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Abstract1

Ancestry tracts are contiguous haplotype blocks inherited from distinct groups of common2

ancestors. The genomic distribution of ancestry tracts (or local ancestry) provides rich informa-3

tion about evolutionary mechanisms shaping the genetic composition of hybrids. The correlation4

structure of ancestry tracts has been particularly useful in both empirical and theoretical studies,5

but there is a lack of descriptive measures operating on arbitrarily large genomic blocks to summa-6

rize this correlation structure without imposing too many assumptions about admixture. We here7

develop an approach inspired by quantum information theory to quantify this correlation struc-8

ture. The key innovation is to represent local ancestry as quantum states, where less correlation9

in local ancestry leads to elevated quantum entropy. By leveraging a variety of entropy measures10

on local ancestry signals, we show that entropy is deeply connected to co-ancestry probabilities11

between and within haplotypes, so that ancestral recombination graphs become pivotal to the12

study of entropy dynamics in admixture. We use this approach to characterize a standard neu-13

tral admixture model with an arbitrary number of sources, and recover entropic laws governing14

the dynamics of ancestry tracts under recombination and genetic drift, which resembles the sec-15

ond law of thermodynamics. In application, entropy is well-defined on arbitrarily large genomic16

blocks with either phased or unphased local ancestry, and is insensitive to a small amount of17

noise. These properties are superior to simple statistics on ancestry tracts such as tract length18

and junction density. Finally, we construct an entropic index reflecting the degree of intermixing19

among ancestry tracts over a chromosomal block. This index confirms that the Z chromosome in a20

previously studied butterfly hybrid zone has the least potential of ancestry mixing, thus conform-21

ing to the “large-X/Z” effect in speciation. Together, we show that quantum entropy provides a22

useful framework for studying ancestry tract dynamics in both theories and real systems.23
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1. Introduction24

Closely related species are prone to hybridization in sympatry (Taylor and Larson, 2019). At the25

genome level, hybridization causes admixture, a process of mixing genomes and eroding species-26

specific genetic information (Moran et al., 2021). Admixture affects evolution profoundly: it distorts27

local gene genealogies (Suvorov et al., 2022) and brings distinct mutations/alleles into different28

species (Skov et al., 2020); it triggers natural selection acting on introgressed genetic elements (Ozi-29

olor et al., 2019); this selection process can subsequently strengthen or weaken species boundaries30

and shape biodiversity (Kleindorfer et al., 2014; Ungerer et al., 1998).31

To describe and understand admixture, classical population genetics offer two formalisms. Firstly,32

properties localized to narrow regions of the genome (“loci”) are studied using measures such as33

allele frequency divergence (Wright, 1949), linkage disequilibrium (Lewontin and Kojima, 1960),34

genetic diversity (Nei, 1973), and geographic clines (Barton and Hewitt, 1985). These approaches35

are mainly descriptive but offers useful insights about the study system (e.g., high FST could be36

a sign of barriers to gene flow, Sakamoto and Innan (2019)). Secondly, one focuses on the entire37

genome/chromosome and infers haplotype blocks inherited from different ancestral populations.38

Blocks of constant local ancestry (or “ancestry tracts”) provide correlational information that can be39

used to study the interplay among recombination, selection, and demography (Pool and Nielsen,40

2009; Sedghifar et al., 2016; Shchur et al., 2020; Steinrücken et al., 2018). In practice, analyzing local41

ancestry often begins with imposing a particular model of admixture, then estimating parameters42

such as admixture times, selection coefficients, or effective population sizes (Gravel, 2012; Liang43

et al., 2022; Svedberg et al., 2021), which could be highly complex with many degrees of freedom.44

Interpreting and comparing these complex models is challenging because evolutionary processes45

are likely heterogeneous along the genome, and it is often unknown a priori if a model is misspecified46

(Huang et al., 2022).47

Given the complexity of admixture at genomic scales, there is currently a lack of frameworks al-48

lowing researchers to simply observe the correlation structure of ancestry tracts in the study system49

without making too many assumptions about models. This can be particularly useful when local50

ancestry is easy to infer (e.g., ancestry-informative SNPs are dense in the genome). Furthermore,51

from a theoretical perspective, descriptive measures on ancestry tracts will be useful in quantify-52

ing evolutionary dynamics with a global impact on genomes or chromosomes, such as coupling53

among polygenes underlying reproductive isolation (Feder et al., 2014), interactions between as-54

sortative mating and hybrid incompatibility (Muralidhar et al., 2022), or large structural variants55

affecting chromosomal recombination (de Vos et al., 2020; Kirkpatrick and Barton, 2006). Under-56

standing these nonlocal processes requires quantitative measures operating on arbitrarily large ge-57

nomic blocks.58

To date, a few summary statistics have been developed to measure local ancestry correlation,59

among which ancestry tract length and ancestry junction density are the most widely used (Baird60

et al., 2003; Fisher, 1949, 1954; Janzen et al., 2018; Liang and Nielsen, 2014). Both measures describe61
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how frequently local ancestry switches states along a haplotype. This information has been used not62

only in timing admixture events, but also in detecting natural selection during admixture, because63

selected sites are physically associated with longer ancestry tracts, or equivalently, fewer ancestry64

junctions — a signature of less mixed local ancestry (Shchur et al., 2020; Wang et al., 2022). Although65

both measures are intuitive, problems exist in practice. First, tract length requires high-quality hap-66

lotypes because length is undefined if ancestry is unphased in diploid organisms. Second, as a67

counting measure, junction density is sensitive to even localized errors in ancestry inference. Sim-68

ilarly, small errors in local ancestry inference can rupture an otherwise contiguous ancestry tract,69

producing bias towards shorter tracts (Harris and Nielsen, 2013; Ralph and Coop, 2013). This is70

particularly problematic if phase imputation is forced in the absence of reliable haplotype informa-71

tion. Lastly, many studies identify a specific ancestry as the major parent, while treating the rest as72

introgression, hence restricting admixture to only two sources with an inherent polarity in analy-73

sis (Schumer et al., 2018; Vilgalys et al., 2022). This could be problematic for samples in the center74

of a hybrid zone since the major parent might change along the genome when contributions are75

relatively equal among all sources.76

Inspired by quantum information theory, here we develop a descriptive framework to quantify77

ancestry mixing in an arbitrarily large genomic block with any number of source populations. It has78

clear population genetic interpretations with phased local ancestry, and it is adjustable for unphased79

data. Based on a prototype, the core of this framework is the entropy over a set of local ancestry80

signals (Xiong et al., 2022a). We will start by representing genetic ancestry as quantum states. Then81

we will define entropy and connect it to co-ancestry probabilities that are inferrable from ancestral82

recombination graphs, thus grounding the current framework in coalescent theory. Finally, we show83

the usefulness of entropy as descriptive statistics to study admixture dynamics at genomic scales.84

2. Results85

2.1 Intuition for the quantum representation of genetic ancestry86

An obstacle in the mathematical representation of genetic ancestry is that “ancestry” is an unordered87

categorical variable. For instance, modern humans inherit multiple types of ancestry from ancient88

populations (Gopalan et al., 2022), but ancestral human populations cannot be ordered into sequen-89

tial relationships. This implies that a mathematical representation of ancestry must be multidimen-90

sional and tracks contributions from all sources simultaneously. In quantum physics, information is91

encoded in quantum states, which provides a probability distribution of all possible measurement92

outcomes (Nielsen and Chuang, 2010). These outcomes are usually categorical and unordered, such93

as the spin of particles. In application, the correlation structure of genomic ancestry tracts provides94

invaluable information about evolutionary mechanisms, while the correlation structure of quantum95

states is also essential for the study of quantum entanglement (Horodecki et al., 2009) and the re-96

lated quantum information theory. This resemblance between genetic ancestry and quantum states97

inspires us to borrow the existing framework in quantum information theory to study genetic ad-98
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mixture. Nonetheless, nothing is fundamentally quantum in population genetics, and our approach99

should be understood as a formal appropriation of concepts and methods in quantum information100

theory. A quantum state is usually denoted as |·⟩, an element in a complete vector space equipped101

with an inner product. Its adjoint vector is written as ⟨·|, and ⟨·|·⟩ represents inner products. In102

addition, averaging a function over all of its positional arguments l1, l2, · · · is written as f (l1, l2, · · · )103

(SI Definition 1).104

To represent genetic ancestry, let |k⟩ be a pure state corresponding to the k-th source population105

(or the k-th ancestry type). As many organisms have ploidies larger than one, measuring ancestry106

using unphased genotypes will produce mixed ancestry at a single locus. We propose that both107

pure and mixed local ancestries can be represented by the superposition of pure states (Fig. 1A):108

|y⟩ = ∑
k

√
pk|k⟩ (1)

where pk corresponds to the contribution from the k-th source. Naturally, ∑k pk = 1. For instance,109

heterozygous ancestry in a diploid individual with two admixture sources is110

|y⟩ = 1√
2
|1⟩+ 1√

2
|2⟩ (2)

Each source population is often treated as a distinct entity. Thus, pure states are assumed to be111

orthogonal to each other:112

⟨k1|k2⟩ =

1 if k1 = k2

0 if k1 ̸= k2

(3)

Orthogonality also enables a probabilistic interpretation of entropy to be introduced later.113

In practice, local ancestry is the outcome of inheritance history, and it needs to be inferred from114

genome sequences with varying levels of differentiation. If parental populations are not differenti-115

ated at the sequence level, ancestry is not observable, but the validity of our theory is not affected116

since inheritance history always exists1.117

2.2 Entropy associated with ancestry correlation over chromosomal blocks118

There are two major axes of ancestry correlation: the one between chromosomal positions and the119

one between individuals. For a contiguous chromosomal block with positional index l ∈ [0, L], sup-120

pose a sample contains n individuals (n ancestry signals). Define the following continuous integral121

1Another approach is to remove the orthogonality assumption between pure states and let their inner product be
the sequence-level similarity of parental populations, so that undifferentiated parents naturally lead to hybrid offspring
with highly similar homologous haplotypes. However, this modification changes the concept of ancestry and invali-
dates our probabilistic interpretation of entropy.
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Figure 1: Key elements of the framework. (A) An example of the quantum representation of genetic
ancestry for individuals with three orthogonal sources of admixture. For diploids, gray arrows are
loci heterozygous in ancestry, and black arrows are loci homozygous in ancestry. (B) Probabilities of
co-ancestry. These probabilities are defined on ancestries at two positions (l1 and l2) on one or two
haplotypes (i and j). Alleles connected by arrows are identical by ancestry.

kernel:122

A(l1, l2) =
1
n

n

∑
i=1

⟨yi(l2)|yi(l1)⟩︸ ︷︷ ︸
Ancestry correlation between
positions l1,l2 in individual i

(4)

Kernel A captures pairwise ancestry correlation between chromosomal positions and averaged over123

all individuals. Next, define the following kernel matrix B = {bij}n×n, where124

bij =
1
L

∫ L

0
⟨yj(l)|yi(l)⟩︸ ︷︷ ︸

Ancestry correlation between
individuals i,j at position l

dl (5)

Matrix B captures pairwise ancestry correlation between individuals and averaged over all positions125

in the chromosome block. Each kernel has a unique spectral decomposition with real eigenvalues:126

A =
∞

∑
i=1

µi|vi(l1)⟩⟨vi(l2)| ∑
i

µi = L

B =
n

∑
i=1

λi|ui⟩⟨ui| ∑
i

λi = n
(6)

For these kernels, less amount of correlation between different components increases the evenness127

of eigenspectrum, and this evenness can be measured by quantum entropy S. Two common forms128

of quantum entropy are the so-called “von Neumann entropy” and “linear entropy” (Eq. 7). Widely129
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used in physics, von Neumann entropy is simply the classical Shannon entropy formula applied to130

the kernel spectrum, but it is an extensive quantity and grows with O(log n). On the contrary, linear131

entropy is nonextensive and is always bounded by one. To overcome sample size dependency,132

we adopt linear entropy for all subsequent analyses, and entropy will be used synonymously with133

linear entropy unless explicitly specified.134

Sw = S(A) = −∑
i

µi

L
ln

µi

L︸ ︷︷ ︸
Sw,1: von Neumann

or 1 − ∑
i

µ2
i

L2︸ ︷︷ ︸
Sw,2: linear

Sb = S(B) = −∑
i

λi

n
ln

λi

n︸ ︷︷ ︸
Sb,1: von Neumann

or 1 − ∑
i

λ2
i

n2︸ ︷︷ ︸
Sb,2: linear

(7)

The subscript “w” stands for “within-individual”, and “b” stands for “between-individual”, which135

are understandable from the axes of correlation. Note that an equivalent expression for linear en-136

tropy is to use the trace operator “Tr”:137

Sw,2 = 1 − Tr[A2]/L2

Sb,2 = 1 − Tr[B2]/n2
(8)

2.3 Linear entropy captures co-ancestry probabilities among haplotypes138

A nice property of linear entropy is that it has a clear population genetic interpretation when sam-139

ples are haplotypes. For n haplotypes, consider the following probabilities of co-ancestry (Fig. 1B):140

Let Qb(l1, l2) be the probability that two different haplotypes share ancestry at both loci l1 and l2,141

and let Qw(l1, l2) be the probability that two loci l1 and l2 share ancestry in both haplotypes. Further,142

let qw(l1, l2) be the probability that two loci share ancestry in a single haplotype.143

The expectation of linear entropy is related to these probabilities of co-ancestry by (SI Theorem 1):144

E[Sw,2] = 1 − n − 1
n

Qw − 1
n

qw

E[Sb,2] = 1 − n − 1
n

Qb −
1
n

(9)

where Qb, Qw, and qw are the corresponding probabilities averaged over all pairs of loci in the145

chromosome block [0, L]. One can adjust sample size n to select information most interesting to the146

problem. If correlation along individual haplotypes is the only information to consider, take n = 1147

and this information is encoded in Sw,2 as148

E[Sw,2] = 1 − qw (10)
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Here, qw is simply the two-point correlation function of local ancestry averaged over a chromosomal149

block, and it is closely related to linkage disequilibrium in classical population genetics. In the limit150

of large sample sizes, more complex correlation information is encoded in entropy:151

E[Sw,2] ≈ 1 − Qw

E[Sb,2] ≈ 1 − Qb
(11)

Qb and Qw contain more correlation information than linkage disequilibrium because they are also152

affected by ancestry correlation between haplotypes (Fig. 1B), thus incorporating the disorderedness153

generated by both recombination and genetic drift.154

2.4 A standard model: entropy dynamics among haplotypes in neutral admixture155

As a proof of concept, we apply entropy to a simple but standard admixture model to test if it can be156

used to track ancestry disorderedness. In this model, n haplotypes are sampled from a large, diploid,157

and randomly mating population of size N. The population is established by admixture at time158

t = 0 from K sources with proportions p = (p1, · · · , pK), and it evolves neutrally under the Wright-159

Fisher process with identical recombination rates at all chromosomal positions with no interference160

(Durrett, 2008). This multi-source neutral admixture is a useful approximation for closely related161

populations. A single admixture event is assumed to demonstrate the fundamental properties of162

entropy.163

The probabilistic interpretation of linear entropy enables us to investigate its dynamics analyt-164

ically (see SI “Ancestral recombination graph”). Overall, the expected entropy changes on two165

timescales (top parts in Fig. 2A): recombination within blocks increases entropy with a rate deter-166

mined by block-average recombination probabilities, and genetic drift dampens entropy with a rate167

determined by effective population sizes. When the two timescales differ greatly (e.g., long blocks168

in a large population), a chromosomal block will experience a rapid burst of entropy, followed by a169

slow decline due to genetic drift removing diverse haplotypes. This behavior is accurately captured170

by forward-in-time simulations (colored curves in Fig. 2B) and analytical models using ancestral171

recombination graphs (dashed and dotted curves in Fig. 2B).172

Short-term behavior. Let r(l1, l2) be the recombination probability per generation between loci l1173

and l2. Ancestral recombination graphs predict the following rates for the short-term production of174

entropy at the onset of admixture (SI Theorem 4):175

∂tE[Sw,2(t)]|t=0 =
2n − 1

n
H0r

∂tE[Sb,2(t)]|t=0 =
n − 1

n

[
2(J0 − H0)r︸ ︷︷ ︸
Recombination

− H0/2N︸ ︷︷ ︸
Genetic drift

] (12)

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2023. ; https://doi.org/10.1101/2023.02.12.528199doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.12.528199
http://creativecommons.org/licenses/by-nc/4.0/


A

0

E[
S

w
,2

]

0 Generation

E[
S

b
,2

]

dS
∝

r
Deterministic

Stochastic

dS
∝ r Deterministic

Stochastic

Recombination Genetic drift

C

Low diploid Sw,2

High haploid Sw,2
Low diploid Sb,2

High haploid Sb,2

B

100 101 102 103

Generation

0.0

0.2

0.4

0.6

0.8

[S
w

,2
]

L=
10

6
L=10

5

L = 104

100 101 102 103

Generation

0.0

0.2

0.4

0.6

0.8

[S
b,

2]

L = 106
L = 105

L=
10 4

100 101 102 103

Generation

0.0

0.2

0.4

0.6

0.8

[S
w

,2
]

L=
10

6
L=10

5

L=104

100 101 102 103

Generation

0.5

0.6

0.7

0.8

[S
b,

2] L=10
6

L = 105

L = 104

N = 2000

N = 200

N = 2000

N = 200

Figure 2: Entropy dynamics among haplotypes in neutral admixture. (A) A long chromosomal
block will first accumulate entropy rapidly due to recombination breaking up ancestry correlation
within and between haplotypes, but stochasticity such as genetic drift will eventually dampen en-
tropy to a lower equilibrium. Curves are illustrative and are not based on exact numerical values.
(B) Simulated (with SLiM-4.0) and analytical trajectories of the expected entropy. For simulation,
each individual has a pair of homologous chromosomes of length 107 bp. Recombination occurs in-
dependently between adjacent sites with a probability 10−7 per generation. Admixture proportion
p = (0.1, 0.2, 0.3, 0.4). The expected entropy is computed for 10 diploid individuals (n = 20) by
averaging entropy among non-overlapping chromosomal blocks of length L, then averaging over
multiple permutations of individual ancestry assignment at t = 0, and finally averaging over five
independent simulations of the whole model. Colored boundaries are mean +/- standard error of
the expected entropy. Dashed and dotted curves are the expected entropy evaluated using ances-
tral recombination graphs. (C) Top: Relationships between haploid and diploid entropy measures
in neutral admixture. Each dot represents a long block (L = 106 bp) in an admixed population
(N = 200) in the aforementioned simulation with the same admixture proportion. Black solid lines
and dotted lines are median and (25%, 75%) percentiles of diploid entropy, respectively. r is Pear-
son’s correlation coefficient. Bottom: Some ancestry configurations are associated with diploid en-
tropy significantly underestimating haploid entropy.
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where r represents recombination probabilities averaged over all pairs of loci in a chromosomal176

block, and (H0, J0) are two constants determined by admixture proportions:177

H0 = 1 − ∑
k

p2
k, J0 = 1 − ∑

k
p3

k (13)

Eq. 12 shows that the initial production of both entropies is proportional to the block-average re-178

combination probability r. The dependency of entropy production on r has two implications: when179

per-base-pair recombination rate is fixed, longer blocks will on average accumulate entropy faster180

(Fig. 2B); conversely, if block size is fixed, recombination hotspots will on average accumulate en-181

tropy faster than regions with suppressed recombination. The effect of genetic drift will be promi-182

nent if a chromosomal block is sufficiently short so that183

4Nr <
H0

J0 − H0
, (14)

causing the immediate decrease of E[Sb,2] at the onset of admixture.184

Long-term behavior. Without genetic drift, recombination elevates the expected entropy to the fol-185

lowing deterministic limits (SI Theorem 5):186

lim
t→+∞

E[Sw,2(t)|N = ∞] = 1 − n − 1
n

(1 − H0)
2 − 1

n
(1 − H0)

lim
t→+∞

E[Sb,2(t)|N = ∞] = 1 − n − 1
n

(1 − H0)
2 − 1

n

(15)

Due to genetic drift, these limits are rarely attained in a small population or on a very short chro-187

mosomal block. Eventually, the loss of haplotype diversity dampens entropy to these stochastic188

long-term limits (SI Theorem 6):189

lim
t→+∞

E[Sw,2(t)] = 2Nr/(1 + 2Nr)H0

lim
t→+∞

E[Sb,2(t)] = 0
(16)

This sets apart the dynamics of entropy in admixed but highly inbred populations from those in190

populations with very large effective population sizes (compare deterministic and stochastic trajec-191

tories in Fig. 2A, and between top/bottom panels in Fig. 2B). In particular, long-term equilibria of192

E[Sw,2] decreases with a smaller N, implying that increased genetic drift fixes longer ancestry tracts,193

a result congruent with classical studies of ancestry tract lengths(Gravel, 2012). We find that the194

expected total entropy in this standard model satisfies the following inequality, which we call the195
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“Heisenberg uncertainty principle for neutral genetic admixture”2:196

E[Sb,2(t) + Sw,2(t)] ≥ c, (17)

where c = 2Nr/(1 + 2Nr)H0 characterizes the competition between recombination and genetic197

drift.198

Diploid vs haploid entropy. While entropy among haplotypes is a natural measure of the disor-199

deredness of ancestry tracts, reliable haplotypes are costly to assemble, and local ancestry is often200

unphased in empirical studies. The diploid ancestry representation (Fig. 1A) relaxes the phasing201

requirement and entropy can be evaluated on n unphased diplotypes. Does diploid S capture in-202

formation similar to haploid S? In simulated neutral admixture, the two measures are strongly203

correlated (Fig. 2C: top), and diploid S is always the smaller one. For them to differ greatly, diploid204

S must severely underestimate haploid S. For Sw,2, this can happen only when diploid ancestry is205

mostly heterozygous while haplotypes contain highly broken ancestry tracts (Fig. 2C: bottom left).206

However, this scenario is statistically unlikely because it requires local ancestry between the two207

haplotypes to be anti-correlated and ancestry junctions to be aligned. In a large population, ancestry208

junctions are unlikely to be shared between haplotypes; and even if they are shared via identical-209

by-descent, local ancestry should be the same rather than be anti-correlated. Consequently, diploid210

Sw,2 is still a good measure in the absence of phase information. For diploid Sb,2, its behavior can211

be less reliable. For instance, in a sample consisted entirely of F1 hybrids, haploid Sb,2 is large, but212

diploid Sb,2 becomes zero because all individuals have the same genotype (Fig. 2C: bottom right).213

This problem occurs because F1 hybrids are far from Hardy-Weinberg equilibrium. In subsequent214

generations this problem becomes less severe and diploid Sb,2 is still strongly correlated with hap-215

loid haploid Sb,2.216

2.5 Irreversible change in ancestry tracts resembles the second law of thermody-217

namics218

In thermodynamics, entropy change is often associated with irreversible processes (the second law219

of thermodynamics, Sethna (2021)). In population genetics, ancestry tracts broken up by recombi-220

nation cannot be systematically stitched back by chance. Similarly, haplotypes lost to genetic drift221

cannot spontaneously reappear in the absence of other processes. This directionality is visible from222

Fig. 2A, that these neutral processes shift ancestry correlation from within to between haplotypes.223

Pictorially, in the genotypic space of all possible haploid ancestry signals, an admixed population224

will spontaneously evolve from haplotypes forming multiple clusters to a single one. To capture225

this intrinsic directionality in admixture dynamics, we introduce:226

∆S = Sb,2 − Sw,2 (18)

2Note that this inequality shares a similar structure to the well-known Heisenberg uncertainty principle in physics.
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Figure 3: Entropy change reveals the fusion and contraction of clusters in genotypic space. For
each t (generation), 50 diploid individuals are sampled from a population (N = 2000) with two-
way admixture (p = (0.5, 0.5)). All quantities are based on local ancestries of a single chromosomal
block (L = 106 bp) across sampled individuals. Genotypic clustering is visualized using princi-
pal component analysis on local ancestry. The first principal component (PC1) is computed from
the first-generation sample and all later-generation samples are projected onto the same PC1. All
principal component analyses use numerically transformed ancestry as follows: haploids with two
states: (1,−1); and diploids with three states: (1, 0,−1). Only the density along PC1 is shown for
each distribution (fitted using a Gaussian kernel). Top row: Each dot represents a diploid individ-
ual’s mean ancestry and heterozygosity of a given block. Middle row: The sign of ∆S using diploid
entropy is correlated with the distribution of individuals along the first principal component (PC1)
of diploid ancestry. Bottom row: The sign of ∆S using haploid entropy is correlated with the distri-
bution of haplotypes along the first principal component (PC1) of haploid ancestry.

With large sample sizes, E[∆S] ≈ Qw − Qb, which is exactly the difference between the two prob-227

abilities of co-ancestry in Fig. 1B. Thus, the sign of ∆S tells the major axis of co-ancestry (within vs228

between), and a significantly positive ∆S coincides with the presence of distinct ancestry clusters in229

that genotypic space.230

To illustrate this property, we track ∆S in the neutral admixture model through time (Fig. 3). The231

initial generation has haploid ∆S = H0 > 0, congruent with the presence of distinct multilocus an-232

cestry clusters (Fig. 3: t = 1). In an infinitely large population, recombination induces an irreversible233
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change in haploid ∆S (SI Theorem 7):234

∂tE[∆S|N = ∞] < 0 (19)

This shows that recombination causes ancestry clusters to fuse. Haploid ∆S in the final stage of235

deterministic admixture is close to zero (Fig. 3: t = 100):236

lim
t→+∞

E[∆S|N = ∞] = −H0/n (20)

This occurs when ancestry tracts have fully disintegrated and co-ancestry probabilities between and237

within haplotypes are similar. In finite populations, co-ancestry probability Qb will gradually rise238

between haplotypes due to genetic drift, and ∆S will decrease further (Fig. 3: t = 2000). We use239

numerical methods to show that ∂tE[∆S] < 0 is valid under both genetic drift and recombination240

(SI Conjecture 1, Fig. S2 and S3). For sufficiently long blocks, the stochastic long-term limit of E[∆S]241

is precisely the opposite of the initial entropy (H0), which implies that242

lim
t→+∞

E[Sw,2] ≈ lim
t→0

E[Sb,2] (21)

This relation shows that, among long haplotype blocks, recombination and genetic drift transfer243

approximately all the initial entropy between haplotypes in the first generation to the entropy within244

a single haplotype at equilibrium. The change in diploid ∆S is similar (middle row in Fig. 3).245

2.6 A chromosomal measure of admixture progress based on entropy diagrams246

Ancestry signals are high-dimensional, and distilling their correlation structure into entropy enables247

the use of low-dimensional diagrams for qualitative studies. Information provided jointly by Sb,2248

and Sw,2 can already separate different kinds of ancestry signals (Fig. 4A), and ∆S splits them by249

the presence of distinct ancestry clusters. Nonetheless, similar to linkage disequilibrium in classical250

population genetics, the magnitude of ∆S is affected by the frequency of each source. For instance,251

∆S is zero in a pure population without admixture as well as in a population with fully disassociated252

ancestry tracts (the diagonal line in Fig. 4A). While these populations contain a single ancestry253

cluster, they are “homogeneous” with very different levels of ancestry variation. Thus, ∆S alone is254

insufficient to probe the degree of intermixing among ancestry tracts.255

As a remedy, we augment ∆S by the total amount of ancestry variation for a given block across all256

sampled individuals. This can be quantified by the entropy of the fractions (F) of different sources.257

F =
1

nL

K

∑
k=1

n

∑
i=1

∫ L

0
⟨yi(l)|k⟩2|k⟩⟨k|dl

S f ,2 = 1 − Tr[F2]

(22)
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Figure 4: Entropy diagrams. (A). The diagram between Sb,2 and Sw,2 visualizes correlation struc-
tures of ancestry signals. The upper-left triangle has ∆S > 0, and ancestry is more correlated within
haplotypes. The lower-right triangle has ∆S < 0, and ancestry is more correlated between hap-
lotypes. Schematic haplotypes with three sources are shown for selected points in the diagram.
(B). The diagram between ∆S and S f ,2. Purple curves are the expected trajectories computed for
neutral admixture among haplotypes using ancestral recombination graphs. Model parameters:
p = (0.1, 0.2, 0.3, 0.4), n = 100, N = 2000, L ∈ {103bp, 3162bp, 104bp, 31623bp, 105bp, 106bp}. Re-
combination probability= 10−7 per site per generation. Measure γ assesses admixture progress by
calculating the distance to line S f ,2 = ∆S in the diagram (i.e., the trajectory taken by an extremely
short block). (C). Short blocks maintain tract integrity for many more generations in neutral admix-
ture due to a lack of recombination. Curves are computed for the same model as in the previous
figure. L ∈ {102bp, 107bp}. (D). γ computed for each chromosome from a contemporary butterfly
hybrid zone shows a significant reduction of admixture progress on the sex chromosome (Z chro-
mosome).

Similarly, S f ,2 has a probabilistic interpretation (SI Theorem 2):258

E[S f ,2] = 1 − n − 1
n

qb −
1
n

qw (23)

where qb(l1, l2) is the probability that position l1 in one haplotype shares ancestry with position259
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l2 in a different haplotype (Fig. 1B). S f ,2 is independent of phasing since F erases haplotype and260

individual information.261

Together, signatures of ancestry clusters (∆S) and the total amount of ancestry variation (S f ,2) can262

be used to visualize ancestry dynamics. For instance, a general feature of neutral admixture is that263

short blocks maintain distinct ancestry clusters more easily than longer blocks because the num-264

ber of recombination events scales with block size. This feature is captured by a simple diagram265

between S f ,2 and ∆S (Fig. 4B): All blocks start from a high level of ancestry variation with distinct266

clusters (top-right of Fig. 4B); For long blocks, ancestry tracts quickly mix up by recombination, so267

S f ,2 is nearly a constant while ∆S decreases (the top trajectory in Fig. 4B). For short blocks, their low268

recombination rates allow genetic drift to dampen S f ,2 and ∆S simultaneously (the lower-right tra-269

jectory in Fig. 4B). Since the trajectory taken by an extremely short block represents no intermixing270

among ancestry tracts, a natural measure to assess admixture progress is to compute the distance (γ)271

between a point in this diagram and the trajectory taken by very short blocks (the line ∆S = S f ,2).272

As expected, γ on long blocks increases rapidly during neutral admixture, while γ on short blocks273

stays close to zero (Fig. 4C).274

As an example in real hybrids, we computed γ for each chromosome from a butterfly hybrid275

zone, which has already been characterized by a preliminary version of this entropy approach276

(Xiong et al., 2022a). Here, we mapped reads to a newly corrected reference genome and inferred277

unphased local ancestry on four individuals, demonstrating that the sex chromosome (Z chromo-278

some) has much less admixture in the hybrid zone (Fig. 4D). This corroborates the observation that279

the Z chromosome is either pure in ancestry or with ancestry tracts resembling those in a backcross280

individual (Fig. S4).281

2.7 A chromosomal measure of parallel evolution between hybrid populations282

To this point, we have limited our analysis to one sample from a single hybrid population. When283

multiple hybrid populations exist, a natural question is whether admixture proceeds predictably284

between different hybrid zones so that they share the same underlying selection process. In terms285

of ancestry signals, it is equivalent to asking if ancestry varies in similar ways across the genome286

between samples from different populations. Suppose two samples of sizes n1 and n2 are taken287

from two hybrid populations. The pairwise ancestry correlation between individuals from different288

populations is captured by289

cij =
1
L

∫ L

0
⟨y2,j(l)|y1,i(l)⟩dl, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 (24)

where |y1,i⟩ represents the local ancestry of individual i from the first population (|y2,j⟩ is interpreted
similarly). These elements form an n1 × n2 dimensional matrix C with a corresponding entropy

Sc,2 = 1 − 1
n1n2

Tr[C†C] (25)
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where C† is the conjugate transpose of C. The subscript “c” stands for “cross-population”. The
probabilistic interpretation of this entropy is simply (SI Theorem 3):

E[Sc,2] = 1 − Qb (26)

where Qb(l1, l2) is interpreted as the probability that two haplotypes, one from each population,290

share ancestry at both loci l1 and l2 (see Fig. 1B). This probability increases when different hybrid291

populations fix ancestry in a concerted way along the genome. Thus, highly predictable and parallel292

evolution between different populations will be associated with a lower Sc,2.293

3. Discussion294

3.1 Summary of the framework295

A major aim of this framework is to provide quantitative, descriptive measures on local ancestry that296

can be used to summarize features of ancestry tracts. This framework goes beyond simple counting297

measures such as tract length and junction density, and each different axis of disorderedness in local298

ancestry can be measured by its corresponding entropy (Table 1). These entropies are associated

Table 1: Overview of entropy measures on local ancestry signals

Entropy Axis of disorderedness Relation to kernel Co-ancestry interpretation

Sw,2 Between loci 1 − 1
L2 Tr[A2] E[Sw,2] = 1 − n − 1

n
Qw − 1

n
qw

Sb,2 Between individuals 1 − 1
n2 Tr[B2] E[Sb,2] = 1 − n − 1

n
Qb −

1
n

Sc,2 Between populations 1 − 1
n1n2

Tr[C†C] E[Sc,2] = 1 − Qb
∗∗

S f ,2 Admixture fractions 1 − Tr[F2] E[S f ,2] = 1 − n − 1
n

qb −
1
n

qw

∗∗ This Qb is interpreted as that between two haplotypes sampled from different populations.

299

with several derived measures. First, we showed that the change in ∆S = Sb,2 − Sw,2 reflects the300

irreversibility of ancestry tract dynamics under recombination and genetic drift. The sign of ∆S301

can also be used to detect the major axis of ancestry correlation. Second, we combined ∆S and S f ,2302

in a diagram and showed that the degree of intermixing among ancestry tracts can be observed303

directly. By calculating “admixture progress” γ in this diagram, the degree of intermixing becomes304

measurable for arbitrarily large genomic blocks. Finally, we showed that Sc,2 can be used to quantify305

parallel evolution between different hybrid populations, enabling the detection of genomic regions306

that evolve under similar selection pressures.307
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3.2 Robustness to erroneous ancestry inference308

A key feature of entropy, or similar quantities based on the eigenspectrum of correlation kernel is309

that each locus contributes evenly to the final result. If a small proportion ϵ of ancestry is wrongly310

inferred, its impact on entropy will also be on the order of O(ϵ), because (linear) entropy is a poly-311

nomial function of all kernel elements. On the other hand, this level of error will unpredictably312

affect ancestry tract length and junction density. There is no theoretical limit to the number of junc-313

tions one could falsely pack in a genomic interval of length Lϵ. Similarly, for a long ancestry tract,314

an infinitely small block of wrongly inferred ancestry inside the tract will drastically change tract315

length. Thus, entropy is more stable to small errors in ancestry inference, and its accuracy depends316

continuously on error proportion ϵ.317

3.3 Estimation problem318

Our framework does not estimate entropy when ancestry is a hidden variable not directly observed.319

If local ancestry is already known (e.g., inferred with high confidence using HMM models. See Wu320

et al. (2021) for a comprehensive survey), the framework can be directly applied to either phased321

or unphased signals. Since all entropy measures have co-ancestry interpretations when samples are322

haplotypes, many existing tools using ancestral recombination graphs can be used in estimating323

entropy from haplotype sequences. A future research question is to estimate entropy directly from324

sequence data while integrating over all hidden local ancestry states.325

3.4 More complex correlation structures326

Linear entropy is a special case (q = 2) of the more general Tsallis entropy of a (normalized) corre-327

lation kernel ρ (Furuichi et al., 2004; Tsallis, 1988):328

Sq(ρ) =
1

1 − q
(Tr[ρq]− 1) (27)

It is straightforward to generalize Sw,2, Sb,2 and S f ,2 to an arbitrary q, and the expected Tsallis en-329

tropy depends only on E[Tr[ρq]]. For q > 2 and q being an integer, this expectation should involve330

co-ancestry probabilities with more “co-ancestry arrows” and more individuals than those shown331

in Fig. 1B, and it perhaps contains information on higher-order correlation. Since Tsallis entropy332

is useful for nonextensive statistics, this general form may be of use in quantifying more complex333

correlation structures of local ancestry signals.334

4. Materials and Methods335

4.1 SLiM simulations of neutral admixture336

The neutral admixture model was simulated using the standard Wright-Fisher neutral model in337

SLiM-4.0.1 (Haller and Messer, 2023). Admixture was not modeled explicitly, rather, we randomly338

assigned ancestry to ancestors according to admixture fraction p. Then, local ancestry in extant339
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samples was observed from the tree sequences along their genomes that were recorded in SLiM340

(Haller et al., 2019). For each population size N, five independent realizations of the W-F model341

were stored as tree sequences files at each specified generation. To calculate the average entropy of342

a chromosomal block of length L, we took all non-overlapping blocks of length L and averaged their343

entropies, then averaged over several rounds of re-assignments of ancestry at the first generation,344

and finally averaged over the five independent realizations.345

4.2 Numerical representation of quantum states and fast entropy calculation346

Each pure state |k⟩ is represented as a unit column vector with the k-th element being one. Thus, for347

ancestry signal i, its numerical form is348

|yi(l)⟩ =
(√

pi,1(l), · · · ,
√

pi,k(l), · · · ,
√

pi,K(l)
)⊤

(28)

where pi,k(l) is the contribution at position l from the k-th source in signal i. The calculation of Sb,2349

follows the definition exactly, which is to first calculate the correlation kernel matrix B of size n × n,350

and then take the sum of squares of its entries. The complexity of this algorithm scales with O(n2L).351

However, calculating Sw,2 based on its definition will result in an algorithmic complexity of O(nL2),352

which is too large since L ≫ 1. Instead, we adopt the following faster but equivalent approach.353

First, concatenate all ancestry signals into a large array of size nK:354

x(l) = (· · · , xj(l), · · · )⊤

=

(√
p1,1(l), · · · ,

√
p1,K(l), · · · ,

√
pi,1(l), · · · ,

√
pi,K(l), · · · ,

√
pn,1(l), · · · ,

√
pn,K(l)

)⊤ (29)

Next, calculate the correlation between components of x(l):355

Dj,j′ =
1
L

∫ L

0
xj(l)xj′(l)dl, 1 ≤ j, j′ ≤ nK (30)

Dj,j′ forms an nK × nK dimensional matrix which shares the same eigenspectrum as A. The com-356

plexity of this approach is only O(n2K2L). All other quantities can be calculated using their defini-357

tions.358

4.3 Re-analysis of butterfly data359

A corrected reference genome of Papilio bianor (Xiong et al., 2022b) was used to re-map reads from360

those butterfly samples in Xiong et al. (2022a) with the same processing pipeline. Then, local an-361

cestry was estimated using ELAI (Guan, 2014) on four diploid males from population WN, while362

treating populations KM and XY as pure species (ELAI generation parameter = 5000). Since SNP363

density is high, we used the simple average among SNPs to approximate the positional average364

over 0 ≤ l ≤ L.365
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