hypoxia chamber and the hiPSC-CMs 

were cultured at either 3% or 1% O2 for 2 days. 

Monoculture cardiac organoid formation Technique 

Monoculture cardiac organoids (MCOs) were created by hiPSC-CMs. AggrewellTM 800 

microwell culture plates were used to create the MCOs in STEMdiff™ Cardiomyocyte 
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Support Medium (STEMCELL Technologies). At day 18, hiPSC-CMs were distributed 

into AggrewellTM 800 microwell culture plates at a density of 900,000 hiPSC-CMs/well. 

After 2 days of culture, medium was switched to STEMdiff™ Cardiomyocyte 

Maintenance Medium for long term culture. Hypoxic condition was achieved by using 

the Hypoxia chamber and the MCOs were cultured at either 3% or 1% O2 for 3 days. 

Self-organized Cardiac Organoids formation Technique 

Human iPSCs were plated at cell density of 1.5×105 cells/well on AggrewellTM 800 

microwell culture plates to form embryoid bodies (EBs). At day 18 and day 20, 50 nM 

VEGF and 25 nM FGF were added into the Maintenance Medium. On day 22, medium 

was switched to Maintenance Medium with EGM-2 with full medium changes every 2 

days. All experiments were performed in the self-organized cardiac organoids (SCOs) 

at day 40. Hypoxic condition was achieved by using the Hypoxia chamber and the 

SCOs were cultured at either 3% or 1% O2 for 3 days. 

RNA isolation, reverse transcription and qRT-PCR 

Samples were harvested in QIAzol Lysis Reagent (QIAGEN), and total mRNAs were 

isolated with RNeasy Kit (QIAGEN) according to the manufacturer’s protocol. 200ng 

total RNAs were reverse transcript into cDNA using QuantiTect Reverse Transcription 

Kit (QIAGEN) according to the manufacturer’s protocol. The Applied Biosystems 

StepOnePlus Real-Time PCR system (Applied Biosystems, CA, USA) with Fast SYBR 

Green Master Mix (Thermo Fisher Scientific) were used for analysis. Gene expression 

levels were normalized against the housekeeping gene HPRT1. The qRT-PCR 

primers are listed in Table S9. 

Antisense LNA GapmeRs 
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Antisense LNA GapmeRs were purchased from Qiagen. Four different antisense LNA 

GapmeRs were designed for each target (Table S10). The GapmeR negative control 

was used as the control. 

Contractility measurement 

Every single MCO was transferred into 96-well-plate and treated with either GapmeR 

control, GapmeR RP11-98F14.11, GapmeR RPL23AP92 or GapmeR IGBP1P1. 

Hypoxic condition was achieved by using the Hypoxia chamber and cardiac organoids 

were cultured at 3% O2 for 3 days, then the contractility will be analyzed by IonOptix 

system. Units/pixels were determined by calibrating the system with a micrometer. 

Calcium Transient measurements 

The MCOs were cultured in the 96-welll-plate. 2µM Cal-520 AM (AAT bioquest) with 

0.04% Pluronic® F-127 (AAT bioquest) working solution was added into the plate, and 

then the plate was incubated in the incubator at 37 °C for 90 min. After washing the 

MCOs with PBS for 3 times, and with medium for 2 times, the MCOs will be transferred 

to the 384 well U-bottom plate and incubated at 37 °C for 1 h. The fluorescence will 

be measured by the fluorescence plate reader. 

Immunofluorescence staining 

Immunofluorescence staining was performed as described previously. After fixation 

with 4% paraformaldehyde (PFA)/PBS, the hiPSC-CMs or MCOs were permeabilized 

and incubated overnight at 4ºC with primary antibodies against sarcomeric α-actinin 

(Sigma Aldrich), diluted in 2% (v/v) HS/PBS. After 3 washes with PBS for 5 min, cells 

were incubated with 4',6-diamidino-2-phenylindole (DAPI Thermo Fisher Scientific) 

and AlexaFluor 555 anti-mouse (Thermo Fisher Scientific) secondary antibody for 1 h 
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at room temperature. Dishes were mounted onto glass slides (Fisher Scientific) with a 

drop of ProLong™ Gold Antifade (Thermo Fisher Scientific). Fluorescent images were 

acquired with the SP5 confocal microscopy (Leica) using a 40x magnification. Cell size 

was quantified blindly using the software Image J. 

Statistical Analysis 

Data are represented as mean and error bars indicate the standard error of the 

mean (SEM). Two-tailed unpaired Student’s t-tests (Excel) or one-way ANOVA 

analyses followed by either a Dunnett’s multiple comparison post-test (multiple 

comparisons to a single control) or Bonferroni correction (multiple comparisons 

between different groups) were used as indicated in the respective figure legends. 

ns= not significant; *P< 0.05; **P< 0.01; %P< 0.05. 

Results 

Identification of cardiovascular disease associated genes using regulatory 

SNPs and enhancer-gene linkage 

Based on the previously postulated idea to identify rSNPs that have a regulatory 

effect, we have used the SNEEP pipeline to combine three sources of information for 

finding genes related to a CVD: 1) SNPs found significantly associated in GWAS 

with a particular CVD,32 2) prediction which of these SNPs are potentially regulatory 

using human TF PWM-motifs,20,35 and 3) enhancer-gene catalogue to map SNPs to 

putative target genes (Figure 1).31 In short, SNEEP uses PWM descriptions of TF 

binding sites to assess whether a SNP would affect the binding of a known TF. Such 

an rSNP may lead to the loss of a TF binding site or the creation of a new binding 

site affecting the expression of one or several target genes related to the phenotype.  
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In the first step, we have retrieved significant lead SNPs and correlated SNPs in LD 

(R2 >= 0.75) from GWAS for known cardiovascular diseases: 10,820 for Coronary 

artery disease (CAD), 440 for Aortic stenosis, 2,637 for Cardiomyopathy, 6,709 for 

Cardiac arrhythmia, 1,204 for Myocardial infarction and 277 for Myocardial ischemia, 

which were then subjected to SNEEP analysis (Figure 1). First, we filtered for those 

SNPs that may have a regulatory function (rSNPs) and affect TF binding. Then, we 

utilized the EpiRegio database, containing 2.4 million human regulatory elements, to 

link rSNPs to possible target genes for the respective indications. 

These analyses led to the identification of protein-coding and non-coding genes that 

could be directly linked to a specific indication (Figure 2A). Notably, there were often 

similarly many non-coding and protein-coding genes associated. We used the 

DisGeNET database38, a large collection of known disease associated genes, for a 

positive control experiment. We conducted a disease enrichment analysis that 

assessed whether the newly identified protein-coding genes using our approach are 

enriched among previously associated disease genes. We found that for all tested 

indications we were able to get the corresponding disease phenotype as significantly 

enriched (Fisher’s exact test, FDR <= 0.05, Figure S1, Table S1). For Myocardial 

ischemia and Aortic stenosis, we had less than 30 genes available and therefore 

enrichment analysis was omitted as it is statistically underpowered. The enrichment 

analysis results support that our approach, although limited to using rSNPs, is able 

to find many of the previously associated disease genes. 

We systematically compared the properties of the associated genes, looking at the 

number of rSNPs that could be linked to each gene and the number of regulatory 

elements of each gene with at least one rSNP (Figure 2B, Table S2). Protein- and 
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non-coding genes showed similar characteristics. Notably, identified genes had on 

average more rSNPs than disease genes listed in DisGeNET. This underlines a 

unique feature of our approach, highlighting genes that have many non-coding 

rSNPs associated with the indication. Of particular note was the large number of 

non-coding genes we identified. We surveyed the literature and existing databases 

that list known RNA biomarkers to identify additional evidence for genes that we 

found in our analyses (Table S2). For example, we checked the Heart Failure 

database for known RNA biomarkers (HFBD),39 but none of the 49 ncRNAs listed 

there overlapped ours. 

In speculating that it would be possible to find further evidence using existing OMICs 

data - we used a guilt-by association strategy and collected for each non-coding 

gene the top 10 most correlated protein-coding genes, according to a large RNA 

expression dataset from the GTEx resource37 (Figure 3A). We then gathered all co-

expressed protein-coding genes with respect to the non-coding genes we had found 

for each disease (Figure 3B). This collection thus signifies all protein-coding genes 

that are highly correlated to the non-coding genes we found. We conducted the 

DisGeNET enrichment analysis for all coexpressed protein-coding genes (Figure 3C, 

Table S3). We observed a strong enrichment for the expected diseases in each 

tested study in which we had more than 30 non-coding genes. Thus, we were 

positive that a majority of the non-coding genes could play an important role in the 

underlying disease. 

Identification and characterization of ncRNAs in hiPSC-CMs 

Our previous analyses suggested that many of the ncRNAs that we associated with 

CVDs could have important cardiovascular functions. Thus, we selected in total 40 
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ncRNA genes and prioritized ncRNA genes not listed in DisGeNET and with many 

rSNPs (Figure 2B, Table S4 and S8). To determine the roles of the 40 ncRNAs in 

human cardiomyocytes, the hiPSC derived CMs, monoculture cardiac organoids 

(MCOs) and self-organized cardiac organoids (SCOs) were used in the study (Figure 

4A). The hiPSC-CMs, MCOs and SCOs were incubated in normoxia and hypoxia 

(1% O2 or 3% O2, respectively), and the expression levels of these 40 ncRNAs were 

quantified by qRT-PCR (Figure 4B). As shown in Figure 4B, we have selected the 

ncRNAs RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1 for further 

experiments, as they are consistently upregulated in hypoxia in hiPSC-CMs, MCOs 

and SCOs. 

In order to investigate the function of RP11-98F14.11, RPL23AP92, IGBP1P1, and 

CTD-2383I20.1 in hiPSC-CMs, we performed loss-of-function through GapmeR-

mediated knockdown of the respective target ncRNAs. GapmeRs are chimeric anti-

sense oligonucleotides that contain a central block of deoxynucleotide monomers to 

induce RNaseH cleavage.40 Four GapmeRs were designed and synthesized for each 

ncRNA target (Table S10), and the knockdown efficiency was quantified by qRT-

PCR in hiPSC-CMs (Figure S2A-S2D). We selected GapmeRs RP11-98F14.11 #2 

(GM RP11-98F14.11), GapmeR RPL23AP92 #1 (GM RPL23AP92), GapmeR 

IGBP1P1 #1 (GM IGBP1P1), and GapmeR CTD-2383I20.1 #1 (GM CTD-2383I20.1) 

for further experiments. As shown in Figure 4C, the expression levels of pathologic 

hypertrophy markers, including atrial natriuretic peptide A (NPPA), NPPB and beta-

myosin heavy chain 7 (MYH7), were reduced after GapmeR RP11-98F14.11 (GM 

RP11-98F14.11) treatment in hypoxia compared to the GapmeR Control (GM Ctrl) 

treatment. We also profiled expression of key fibrotic marker genes including 

Collagen type III alpha 1 chain (COL3A1), matrix metalloproteinase-2 (MMP2) and 
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Transforming growth factor β1 (TGFb1). However, GM RP11-98F14.11 treatment did 

not alter hypoxia induced fibrotic marker gene expression in hiPSC-CMs compared 

to the GM Ctrl. Similarly, Knockdown of RPL23AP92 and IGBP1P1 reduced hypoxia-

induced pathologic hypertrophy marker expression, but not of hypoxia-induced 

fibrotic marker genes (Figure 4D and 4E). CTD-2383I20.1 did not alter either 

hypoxia-induced pathologic hypertrophy markers or hypoxia-induced fibrotic marker 

gene expression compared to GM Ctrl (Figure S3). 

To better define the function of RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-

2383I20.1 in human cardiomyocytes, we analyzed cardiomyocyte cell size in a loss-

of-function setting. In order to directly visualize the cells, cardiomyocytes were 

stained for α-actinin and DAPI and imaged by confocal microscopy (Figure 4F). As 

shown in Figure 4G, hypoxia led to increased cell size, which was rescued upon 

RP11-98F14.11, RPL23AP92 and IGBP1P1 inhibition, while CTD-2383I20.1 did not 

affect the cell size. Together, this suggests that RP11-98F14.11, RPL23AP92, 

IGBP1P1 play key roles in regulation of cell size to determine hypertrophic response 

in human cardiomyocytes, but not in pathology of fibrosis in 2D monolayer cultures. 

IGBP1P1 drives pathologic hypertrophy and contractile dysfunction in human 

cardiac tissue mimetics 

We determined the function of RP11-98F14.11, RPL23AP92, IGBP1P1 in human 

iPSC-derived cardiac organoids, serving as a model for native heart tissue. On day 

18 of differentiation, the monolayer was dissociated into single cells and seeded on 

AggrewellTM 800 microwell culture plates in order to induce the formation of cardiac 

organoids (Figure 4A). Cardiac mimetics were then cultured under control normoxic 

conditions, or in hypoxia (3% O2) to mimic myocardial hypoxia in vitro. As shown in 
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Figure 5A, hypoxia-induced pathologic hypertrophy markers and fibrotic marker 

genes were decreased by inhibition of RP11-98F14.11. Similarly, IGBP1P1 depletion 

also reduced the expression levels of pathologic hypertrophy markers and fibrotic 

marker genes in hypoxia. In addition, the cell size of cardiomyocytes in MCOs was 

also measured in both normoxia and hypoxia (Figure 5B). As shown in Figures 5C 

and 5D, inhibition of IGBP1P1 reduced the cell size in hypoxia compared to the GM 

Ctrl. However, RPL23AP92 deletion did not affect pathologic hypertrophy markers 

and fibrotic marker genes (data not shown). 

Furthermore, cardiac contractility was also measured by IonOptix and through 

calcium flux analysis. Both assays revealed that the Hypoxia-induced beating 

frequency was reduced by IGBP1P1 inhibition (Figure 5E), while hypoxia-reduced 

contractile amplitude was rescued by IGBP1P1 inhibition compared to GM Ctrl 

(Figure 5F and 5G, Figure S4A and S4B). However, there is no difference of beating 

frequency and contractile amplitude between GM RP11-98F14.11 and GM Ctrl 

(Figure S4C and S4D). Together, IGBP1P1 regulates both cell size and 

cardiomyocyte contractility in 3D human cardiac tissue mimetics. 

Discussion and Conclusion 

In this study we have used known position-weight matrix models of TF binding to 

predict whether SNPs have a regulatory effect. These models do not consider 

dependency between positions. Although alternative models exist, such as SLIM,41 

the absolute number of available TFs is lower than what we used here from the 

JASPAR database. Exploring more complex models may increase the number of 

rSNPs that can be detected and thus may reveal additional genes of interest. Instead 

of predicting rSNPs after the GWAS, Arloth et al. have first determined rSNPs to 
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filter.26 They then recomputed the association significance for a smaller subset of 

genome-wide rSNPs, which may further boost the ability to detect disease genes. 

Pseudogenes are defined as regions of the genome that contain defective copies of 

genes and are often considered as nonfunctional ncRNA. However, recent studies 

have shown that pseudogenes may play important roles in CVDs.42 Elevated low-

density lipoprotein cholesterol (LDL-C) level is a main risk factor for CVDs, while 

knockdown of zinc finger protein 542 pseudogene (ZNF542P) increases the LDL-C 

level response to simvastatin in a human hepatoma cell line.43 The mRNA levels of 

octamer-binding transcription factor 4 (Oct 4) pseudogene Oct-4-psG1 and Oct-4-

psG5 are significantly down-regulated in pulmonary arterial smooth muscle cells 

(PASMC) in patients with idiopathic pulmonary arterial hypertension (IPAH), 

indicating that Oct-4-psG1 and Oct-4-psG5 are involved in IPAH.44 Moreover, 

expression level of NMRA-like protein NMRAL1 pseudogene (NMRAL2P) is 

significantly decreased in the right ventricle in heart failure, suggesting that 

NMRAL2P is involved in heart failure.45 Together, these studies indicate that 

pseudogenes are closely related to CVDs. IGBP1P1 is a pseudogene of IGBP1, a 

phosphoprotein associated with the B cell receptor complex and leads to multiple 

signal transduction pathways.46 IGBP1 is a novel biomarker in lupus nephritis (LN) 

patients, its expression level is increased in the plasma and urine of patients with LN 

compared with systemic lupus erythematosus (SLE) patients without nephritis and 

healthy controls.47,48 Recently it also showed that IGBP1 is upregulated in 

esophageal squamous cell carcinoma (ESCC), and its expression is significantly 

associated with ESCC patient survival.49 IGBP1 is also expressed in the heart, but its 

function has not been studied in the heart yet. In our study, we have identified that 

IGBP1P1 is upregulated in the human disease model in vitro, and its depletion could 
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reduce hypoxia-induced cell size and improve cardiac contractility in human cardiac 

tissue mimetics. It may modulate cardiomyocyte size and cardiac contractility 

through regulating the expression level of IGBP1 at both transcriptional and 

translational levels, but the mechanism is not known yet. 

Many studies have demonstrated that ncRNAs play important roles in the 

development of CVDs.50 However, the study of human-specific ncRNAs has been 

limiting and challenging. The majority of the human lncRNAs are poorly conserved in 

mouse, conventional mouse models are not a suitable tool to study their function in 

vivo regulation and function. Here, we utilized a human 3D cardiac organoid model, 

in order to best recapitulate the biological and molecular properties of native heart 

tissue thus enabling us to study ncRNA function in a physiologically relevant context 

– lending greater credence to the validity of our study and its findings. The 3D 

human cardiac organoids are composed of different cell types including 

cardiomyocytes, endothelial cells, and fibroblasts, which are able to self-organize 

into complex organ-like structures and have a similar microenvironment to the 

human heart. In addition, the human cardiac organoids can be cultured for longer 

term in vitro, and also display molecular, metabolic and contractile characteristics of 

adult native myocardium and respond to pathophysiologic stressors (Figure 5F and 

5G, Figure S4A and S4B). The organoid model is a useful biological tool to study the 

biological functions of ncRNAs in our study. In the future, human cardiac organoids 

are also the good model for the research in disease modeling, developmental 

biology, and drug screening. 

Taken together, using the 2D hiPSC-CMs and 3D human cardiac organoids, we 

have identified the ncRNA IGBP1P1, as a pathologic stress-induced modulator of 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2023. ; https://doi.org/10.1101/2023.02.12.528184doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.12.528184


20 
 

cardiomyocyte hypertrophy and contractile function. IGBP1P1 depletion rescued 

cardiomyocyte size and improved cardiac contractility. Thus, blocking the ncRNA 

IGBP1P1 could be a promising strategy to improve cardiac function in cardiovascular 

disease. 
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Figure Legends 

Figure 1. Overview of the bioinformatic pipeline to identify non-coding genes 

associated with cardiovascular diseases.  

Step 1: SNPs for 6 different cardiac diseases were collected from the NHGRI-EBI 

GWAS catalog. Step 2: We used existing transcription factor binding models to filter 

regulatory SNPs (rSNPs), that are predicted to have an impact on transcription factor 

binding sites (TFBS). Step 3: rSNPs are linked to putative target genes using 

enhancer-gene links. For each step the number of SNPs or genes for each disease 

is given per row. 

Figure 2. Analysis of protein and non-coding genes associated with rSNPs.  

(A) For each GWAS (row) a stacked bar plot shows the number of associated genes 

per category. (B) Dot plot visualizing per GWAS how many regulatory elements 

(REMs) and rSNPs are associated with a gene. Genes are separated into protein-

coding, protein-coding associated with the disease according to DisGeNET, non-

coding, and experimentally studied non-coding genes in this work (circle colour). The 

x-axis shows the number of REMs for a gene overlapping with at least one rSNP and 

the y-axis the number of rSNPs for all REMs associated with a gene. The size of the 

dot correlates with the number of genes having the same x- and y- coordinate 

values.  
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Figure 3. Disease enrichment analysis based on the protein coding genes co-

expressed with GWAS-associated non-coding genes.  

(A) We sought to identify co-expressed protein-coding genes (PCGs, triangles) for 

each non-coding gene (NCG, circle) using a large dataset of RNA-seq samples from 

GTEx34. The top correlated protein-coding genes are tested for an enrichment of 

previous indications with a cardiovascular disease. (B) Barplot visualizing the 

number of non-coding and co-expressed protein-coding genes per GWAS (row). (C) 

Dot plot showing enriched cardiovascular phenotypes from DisGeNET (x-axis) for 

the top 10 co-expressed protein-coding genes of the associated non-coding genes 

separated per GWAS (y-axis). The dot coloring represents whether a phenotype is 

significantly enriched (FDR<= 0.05) and the dot size is relative to the FDR.  

Figure 4. Identification and characterization of ncRNAs in hiPSC-CMs 

 (A) Schematic protocol for differentiation of hiPS cells into cardiomyocytes, 

monoculture cardiac organoids (MCOs) and self-organized cardiac organoids 

(SCOs) in vitro. (B) Heat map shows the relative mRNA expression levels of the 40 

ncRNAs in the 40-day-old hiPSC-CMs, or 40-day-old human cardiac organoids 

(including MCOs and SCOs) treated with either 1% O2 or 3% O2 for 2 or 3 days, 

respectively. Data are normalized to either normoxia hiPSC-CMs, or normoxia 

MCOs/SCOs. The red and green colors indicate high and low expression values, 

respectively. Means of n=3 biological replicates per group. (C) Relative mRNA 

expression of RP11-98F14.11, COL3A1, MMP2, TGFb1, NPPA, NPPB and MYH7 in 

hiPSC-CMs transduced with either GapmeR RP11-98F14.11 (GM RP11-98F14.11) 

or GapmeR negative control (GM Ctrl) in both normoxia and hypoxia. Data are 

represented as Mean±SEM; n=3; *, %P< 0.05. (D) Relative mRNA expression of 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2023. ; https://doi.org/10.1101/2023.02.12.528184doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?LTFin7
https://doi.org/10.1101/2023.02.12.528184


26 
 

RPL23AP9, COL3A1, MMP2, TGFb1, NPPA, NPPB and MYH7 in hiPSC-CMs 

transduced with either GapmeR RPL23AP9 (GM RPL23AP9) or GM Ctrl in both 

normoxia and hypoxia. Data are represented as Mean±SEM; n=3; *, %P< 0.05. (E) 

Relative mRNA expression of IGBP1P1, COL3A1, MMP2, TGFb1, NPPA, NPPB and 

MYH7 in hiPSC-CMs transduced with either GapmeR IGBP1P1 (GM IGBP1P1) or 

GM Ctrl in both normoxia and hypoxia. Data are represented as Mean±SEM; n=3; *, 

%P< 0.05. (F) Representative images of α-actinin (red) and DAPI (blue) in 40-day-

old hiPSC-CMs after GM RP11-98F14.11, GM RPL23AP9, GM IGBP1P1, GM CTD-

2383I20.1, or the GM Ctrl under normoxia or hypoxia for 2 days. Scale bar is 25 µm. 

(G) Cell size of the hiPSC-CMs was assessed by the Image J. 50 cells were 

analyzed for each condition. Data are represented as Mean±SEM; n=3; *, %P< 0.05. 

hiPSC-CMs, human induced pluripotent stem cell-derived cardiomyocytes; MCOs, 

monoculture cardiac organoids; SCOs: Self-organized cardiac orgnoids. 

Figure 5. IGBP1P1 is vital in cell size and contractility in human cardiac tissue 

mimetics 

(A) Relative mRNA expression of RP11-98F14.11, COL3A1, MMP2, TGFb1, NPPA, 

NPPB, MYH7 and ratio MYH7/6 in MCOs transduced with either GM RP11-98F14.11 

or GM Ctrl in both normoxia and hypoxia. Data are represented as Mean±SEM; n=3; 

*, %P< 0.05. (B) Relative mRNA expression of IGBP1P1, COL3A1, MMP2, TGFb1, 

NPPA, NPPB, MYH7 and ratio MYH7/6 in MCOs transduced with either GM 

IGBP1P1 or GM Ctrl in both normoxia and hypoxia. Data are represented as 

Mean±SEM; n=3; *, %P< 0.05. (C) Representative images of α-actinin (red) and 

DAPI (blue) in 40-day-old human MCOs after GM IGBP1P1 or the GM Ctrl in 

normoxia or hypoxia for 3 days. Scale bar is 50 µm. (D) Cardiomyocyte cell size in 
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the MCOs was assessed by the Image J. 50 cells were analyzed for each condition. 

Data are represented as Mean±SEM; n=3; *, %P< 0.05. (E) Human MCOs were 

treated with GM IGBP1P1 or GM Ctrl in both normoxia and hypoxia for 3 days, and 

then contraction was determined by counting beats per minute. Data are represented 

as Mean±SEM; *, %P< 0.05. (F) Representative traces of contractile MCOs. (G) The 

contractility assays were performed by determining the amplitude peak of contracting 

MCOs. Data are represented as Mean±SEM; *, %P< 0.05. All by one-way ANOVA 

analyses followed by a Dunnett’s multiple comparison post-test. MCOs, monoculture 

cardiac organoids. 

 

Supplementary Figure 1. Disease enrichment analysis for protein-coding 

genes 

 Barplots representing per GWAS selected phenotypes enriched for protein coding 

genes identified with SNEEP. The x-axis shows the -log10 FDR corrected p-value 

of the disease enrichment analysis performed with the DisGeNet software (usage of 

DisGeNET similar to method section ‘Identification of disease associated genes 

using rSNPs', as input the protein-coding genes from the SNEEP result per GWAS 

are taken) (see also Table S1). For the GWAS Myocardial ischemia and Aortic 

stenosis the disease enrichment analysis was not possible, because only 5 and 12 

protein coding genes were associated. 

Supplementary Figure 2. Identification of the best GapmeRs in hiPSC-CMs 

(A) Relative RNA expression level of RP11-98F14.11 in hiPSC-CMs treated with GM 

RP11-98F14.11 #1, #2, #3, #4 or GM GapmeR Ctrl. Data are normalized to hiPSC-
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CMs expressing GM Ctrl. Data are represented as Mean±SEM; n=3; *P< 0.05. (B) 

Relative RNA expression level of RPL23AP92 in hiPSC-CMs treated with GM 

RPL23AP92 #1, #2, #3, #4 or GM Ctrl. Data are represented as Mean±SEM; n=3; 

*P< 0.05. (C) Relative RNA expression level of IGBP1P1 in hiPSC-CMs treated with 

GM IGBP1P1 #1, #2, #3, #4 or GM Ctrl. Data are represented as Mean±SEM; n=3; 

*P< 0.05. (D) Relative RNA expression level of CTD-2383I20.1 in hiPSC-CMs 

treated with GM CTD-2383I20.1 #1, #2, #3, #4 or GM Ctrl. Data are represented as 

Mean±SEM; n=3; *P< 0.05. Two-tailed unpaired t-test. 

Supplementary Figure 3. Characterization of CTD-2383I20.1 in hiPSC-CMs 

Relative RNA expression of CTD-2383I20.1, COL3A1, MMP2, TGFb1, NPPA, NPPB 

and MYH7 in hiPSC-CMs transduced with either GM CTD-2383I20.1 or GM Ctrl in 

both normoxia and hypoxia. Data are represented as Mean±SEM; n=3; *, %P< 0.05, 

**P<0.01.  

Supplementary Figure 4: IGBP1P1 inactivation improved contractility in human 

MCOs 

Human MCOs were treated with GM IGBP1P1 or GM Ctrl in both normoxia and 

hypoxia for 3 days, and then the contractility assays were performed by calcium 

transient. (A) Representative traces of contractile MCOs. (B) Data are represented 

as Mean±SEM; *, %P< 0.05. Two-tailed unpaired t-test. (C) Human MCOs were 

treated with GM RP11-98F14.11 or GM Ctrl in both normoxia and hypoxia for 3 days, 

and then contraction was determined by counting beats per minute. (D) The 

contractility assays were performed by calcium transient. Data are expressed as 

means ± SEM. *P<0.05, **P<0.01. Two-tailed unpaired t-test. 
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Figure S1
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