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ABSTRACT 27 

The mechanistic link between the complex mutational landscape of de novo 28 

methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not 29 

been clearly elucidated so far. A recent discovery on the catalogue of DNMT3A-destabilizing 30 

mutations throughout the DNMT3A gene as well as the oligomerization-dependent catalytic 31 

property of DNMT3A prompted us to investigate the common effect of DNMT3A-destabilizing 32 

mutations (DNMT3AINS) on the genomewide methylation patterns of AML cells. In this study, 33 

we describe the characteristics of DNMT3AINS AML methylomes through the comprehensive 34 

computational analyses on three independent AML cohorts. As a result, we show that 35 

methylomes of DNMT3AINS AMLs are considerably different from those of DNMT3AR882 AMLs 36 

in that they exhibit both locally disordered DNA methylation states and increased across-cell 37 

DNA methylation heterogeneity in bivalent chromatin domains. This increased epigenetic 38 

heterogeneity was functionally associated with heterogeneous expression of membrane-39 

associated factors shaping stem cell niche, implying the diversification of the modes of 40 

leukemic stem cell-niche interactions. We also present that the level of methylation disorder 41 

at bivalent domains predicts the response of AML cells to hypomethylating agents through 42 

cell line- and patient-level analyses, which supports that the survival of AML cells depends 43 

on stochastic DNA methylations at bivalent domains. Altogether, our work provides a novel 44 

mechanistic model suggesting the genomic origin of the aberrant epigenomic heterogeneity 45 

in disease conditions.  46 
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Introduction 47 

Recent sequencing efforts of acute myeloid leukemia (AML) genomes and exomes have identified DNMT3A as one of 48 

the most recurrently mutated epigenetic modifiers whose mutation is associated with adverse patient outcome1. DNMT3A 49 

encodes a de novo DNA methyltransferase that establishes DNA methylation patterns during the development of 50 

mammalian stem cells2, but the precise molecular mechanism underlying the initiation and progression of AML mediated 51 

by mutant DNMT3A has not been clearly elucidated. One of the characteristics that obscures the identification of the 52 

mechanistic role of mutant DNMT3A in AML is its intricate mutational landscape. In AML, about 60% of the DNMT3A 53 

mutations cause amino acid substitution of arginine at position 882 (R882) and the remaining ~40% of mutations are 54 

seemingly dispersed throughout the functional domains of DNMT3A3. Thus, much attention so far has been primarily drawn 55 

on the significance of DNMT3A R882 mutations in AML due to their prevalence. The results of such studies are gradually 56 

reaching at the consensus that mutant DNMT3AR882 elicits dominant negative effect by hampering wildtype DNMT3A 57 

from forming catalytically active homotetramers4, in spite of some opposing results5. On the contrary, for DNMT3A 58 

mutations other than the R882 mutation (non-R882 mutations), much of their clinical implication and mechanistic role in 59 

AML pathogenesis still remain to be elucidated. Recently, a comprehensive biochemical characterization of 253 variants 60 

across DNMT3A gene suggested that a considerable number of disease-associated DNMT3A variants trigger the 61 

destabilization of the protein followed by its proteasomal degradation6. Intriguingly, these variants inducing the instability 62 

of DNMT3A (DNMT3AINS), and perhaps reduced intracellular concentration of intact DNMT3A, seemed to confer high 63 

fitness advantages to the cells of hematopoietic lineage, but the underlying molecular mechanism linking DNMT3AINS and 64 

the progression of hematological disorders has not been clarified thoroughly. 65 

Meanwhile, the epigenetic diversity of cancer cells, primarily in terms of the heterogeneity of DNA methylation patterns, 66 

is increasingly acknowledged as an important factor that contributes to the increased adaptive potential of the tumor, which 67 

leads to adverse outcome, treatment resistance, or shorter interval to relapse rate in a variety of cancer types7, 8, 9. In chronic 68 

lymphocytic leukemia, it has been reported that locally disordered methylation patterns at promoter regions are associated 69 

with increased transcriptional variability as well as adverse patient outcomes7, and its implication for the treatment 70 

resistance and disease relapse has been reported in diffuse large B-cell lymphoma10. The role of DNA methylation 71 

heterogeneity in AML has also been studied recently11. Given these broad clinical implications of DNA methylation 72 

heterogeneity, it has been widely accepted that the increased fitness of cancer cell population conferred by the epigenetic 73 

diversity is pivotal. However, the connection between a specific subset of DNMT3A variants and the extent of disorder of 74 

DNA methylation patterns have not been characterized so far. 75 

Here, we provide a molecular-level insight into the fitness advantages conferred by DNMT3AINS variants through the 76 

investigation of their overall impact on the DNA methylomes and transcriptomes of AML patients. Particularly, we explore 77 

the association between DNMT3AINS and the disorderedness of DNA methylation patterns, in addition to the DNA 78 

methylation features that are routinely analyzed, such as promoter methylation levels or differentially methylated regions 79 

(DMRs). For the direct and robust examination of the methylomes of AML patients with DNMT3AINS, we extensively 80 

reanalyzed publicly available methylation profiles of AML patients from the two large independent cohorts8, 12. 81 

Furthermore, we performed reduced-representation bisulfite sequencing (RRBS) on our own cohort for validation. Through 82 

these analyses on diverse cohorts, we show DNMT3AINS AMLs exhibit increased local DNA methylation disorder as well 83 

as epigenetic cellular diversity that are associated with the transcriptional heterogeneity of genes having roles in 84 

determining the leukemic stem cell niche. Given the previous studies showing the oligomerization-dependent shift of 85 

catalytic processivity of DNMT3A and the concentration-dependent oligomerization preference of DNMT3A, this study 86 
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suggests an interesting model of pathogenesis having DNMT3AINS variants as the genetic origin of epigenetic instability. 87 

Results 88 

Definition of DNMT3AINS variants 89 

To obtain a predefined set of DNMT3AINS variants, we utilized previous experimental results of the protein stability assay 90 

measuring the stability scores of mutant DNMT3A protein in terms of the stability ratio normalized to WT DNMT3A6. 91 

From the stability ratios for 253 disease-associated variants affecting 248 unique amino acid residues, we could obtain 92 

stability scores for each of the 248 residues by assigning average stability ratios for all substitutions associated with that 93 

residue. Since the resulting stability scores displayed a bimodal distribution, we could naturally divide them into two groups, 94 

namely destabilizing (n=125) and non-destabilizing (n=123) residues, based on the score 0.75 (Figure 1a, Supplementary 95 

Table 1). To further justify this grouping, we investigated the full-length structure of DNMT3A (obtained from AlphaFold 96 

Protein Structure Database13, Uniprot ID Q9Y6K1) and found that destabilizing residues are enriched in β-sheets behind 97 

the helical tetramer interface compared to non-destabilizing residues (Supplementary Figure 1a-d). Furthermore, 98 

destabilizing residues showed higher predicted local distance difference test (pLDDT) values, which generally represent 99 

greater evolutionary conservation and structural importance of the residues (Supplementary Figure 1e). Given these 100 

biochemical, structural and evolutionary grounds, we defined a DNMT3AINS variant as a point mutation occurring at 101 

destabilizing residues as well as nonsense and frameshift mutations occurring at any position of the protein to cover a 102 

broader spectrum of instability-inducing variants. Meanwhile, point mutations occurring at non-destabilizing positions 103 

other than R882 were defined as DNMT3AOther variants.  104 

DNMT3AINS AMLs show locally disordered DNA methylation patterns 105 

DNMT3A exerts its catalytic activity by forming oligomers. Intriguingly, the mechanism of DNMT3A-mediated de 106 

novo methylation is shown to be dependent on its oligomeric state14. A homotetrameric complex exhibits processive 107 

catalysis in which the addition of methyl group occurs consecutively on CpGs within a local stretch of DNA, whereas a 108 

dimeric complex shows distributive catalysis in which the complex rapidly dissociates from the DNA after a catalysis. 109 

Since the oligomeric state of DNMT3A was shown to be dependent on the intracellular concentration of the protein15, we 110 

hypothesized that the distributive de novo methylation mediated by dimeric DNMT3A will be prevalent in DNMT3AINS 111 

AMLs. To quantify the extent of the processive or distributive de novo methylation from the traces left on the methylomes 112 

of AML patients, we utilized a computational measure called local pairwise methylation discordance16 (LPMD; Figure 1b). 113 

LPMD is a per-sample measure that represents the extent to which a pair of nearby CpGs have different methylation states. 114 

Since the processive methylation will make a pair of CpG sites at a close distance both methylated, LPMD in turn reflects 115 

the processivity of DNMT3A, even though we cannot simply rule out the effects of other factors including TET-driven 116 

demethylation. 117 

We conducted a reanalysis of the enhanced reduced-representation bisulfite sequencing (eRRBS) data provided by Li 118 

et al.8 (hereafter called Li2016 cohort) for 94 paired diagnosis and relapse samples from 47 AML patients. We first 119 

identified somatic mutations for all the 94 AML samples and compared their LPMDs altogether according to their DNMT3A 120 

mutation states. As expected, LPMD steadily increased as the distance between CpG pairs increased, reflecting the local 121 

homogeneity of DNA methylation states (Figure 1c). Surprisingly, we observed that DNMT3AINS AMLs showed 122 

significantly higher  123 
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Figure 1. DNMT3AINS AMLs show locally disordered DNA methylation patterns. (a) Distribution of DNMT3A stability scores for 248 

residues across DNMT3A protein. The dotted line denotes the threshold value 0.75 dividing destabilizing and non-destabilizing residues. 

(b) Description of local pairwise methylation discordance calculation. (c) Comparison of genomewide LPMD between different DNMT3A 

mutation subclasses in diagnosis and relapse AML samples from Li2016 cohort. P-values from two-sided Mann-Whitney U tests between 

DNMT3AWT and DNMT3AINS subclasses are shown. (d) Schematic diagram illustrating the multiple linear regression analysis predicting 

LPMD values based on mutation status, age and gender. (e) Accuracy of LPMD values predicted by multiple linear regression analysis. (f) 

Coefficients and significances of regression coefficients. (g) Correlation between DNMT3A stability score and genomewide LPMD in Li2016 

cohort. Pearson’s correlation coefficient and corresponding p-value is shown. (h) Array-based LPMD of TCGA-LAML samples. P-values 

from two-sided Mann-Whitney U tests are shown. (i) Correlation between DNMT3A stability score and genomewide LPMD in TCGA-LAML 

cohort. Pearson’s correlation coefficient and corresponding p-value is shown. (j) Genomewide LPMD comparison in SNUH cohort. In (c), 

*** p < 0.001, ** p < 0.01, * p < 0.05, two-sided Mann-Whitney U test; The center line denotes the median, the upper and lower box limits 

denote upper and lower quartiles, and the whiskers denote 1.5×  interquartile range. In (f), CEBPA-sm, CEBPA with single mutation; CEBPA-

dm, CEBPA with double mutation. 
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genomewide LPMD than any other DNMT3A subclasses (p=0.001, two-sided Mann-Whitney U test between WT and 125 

DNMT3AINS for 2bp-away CpG pairs; Figure 1c), suggesting the dysregulation of local correlations of DNA methylation 126 

states in DNMT3AINS. To ensure that the association between DNMT3AINS and locally disordered methylation states remains 127 

significant even after accounting for other co-occurring mutations, ages, and genders, we built a multivariate linear 128 

regression model predicting LPMD (Figure 1d, e) and found that the association between DNMT3AINS and high LPMD 129 

value was indeed significant after adjusting for such factors (Figure 1f). Notably, DNMT3AINS was shown to be the only 130 

DNMT3A mutation subclass that was positively associated with LPMD (multiple linear regression coefficient of 0.0095), 131 

which was in stark contrast to the negative association of the other DNMT3A mutation subclasses (multiple linear regression 132 

coefficient of -0.0093 and -0.0083 for DNMT3AR882 and DNMT3AOther, respectively) on LPMD. It is worth noting that the 133 

age did not show significant correlation with LPMD values, suggesting that the contribution of aging-associated alterations 134 

of methylation patterns is insignificant in this case (Figure 1f). We verified that bisulfite conversion rates were greater than 135 

~99.7% for all the examined eRRBS data (median 99.87%) and also were not correlated with LPMD values, thus excluding 136 

the possibility that the high LPMD occurring due to experimental artifacts (Supplementary Figure 2a, b).  137 

We next examined whether the extent of the destabilization of DNMT3A induced by DNMT3AINS mutation correlates 138 

with LPMD. We found that the stability scores showed marked negative correlation with LPMD values (Pearson’s r=-0.71, 139 

p=3.36×10-5; Figure 1g). In other words, more severe instability of DNMT3A was associated with greater local discordance 140 

of DNA methylation states. This result corroborates the putative relationship between the instability-driven reduction of 141 

intracellular DNMT3A concentration and increased DNA methylation disorder. 142 

To verify whether these findings can be reproduced in an independent AML cohort, we conducted similar analysis for 143 

the TCGA-LAML cohort (n=140). Since we only had methylation BeadChip array profiles for this cohort, we could not 144 

make use of the phasing information of methylation states as in the bisulfite sequencing data from Li2016 cohort. To 145 

circumvent this problem, we instead devised an array-based LPMD as an approximation of bisulfite sequencing-based 146 

LPMD (Methods) and computed it for the TCGA-LAML cohort. Of note, array-based LPMD serves as a lower bound of 147 

sequencing-based LPMD. As a result, we observed that DNMT3AINS AMLs had significantly high levels of local disorder 148 

of DNA methylation (Figure 1h). Furthermore, the array-based LPMD levels were also negatively correlated with the 149 

stability scores of corresponding DNMT3A variants (Figure 1i; Pearson’s r=-0.58, p=0.001), reproducing the results from 150 

Li2016 cohort. 151 

Additionally, we newly performed RRBS on our own cohort comprised of 20 AML patients (SNUH cohort; 152 

Supplementary Table 2). There were two patients with DNMT3AINS variants at position 754 (stability score 0.386) and 736 153 

(stability score 0.316). Of note, these variants were among the highly critical variants impacting the stability of the protein 154 

(top 17% and 7%, respectively). Again, those two DNMT3AINS AML patients showed markedly high genomewide LPMD 155 

values (Figure 1j). We confirmed that variant at 736 position is provoking decreased tetramerization at protein level with 156 

prominent formation of dimerization (Supplementary Figure 3).  157 

 158 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528223
http://creativecommons.org/licenses/by-nd/4.0/


Given the difference of DNMT3AINS and DNMT3AR882 in terms of local DNA methylation disorderedness, we then 159 

asked whether the difference of DNMT3AINS and DNMT3AR882 AMLs can also be found in their mutational co-occurrence 160 

patterns. We conducted mutational co-occurrence analyses using TCGA-LAML (n=180), BeatAML (n=281) and 161 

Leucegene (n=263) cohorts. Although there was substantial inter-cohort difference of mutational co-occurrence and mutual 162 

exclusivity patterns (Supplementary Figure 4a-c), we observed that DNMT3AINS and DNMT3AR882 AMLs did not share 163 

similar mutational patterns in both cohort-wise (Supplementary Figure 4a-c) and pooled (Supplementary Figure 4d) 164 

analyses except for the co-occurrence with NPM1 mutations. These results, along with the remarkable difference in local 165 

disorder of DNA methylation between DNMT3AINS and DNMT3AR882, prompted us to seek for a deeper understanding of 166 

the mechanistic difference between DNMT3AINS and DNMT3AR882 AMLs in terms of their global methylation landscapes.  167 

Methylation landscape of DNMT3AINS AMLs, in terms of methylation levels, is similar 168 

to that of DNMT3AWT AMLs, but not DNMT3AR882 AMLs 169 

In general, it is widely known that the alteration of DNA methylation in cancer cells accompanies focal hypermethylation 170 

of CpG-dense regulatory regions including CpG islands, as well as a global loss of DNA methylation. AML cells are no 171 

exception to these epigenomic alterations. Beyond these malignancy-associated alterations, DNMT3AR882 AMLs are shown 172 

to have distinct hypomethylation patterns compared to DNMT3AWT, which arise from the attenuated AML-associated 173 

hypermethylation and loss of methylation at regions normally maintained at high methylation level17. On the other hand, 174 

the characteristic of the global methylation landscape of DNMT3AINS AMLs has not been clearly elucidated so far. 175 

To characterize the methylation landscape of DNMT3AINS AML in terms of methylation levels, we first examined 176 

Figure 2. Methylomes of DNMT3AINS AMLs are similar to DNMT3AWT AMLs, but not to that of DNMT3AR882. (a) Distribution of average 

methylation level difference in DMRs identified between DNMT3AR882  and DNMT3AWT AMLs. (b) Average methylation levels of different 

DNMT3A mutation subclasses of AMLs around the hypo-DMRs identified between DNMT3AR882 and DNMT3AWT AMLs. (c) Distribution of 

average methylation level difference in DMRs identified between different DNMT3A mutation subclsses and normal bone marrow cells 

using RRBS. (d) Average methylation levels surrounding the hyper-DMRs in DNMT3AINS (vs normal bone marrow cells) for each DNMT3A 

mutation subclass. 
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whether DNMT3AINS AMLs also show the hypomethylation patterns observed in DNMT3AR882 AMLs using Li2016 cohort, 177 

thereby seeking the similarities and differences of DNMT3AINS and DNMT3AR882 methylomes. To determine the genomic 178 

regions subjected to DNMT3AR882-associated hypomethylation, we identified differentially methylated regions (DMRs) 179 

between DNMT3AR882 and DNMT3AWT samples using an established method18. As expected, the identified DMRs 180 

predominantly consisted of hypomethylated DMRs (hypo-DMRs) in DNMT3AR882, accounting for 88% (465 of 527) of 181 

them (Figure 2a). Strikingly, we observed DNMT3AINS AMLs showed comparable DNA methylation level to that of 182 

DNMT3AWT at those identified DNMT3AR882-associated hypo-DMRs (Figure 2b). Additionally, these significant differences 183 

between DNMT3AINS and DNMT3AR882 were also observed in TCGA-LAML and SNUH cohort (Supplementary Figure 5a 184 

and b). These results show that methylomes of DNMT3AINS AMLs are devoid of DNMT3AR882-associated hypomethylation 185 

patterns and underscore the clear difference between DNMT3AINS and DNMT3AR882 in terms of their methylomes. 186 

We were curious whether DNMT3AINS AMLs harbor any regions having altered DNA methylation levels uniquely for 187 

them, so we identified and compared the characteristics of DMRs between each DNMT3A subclass and normal bone 188 

marrow (NBM) samples. As a result, DNMT3AWT AMLs had 4703 (82%) hyper-DMRs and 1013 (18%) hypo-DMRs 189 

(Figure 2c). We note that the extreme bias toward hyper-DMRs may be due to a high specificity of eRRBS experiment for 190 

CpG-dense regions, which thus exaggerates cancer-associated hypermethylation events. Nevertheless, DMRs in 191 

DNMT3AR882 AMLs were less skewed toward hyper-DMRs. They were associated with fewer hyper-DMRs (n=3067, 72%) 192 

and more hypo-DMRs (n=1186, 28%; Figure 2c), recapitulating the attenuated hypermethylation in DNMT3AR882. DMRs 193 

identified in DNMT3AINS AMLs were even more skewed toward hyper-DMRs (n=7965, 97%; Figure 2c). However, those 194 

hypermethylation events do not occur specifically in DNMT3AINS, as every DNMT3A subclasses of AMLs showed 195 

significant hypermethylation within the hyper-DMRs identified in DNMT3AINS (Figure 2d) and even within the hyper-196 

DMRs that were exclusive to DNMT3AINS (Supplementary Figure 5c). The hyper-DMRs were also similarly distributed 197 

across genomic contexts (Supplementary Figure 5d). These observations indicate that the majority of hypermethylation in 198 

DNMT3AINS-associated hyper-DMRs originates from hypermethylation events that are generally observed in AML. 199 

Altogether, these results suggest two conclusions for the methylation landscape of DNMT3AINS AML. First, since 200 

DNMT3AINS AMLs did not show DNMT3AR882-associated hypomethylation patterns, the current leukemogenic model for 201 

DNMT3AR882 may not directly apply to DNMT3AINS AMLs. Next, the methylome of DNMT3AINS showing comparable 202 

levels of DNA methylation to DNMT3AWT implies that there are underlying molecular aberrations associated with 203 

DNMT3AINS other than the absolute DNA methylation level changes. This underscores the importance of the increased 204 

intratumoral DNA methylation heterogeneity, including the local disorder of DNA methylation, in DNMT3AINS AML. 205 

  206 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528223
http://creativecommons.org/licenses/by-nd/4.0/


  207 

Figure 3. Local disorder of methylation in DNMT3AINS AML occurs predominantly at bivalent domains. (a) Average histone 

modification levels around hyper-DMR identified between DNMT3AINS and normal bone marrow cells. (b) ChromHMM chromatin context 

enrichment of hyper-DMR identified between DNMT3AINS and normal bone marrow cells. (c) Average methylation level surrounding bivalent 

domains. (d) LPMD distribution across different genomic contexts for Li2016 cohort. Parenthesized values denote the proportion of the 

analyzed CpGs within each genomic context, except for that next to ‘All’, which denote the total number of analyzed CpGs. P-values from 

two-sided Mann-Whitney U tests between DNMT3AWT and DNMT3AINS are shown. Error bars denote standard errors. (e, f) LPMD 

distributions in (e) bivalent domain and (f) SINE. (g) LPMD comparison in bivalent or non-bivalent promoters. P-values from two-sided 

Mann-Whitney U tests between DNMT3AWT and DNMT3AINS are shown. In (e) and (f), ** p < 0.01, * p < 0.05, n.s. p > 0.05, two-sided Mann-

Whitney U test. Throughout (e-g), the center line denotes the median, the upper and lower box limits denote upper and lower quartiles, and 

the whiskers denote 1.5×  interquartile range.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528223
http://creativecommons.org/licenses/by-nd/4.0/


Local disorder of DNA methylation in DNMT3AINS AML occurs predominantly at 208 

bivalent domains 209 

Even though the precise molecular mechanism still remains obscure, previous experimental validation demonstrated that 210 

DNMT3A-dependent hypermethylation in AML cells occurs mostly at bivalent chromatin domains17. To provide additional 211 

line of evidence supporting that the observed hyper-DMRs in DNMT3AINS truly resulted from the catalytic activity of 212 

DNMT3A, we took advantage of a reference epigenome of CD34+ myeloid progenitor from ENCODE19 and analyzed the 213 

epigenetic context of the hyper-DMRs. The resulting aggregated signals of several epigenomic marks surrounding the 214 

hyper-DMRs in DNMT3AINS are shown in Figure 3a. We observed that these regions colocalized with both active 215 

(H3K4me1/3) and repressive (H3K27me3) histone marks, which indeed are indicative of bivalent chromatin domains. We 216 

additionally validated that the hyper-DMRs in DNMT3AINS were strongly enriched for bivalent chromatin states inferred 217 

by ChromHMM20 (Figure 3b). Of note, the observed hypermethylation patterns enriched at bivalent domains are not 218 

restricted to DNMT3AINS, but also shown in all the other DNMT3A subclasses (Figure 3c, Supplementary Figure 6a), 219 

whereas hypo-DMRs were enriched for enhancer-related genomic contexts (Supplementary Figure 6b). Altogether, these 220 

data collectively indicate that the identified hyper-DMRs, primarily located at bivalent domains, represent the genomic 221 

regions where the de novo methylation by DNMT3A takes place. 222 

Given that the bivalent domains are the putative hotspots of de novo methylation in DNMT3AINS AMLs, we 223 

hypothesized that the DNA methylation disorder within those samples will be highly concentrated in those regions. To 224 

address this question, we computed LPMDs separately for 12 different genomic contexts. Surprisingly, we found that the 225 

difference of LPMD between DNMT3AINS and the other DNMT3A subclasses was almost exclusive at bivalent domains 226 

and regulatory regions including promoters, CpG islands, shores, and methylation canyons (Figure 3d). This high 227 

specificity of DNA methylation disorder toward bivalent domain (Figure 3e) is notable when compared with the LPMD 228 

distributions for CpGs located at SINEs (Figure 3f). Note that those two genomic contexts harbor a comparable number of 229 

analyzed CpGs (223,428 and 189,338 CpGs for bivalent domains and SINEs, respectively). Further, categorizing promoters 230 

into bivalent and non-bivalent promoters revealed that the difference of LPMD was restricted to bivalent promoters, 231 

whereas non-bivalent promoters showed only marginal absolute difference of LPMD (Figure 3g). Taken together, we 232 

concluded that the disordered methylation in DNMT3AINS AMLs is highly specific to bivalent domains, where the 233 

DNMT3A-driven de novo methylation potentially takes place. For convenience, we hereafter refer to the LPMD at bivalent 234 

domains as bivLPMD.  235 
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237 

Figure 4. Functional implications of local disorder of DNA methylation and concomitant epigenetic diversity in AML. (a) 

Epipolymorphism distribution across different genomic contexts. P-values from two-sided Mann-Whitney U tests between DNMT3AWT and 

DNMT3AINS are shown. Error bars denote standard errors. (b) Experimental scheme to identify genes with methylation disorder-associated 

inter-sample expression variation. (c) Association between promoter bivalency and variable gene expression. Values in the table denote 

the number of genes in the corresponding condition. Odds ratio and p-value from two-sided Fisher’s exact test are shown. (d-f) Functional 

enrichment of top 4000 genes showing highest inter-sample expression variation in fourth quartile (Q4) of LPMD values for (d) GO Biological 

Process, (e) GO Cellular Component, and (f) GO Molecular Function terms. In (d), GO terms are grouped by broader biological concepts 

that are shown on the right side. (g) Gene expression levels (in TPM) and their inter-sample coefficient of variation (CV) for eight 

representative genes. Samples were grouped according to LPMD quartiles; Q1 (n=10), Q2 (n=9), Q3 (n=9) and Q4 (n=10).
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DNA methylation disorder in DNMT3AINS AMLs leads to increased epigenetic 238 

diversity of leukemic cell population 239 

Our observations so far demonstrate that DNMT3AINS AMLs were associated with the corruption of the local 240 

concordance of DNA methylation states. However, it should be interpreted with caution since it does not indicate the 241 

increase of the population-wise epigenetic diversity. LPMD is an intra-molecule measure21 that individually accounts for 242 

each read originated from a single cell, so it is not suitable to discern whether the erosion of local correlation of DNA 243 

methylation states occurs in a coordinated or stochastic manner throughout the malignant cells.  244 

To determine whether the local disorder DNMT3AINS AMLs accompanies the diversification of population-level 245 

epigenetic states, we orthogonally examined an inter-molecule DNA methylation heterogeneity score named 246 

epipolymorphism22. As a result, we observed significant increases of epipolymorphism in DNMT3AINS AMLs (Figure 4a), 247 

indicating that the erosion of local concordance of DNA methylation in DNMT3AINS AML occurs rather stochastically, and 248 

thus gives rise to the epigenetically diversified cell population. Of note, sample purity (Supplementary Figure 7a) and 249 

heterogeneity of cell type composition did not seem to confound the observed increased epigenetic diversity 250 

(Supplementary Figure 7b). 251 

High LPMD is associated with increased transcriptional variance of genes involved in 252 

remodeling of leukemic stem cell niche 253 

Given the remarkable specificity of local DNA methylation disorder and epigenetic diversity at bivalent domains, we 254 

then sought the functional implications of DNA methylation disorders in leukemia development at the transcriptome level. 255 

Importantly, the promoters of the developmental genes in stem cells are widely known to be frequently marked by bivalent 256 

chromatin marks23. Thus, the heterogeneity of DNA methylation in developmental promoters occurring at DNMT3AINS 257 

AMLs suggests the possibility that the heterogeneity of the developmental gene regulation within leukemic cell population 258 

facilitates the progression of the disease by conferring the fitness advantage of cells. 259 

To assess whether the epigenetic diversity of bivalent domains is associated with transcriptional diversity of the 260 

corresponding genes, a subset of Li2016 AML samples (n=38) profiled with both RRBS and RNA-seq data was analyzed. 261 

According to the additive property of variance, we assumed that the cell-level transcriptional variability, if it exists, will in 262 

turn manifest itself in the sample-level (i.e., bulk cell-level) transcriptional variability. Therefore, we measured and 263 

compared inter-sample variances of gene expression levels within each quartile of samples sorted by bivLPMD levels 264 

(Figure 4b).  265 

We found that top 4,000 genes showing increased transcriptional variability in high-LPMD group (the highest quartile) 266 

were greatly enriched for genes having bivalent domains in their promoters (Odds ratio=4.619, p < 10-308, Fisher’s exact 267 

test; Figure 4c), which supports the linkage between the observed epigenetic heterogeneity of bivalent domains and the 268 

transcriptional heterogeneity. As expected, functions of those genes were enriched for cell differentiation (Figure 4d). 269 

Interestingly, we also found that they were also enriched for the biological processes shaping the hematopoietic stem cell 270 

niche in the bone marrow, including cell-cell adhesion, angiogenesis, cell proliferation and survival, cell communication, 271 

chemokine-mediated signaling and extracellular matrix organization (Figure 4d). Moreover, genes associated with high 272 

transcriptional variability were predominantly associated with cell membrane and extracellular matrix (ECM) (Figure 4e), 273 

suggesting the combinatorial diversification of the membrane protein configuration of progenitor cell, and eventually, the 274 

diversification of the modes of cell-cell and cell-ECM interaction within the hematopoietic stem cell niche. The enrichment 275 

of their molecular function towards membrane receptors, cytokines as well as chemokines also supports this notion (Figure 276 
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4f). Figure 4g demonstrates representative genes implying the heterogeneity of factors sculpting stem cell niche in high-277 

bivLPMD AML samples. It highlights the transcriptional variability of cell adhesion molecule (CDH26), chemokines 278 

(CXCL6 and CCL25), secreted signaling factors (WNT9A and SHH), signaling receptors (PTCH1 and FGFR1) and 279 

downstream regulator (AXIN1). As WNT9A and AXIN1 imply the heterogeneity of the activity of WNT signaling pathways, 280 

whose significance has been underscored in hematopoietic stem cell maintenance24, 25, we can envision that the diversity 281 

of the local concentration of paracrine factors in bone marrow stem cell niches may increase the fitness of leukemic stem 282 

cells communicating with it. 283 

Collectively, these results showing the association of increased epigenetic and transcriptional variability propose a 284 

leukemogenic model that is worth exploring through functional experiments. It suggests that the increased transcriptional 285 

variability for both cell-intrinsic biological processes involving the balance between self-renewal and differentiation and 286 

cell-extrinsic factors surrounding each blast cell26 may confer fitness advantages to leukemic cells. Specifically, the external 287 

factors include direct interaction with other blast cells sharing the niche through cell-cell junctions, and other secretory 288 

factors including signaling molecules, cytokines and chemokines, produced by nearby cells triggering the intracellular 289 

signal transduction. A population of malignant cells experiencing locally heterogeneous environment may result in the 290 

increased adaptive potential of the disease.  291 

  292 
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  293 

Figure 5. DNA methylation disorder at bivalent domain correlates with HMA responses of AML cells. (a) Correlation between LPMD 

at bivalent domains (bivLPMD) and area under dose-response curve (AUDRC) for hypomethylating agents. Pearsons’s correlation 

coefficients and corresponding p-values are shown. (b) Example dose-response curves for RG-108 and decitabine for two representative 

cell lines, THP1 and HEL9217, with low bivLPMD and high bivLPMD, respectively. (c) Correlation between LPMD at SINE and AUDRC for 

hypomethylating agents. Pearsons’s correlation coefficients and corresponding p-values are shown. (d) Example dose-response curves for 

RG-108 and decitabine for two representative cell lines, KASUMI1 and SIGM5, with low and high LPMD at SINE, respectively. (e) 

Correlation between average methylation level at bivalent domain and AUDRC. Pearsons’s correlation coefficients and corresponding p-

values are shown. (f) Schematic diagram showing the retrospective analysis examining the utility of bivLPMD as a biomarker predicting 

hypomethylating agent (HMA) response. (g) Comparison of bivLPMD values in AML patient groups showing complete remission or not after 

HMA treatment. The center line denotes the median, the upper and lower box limits denote upper and lower quartiles, and the whiskers 

denote 1.5×  interquartile range. P-value from two-sided Mann-Whitney U test is shown. BS-seq, bisulfite-sequencing. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528223
http://creativecommons.org/licenses/by-nd/4.0/


DNA methylation disorder at bivalent domains, but not absolute level of DNA 294 

methylation, robustly predicts the response of AML cells to hypomethylating agents 295 

We then asked whether the local disorder of DNA methylation patterns at bivalent domains and associated 296 

epigenetic/transcriptomic diversity actually contribute to the sustained survival of AML cells. To examine the dependency 297 

of leukemic cells to DNA methylation disorder, we took a functional epigenomic approach by examining the survival of 298 

AML cells upon the elimination of the disorder of DNA methylation. To this end, we utilized the DNA methylation profiles 299 

of AML cell lines in Cancer Cell Line Encyclopedia (CCLE) and associated drug response profiles. Specifically, the drug 300 

responses of CCLE cell lines were collected from Cancer Therapeutics Response Portal (CTRP) v2, and DNA methylation 301 

profiles of corresponding cell lines were obtained by processing publicly available RRBS data by our own pipeline. 302 

Meanwhile, hypomethylating agents (HMAs) including decitabine and azacitidine have been an invaluable epigenetic 303 

treatment option for AML patients who are not suitable for intensive chemotherapy27. Recent studies have shown complex 304 

and pleotropic mechanism of action of HMAs28, 29, 30, which in part explains why a robust biomarker predicting the response 305 

of a patient to HMA treatment still remains obscure. By examining the correlation between DNA methylation disorder and 306 

response of AML cell lines to HMA, we aimed to show the importance of the sustained methylation disorder in the survival 307 

of AML cells, as well as the potential of DNA methylation disorder as a biomarker for the response to HMA. 308 

Strikingly, we observed a significant negative correlation between bivLPMD and the area under dose-response curve 309 

(AUDRC) of AML cell lines measured for decitabine (Figure 5a and b). This association persisted even when sufficient 310 

concentration of decitabine was treated in combination with other drugs (Figure 5a), suggesting that higher degree of DNA 311 

methylation disorder at bivalent domains predicts better response to decitabine. We additionally found that a high bivLPMD 312 

is also a good predictor of the response to RG-108, a non-nucleoside DNMT inhibitor that induces demethylation through 313 

direct binding to the active site of DNMTs (Figure 5a and b). We note that we could not observe any notable response to 314 

azacitidine for these AML cell lines, which may be due to an experimental artifact (Supplementary Figure 8). The 315 

association gradually diminished when the genomic regions for which LPMD values were calculated became distant from 316 

the core regulatory regions (from promoters and CpG islands to CpG shelves; Supplementary Figure 9), implying that the 317 

functional importance of the DNA methylation heterogeneity for the survival of AML cells was mediated by gene regulation. 318 

Remarkably, LPMDs calculated for non-bivalent non-regulatory regions did not show significant correlation with responses 319 

to HMAs (Figure 5c and d, Supplementary Figure 10) which further highlights that the DNA methylation disorder at 320 

bivalent regulatory domains is specifically important for the survival of AML cells. We also confirmed that bivLPMD did 321 

not correlate with the age of cell line at sampling time (Supplementary Figure 11a). 322 

Importantly, the responses of AML cell lines to decitabine and RG-108 were not associated with their methylation 323 

levels per se (Figure 5e). These results provide additional evidence supporting that focal increase of average methylation 324 

levels observed in AML is a mere collateral consequence of myeloproliferation, and the viability of AML cells generally 325 

does not depend on them. It is noteworthy that these results collectively suggest that AML cells were ‘addicted’ to the 326 

methylation disorder, since the erasure of disordered methylation states with hypomethylating agents triggered their death.  327 

To additionally confirm that our results on AML cell lines can be extended to clinical applications, we retrospectively 328 

measured the bivLPMD values using targeted enzymatic methyl-seq (EM-seq) from blood samples of 34 AML patients 329 

(Supplementary Table 3) who later underwent HMA treatment and examined its association with the response to HMA 330 

treatment (Figure 5f). Custom sequencing panel covering bivalent domains was designed for efficient measurement of 331 
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bivLPMD through targeted EM-seq (Methods). Reassuringly, bivLPMD values were shown to be a good predictor of 332 

complete remission after HMA response (p=0.0066, two-sided Mann-Whitney U test; Figure 5g), while being not correlated 333 

with patient age (Supplementary Figure 11b). Collectively, these results show the importance of bivLPMD in the survival 334 

of AML cells, which is presumably due to the increased fitness advantage.  335 

Clinical implications of DNMT3AINS in hematological disorders  336 

Given the association between DNMT3AINS and increased local methylation disorder and its functional impact in AML, 337 

we sought for the clinical outcomes of hematological conditions associated with DNMT3AINS. We first asked whether 338 

DNMT3AINS is generally associated with adverse outcome of AML patients. To this end, we performed a pooled survival 339 

analysis of 668 non-M3 AML patients using three large cohorts (Ley et al. (n=233), TCGA-LAML (n=179) 12 and 340 

BeatAML (n=256) 31). Both DNMT3AINS and DNMT3AR882 showed significantly poorer overall survival compared to 341 

DNMT3AWT (log-rank p=0.0094 and 0.0047, respectively; Figure 6a), while DNMT3AOther did not (p=0.482). Additionally, 342 

multivariate Cox regression showed that DNMT3AINS is an independent risk factor (Hazard ratio 1.85, 95% CI 1.28-2.67) 343 

of AML even after accounting for age and gender (Figure 6b). 344 

  345 

Figure 6. Clinical implication of DNMT3AINS in hematological conditions. (a) Survival analysis for AML patients with different DNMT3A 

mutation subclasses. (b) Multivariate Cox proportional-hazards regression results. 
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Discussion 346 

AML comprises heterogeneous subtypes of diseases that can be classified under microscopic inspection of cells or based 347 

on genetic abnormalities. Although such subclassifications have been routinely utilized for the stratification of patient 348 

outcomes and the decision of treatment regimens, there is still enough room for the discovery and definition of further 349 

substratification of the disease. Since the early studies, the molecular classification of AML has highlighted remarkable 350 

recurrence of mutations in epigenetic modifiers including DNMT3A, IDH1/2, and TET2. However, the link between 351 

epigenetic alterations and aberrant epigenetic profiles has been only recently studied for its clinical relevance11, 32. In this 352 

regard, the complicated mutational landscape of DNMT3A involving conspicuous enrichment of mutations at residue R882 353 

and dispersed mutations throughout non-R882 residues provides an excellent opportunity to investigate the mechanistic 354 

connection between genetic and epigenetic alterations. 355 

In this study, we characterize the methylomes of AMLs harboring DNMT3A mutations that reduce the stability of the 356 

protein by analyzing the methylation profiles from three different AML cohorts. We show that they were associated with 357 

highly disordered local DNA methylation patterns specifically at bivalent domains, which in turn leads to the epigenetic 358 

diversity of AML cell population. As far as our knowledge is concerned, this is the first study that systematically analyzes 359 

the effect of the destabilization of DNMT3A directly on the methylomes of AML patients. 360 

To date, researchers have been struggling to clearly provide the common effect of non-R882 DNMT3A mutations on 361 

Figure 7. Proposed model explaining the DNA methylation disorder induced by mutant DNMT3AINS and its clinical implications. 

Proteasomal degradation of destablized DNMT3A proteins harboring DNMT3AINS mutations leads to decreased effective concentration of 

intracellular DNMT3A. Thus, the dimerization of DNMT3A protein is preferred over their tetramerization. Unlike DNMT3A tetramers, which 

conduct de novo methylation in a processive manner, DNMT3A dimers dissociate from DNA frequently during catalysis. This distributive 

de novo methylation results in stochastic local disorder of DNA methylation patterns, which in turn confers population-level epigenetic 

diversity of hematopoietic stem cells. Increased epigenetic diversity of cell population translates to increased fitness or adaptive potential 

of cell population, ultimately leading to poorer outcome of the patients. 
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leukemia, as the functional consequences of non-R882 mutations vary widely for the activity of the mutant proteins33. In 362 

line with this challenge, our results suggest a new perspective: the effect of individual non-R882 mutation on enzymatic 363 

activity may not be critical, at least for DNMT3AINS mutations. This is because a mutant DNMT3A harboring one of those 364 

mutations is prone to be degraded and thus would not actively participate in de novo methylation. Instead, our results 365 

suggest that the common consequence of DNMT3AINS variants, namely the reduction of intracellular DNMT3A 366 

concentration, is a key factor affecting the initiation and progression of AML. 367 

Nevertheless, it seems that some DNMT3AINS variants, especially those residing in the tetramer interface, further 368 

strengthen the dimeric preference of the enzyme by hampering the tetramerization by weakening the interaction at the 369 

tetramerization interface. Our experimental results showing the predominant dimerization of R736S DNMT3A in vitro 370 

(Supplementary Figure 3) suggest that some non-R882 variants may further promote the dimeric preference of the enzyme. 371 

Such residues that can elicit the synergy between destabilization and interface effect include S714 (stability score 0.688), 372 

R729 (stability score 0.364), R736 (stability score 0.316), R749 (stability score 0.339), S770 (stability score 0.419) and 373 

R771 (stability score 0.527), and they are shown to be among the most frequently mutated residues in hematological 374 

malignancies following R882 (Supplementary Figure 12). 375 

Our observations suggest a potential explanation for the enigmatic recurrence of DNMT3AINS variants in AML that has 376 

been poorly accounted for. In particular, our results link the biochemical property of DNMT3AINS and the local DNA 377 

methylation disorder in DNMT3AINS AML (Figure 7). The reduced dosage of intracellular DNMT3A due to the instability-378 

driven degradation of DNMT3AINS may favor the dimerization of DNMT3A over its tetramerization, as supported by the 379 

experimental study showing that the DNMT3A oligomerization is determined by its concentration15. Thus, DNMT3AINS 380 

AML may show prevalent dimer-driven distributive de novo DNA methylation, whereas DNMT3AWT AML exerts tetramer-381 

driven processive catalysis. Distributive methylation leads to a decreased concordance of local DNA methylation states, 382 

and the random dissociation of DNMT3A dimers from DNA in turn triggers the concomitant increase of the epigenetic 383 

diversity of cancer cell population. Although the clear mechanism of how the epigenetic diversity drives the progression 384 

and aggressiveness of AML cells still remains to be elucidated, our results showed the association between epigenetic and 385 

transcriptional heterogeneity of leukemic cells. Especially, the functional heterogeneity was enriched for genes contributing 386 

to the fitness of leukemic stem cells within the hematopoietic stem cell niche. Furthermore, the correlation between the 387 

epigenetic diversity at bivalent regulatory domains and response to HMA implies the connection between epigenetic 388 

diversity and transcriptional heterogeneity of cancer cells. 389 

Cancer has long been appreciated as an intrinsically heterogeneous disease. Genetically and epigenetically distinct cells, 390 

or subclones, arise from sporadic molecular aberrations, and they compete and cooperate with each other while exploiting 391 

the limited resources surrounding them. For recent decades, the extent of such intratumor heterogeneity has shown great 392 

potential as a clinical biomarker. However, studies so far have primarily focused on their prognostic power, and it is still 393 

questionable that the heterogeneity itself can be exploited as an actionable therapeutic target. In this regard, epigenetic 394 

intratumor heterogeneity, thanks to its reversible nature, would bring a novel therapeutic avenue that exploits direct 395 

manipulation of the heterogeneity of cancer cell population, i.e., homogenization of epigenetic states of cancer cells. Such 396 

intervention may undermine the fitness of cancer cell population, which ultimately triggers cell death. Indeed, this proposed 397 

mechanism may have already been implicitly functioning behind the conventional HMA treatments, but it has not been 398 

clearly elucidated before, as shown by the lack of DNA methylation-based biomarkers for HMAs. Our observations from 399 

functional epigenomic analyses in part support this scenario, and further provide an effective way to predict the response 400 

of AML cells to HMAs, which greatly increase the precision of the antileukemic therapies in clinical practice. 401 
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Methods 402 

RRBS 403 

To construct the MSP1 and Apek1 digested reduced-representation bisulfite sequencing (RRBS) library, 500 ng of input 404 

genomic DNA was assembled into 50 μl of reactions with MspI (NEB), incubated at 37°C for 24-26 h. ApeKI (NEB) was 405 

then added and incubated at 75°C for 16–20 h. The digested products were purified with a MiniElute PCR Purification Kit 406 

(Qiagen). After purification, the digested products were blunt-ended, and then dA was added, followed by methylated-407 

adapter ligation. A range of 160-420 adapter-ligated fraction was excised from a 2% agarose gel. Bisulfite conversion was 408 

conducted using a ZYMO EZ DNA Methylation-Gold Kit™ (ZYMO), following the manufacturer’s instructions. The final 409 

libraries were generated by PCR amplification using PfuTurbo Cx Hotstart DNA polymerase (Agilent technologies, Santa 410 

Clara, CA, USA). RRBS libraries were analyzed by an Agilent 2100 Bioanalyzer (Agilent Technologies). The methylation 411 

data were generated using two different platforms, Illumina HiSeq 2500 Standard 100 PE (100bp paired end) and NovaSeq 412 

6000 S4 150 PE (150bp paired end). 413 

Collecting and processing public DNA methylation data 414 

DNA methylation profiles for the public cohorts analyzed in this study were collected and processed as follows. Raw 415 

eRRBS sequencing data for 47 AML patients8 were obtained from dbGaP under accession phs001027.v2.p1. Sequencing 416 

was performed for each patient at both points of diagnosis and relapse, thus resulting in 94 sequencing runs in total. Bisulfite 417 

sequencing reads were adapter-trimmed with Trim galore!34 v0.6.7 with --rrbs option turned on. Reads were aligned to the 418 

hg38 reference genome with Bismark35 v0.22.3, and CpG methylation levels were extracted using MethylDackel36 v0.4.0. 419 

The same RRBS processing pipeline was applied to our own SNUH cohort. 420 

Illumina HumanMethylation450 BeadChip array-based DNA methylation profiles of 140 TCGA-LAML patients were 421 

downloaded from Genomic Data Commons (GDC) data portal. 422 

Sample collection for SNUH cohort 423 

The samples were collected in accordance with the guidelines and regulations of the Seoul National University Hospital 424 

[IRB No. H-1103-004-353]. DNMT3A mutations for patients with AML or myelodysplastic syndrome patients were 425 

identified using clinical NGS panel screening. 426 

Definition of DNMT3AINS variants and DNMT3AINS AML 427 

DNMT3AINS variants were identified using the catalog of stability ratios of DNMT3A amino acid substitutions that were 428 

experimentally determined by previous study6. Although the catalog covers a large number of residues (248 / 912 amino 429 

acids), still some of mutations occurring in clinical AML samples are not covered. Therefore, we extrapolated the ratios to 430 

assign stability scores for those uncharted substitutions by assigning a single stability score for each amino acid position, 431 

instead of each amino acid substitutions. It was done by computing the average of all known stability ratios resulting from 432 

the substitution each amino acid. Indeed, this procedure makes individual stability score less sensitive to the amino acid 433 

properties, thus some false positive or negative DNMT3AINS classification can be produced. However, we considered that 434 

it will be more beneficial to increase the sensitivity of the whole study by incorporating more variants to the analyses. 435 

All variants having processed stability scores below 0.75 were classified as DNMT3AINS. Moreover, nonsense and 436 

frameshift variants were also included as part of DNMT3AINS variants, as the truncation of DNMT3A protein are known to 437 

cause protein degradation in AML cells37. An AML sample was classified as DNMT3AINS AML only if it harbors a single 438 
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mutation on DNMT3A gene and it is DNMT3AINS. If a sample harbor DNMT3AR882 mutation, it was classified as 439 

DNMT3AR882 AML regardless of the existence of other mutations to reflect the dominant-negative effect of DNMT3AR882 440 

variant. All the other samples having non-destabilizing variants or multiple variants were classified as DNMT3AOther. 441 

Collecting and processing somatic mutation profiles 442 

Somatic variants for each individual were determined as follows. Whole exome sequencing data for Li2016 cohort were 443 

accessed via dbGaP under accession phs001027.v2.p1. In total, whole exome sequencing runs for 94 cancer samples 444 

(diagnosis and relapse) as well as 47 matched normal samples were obtained. Reads were aligned to hg38 reference genome 445 

with bwa v0.7.17-r118838. To increase the sensitivity of variant calls, we considered somatic variants called by at least one 446 

of Strelka239 v2.9.10 and Varscan40 v2.4.4 as valid somatic variants. Resulting variants were annotated with SnpEff41 v5.0 447 

and SnpSift42 v4.3t. Finally, variants were post-filtered to avoid false positive calls using the following criteria: (1) variants 448 

should be present with variant allele frequency greater than 5%, (2) variant alleles should be supported by at least five 449 

sequencing reads, (3) variants should not be present with ExAC population allele frequency more than 1%, and (4) only 450 

missense, nonsense, frameshift and splice variants were considered. For TCGA-LAML cohort, we collected the 451 

corresponding mutational profiles from cBioPortal43. 452 

Computation of local pairwise methylation discordance (LPMD) 453 

To measure the disorder of DNA methylation, we devised a new measure called local pairwise methylation discordance 454 

(LPMD) that measures the extent to which a pair of nearby CpGs at a fixed distance have conflict in their methylation 455 

states. LPMD takes advantage of the phased methylation states of nearby CpGs that are simultaneously captured by a single 456 

bisulfite sequencing read. Through the enumeration of all the sequencing reads, LPMDd is computed as the proportion of 457 

CpG pairs at genomic distance 𝑑 (in bp) with different methylation states. LPMD values were computed using Metheor 458 

v0.1.216. 459 

On the other hand, we cannot extract a pair of DNA methylation states that originates from a single cell (i.e., phased 460 

methylation states) using the results from DNA methylation arrays. To approximate sequencing-based LPMD values using 461 

methylation levels measured by DNA methylation arrays, the difference of DNA methylation levels of a CpG pair at a fixed 462 

distance was utilized. The use of this measure can be justified by the fact that the methylation level difference of CpG pair 463 

forms the lower bound of LPMD. Assume that there is a CpG pair with methylation level 𝛽1  and 𝛽2 , where 𝛽1 < 𝛽2 , 464 

without loss of generality. Then, the maximum proportion of CpG pairs both having methylated state will be  𝛽1. Similarly, 465 

the maximum proportion of CpG pairs both having unmethylated state will be  1 − 𝛽2. Thus, the lowest possible proportion 466 

of CpG pairs having different methylation state is 1 − (𝛽1) − (1 − 𝛽2) = 𝛽2 − 𝛽1 , which is the methylation level 467 

difference of the pair. Sample-wise array-based LPMD was computed similarly to sequencing-based LPMD by specifying 468 

the distance between CpG pairs. 469 

Computation of epipolymorphism 470 

Epipolymorphism22 is a cell population-wise measure that quantifies the diversity of methylation patterns, or epialleles, of 471 

four consecutive CpG sites (CpG quartets). To compute epipolymorphism from bisulfite read alignments of Li2016 cohort, 472 

we only considered CpG quartets that are supported by more than ten sequencing reads. CpG quartets harboring CpG site 473 

that overlaps with dbSNP 151 SNPs were excluded. For each CpG quartets, epipolymorphism is defined considering 16 474 

possible patterns of DNA methylation states. For convenience, here we denote unmethylated and methylated states as ‘0’ 475 

and ‘1’, respectively. Then we can think of 16 possible DNA methylation patterns from 𝑥0 = 0000 (fully unmethylated 476 
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pattern) to 𝑥15 = 1111 (fully methylated pattern), and epipolymorphism is defined as below. 477 

Epipolymorphism= 1 − ∑ (
𝑛𝑖

𝑁
)

2
15

𝑖=0

 478 

where 𝑛𝑖 denotes the number of reads supporting pattern 𝑥𝑖 and 𝑁 =  ∑ 𝑛𝑖
15
𝑖=0 . Epipolymorphism values were computed 479 

using Metheor v0.1.216. 480 

Reference epigenome for CD34 hematopoietic stem cells 481 

Reference epigenomes for CD34-positive hematopoietic stem cells (HSCs) were downloaded from ENCODE under 482 

accession number ENCSR970ENS. In particular, the raw whole genome bisulfite sequencing data was downloaded under 483 

library accession ENCLB590SRF and was processed as described above. Processed signal p-values and called peaks for 484 

ChIP-seq targeting H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K27ac and H3K36me3 histone marks were 485 

downloaded under accession number ENCSR401CJA, ENCSR136QKZ, ENCSR957WQX, ENCSR355PUX, 486 

ENCSR620AZM and ENCSR164ROX, respectively. Similarly, signal p-values and peaks for DNase I hypersensitive sites 487 

were downloaded under accession ENCSR468ZXN. For the subsequent analyses, signal p-values were normalized with 488 

arcsinh transformation. The core 15-state chromatin states inferred by ChromHMM20 were downloaded from Roadmap 489 

Epigenomics for the enrichment analysis of differentially methylated regions. Bivalent domains in CD34-positive 490 

hematopoietic stem cells are defined as the genomic regions with chromatin states named 10_TssBiv, 11_BivFlnk or 491 

12_EnhBiv. 492 

Selection of the bivalent domains for targeted enzymatic methyl-seq 493 

We selected representative bivalent domains that show pronounced methylation disorder in DNMT3AINS AMLs compared 494 

to HSCs for targeted enzymatic methyl-seq (EM-seq). To obtain sufficient depths for the targeted regions, the total span of 495 

the sequencing panel was aimed to be about 500kbp, which is about 4% of the bivalent domains in the HSC reference 496 

epigenome (~12,526 kbp in total). The following describes how we prioritized bivalent domains to be selected for the panel. 497 

First, bivalent domains were ranked by average difference of DNA methylation level between SNUH5763 sample and HSC 498 

reference epigenome. At the same time, they were ranked also by density of containing CpGs (number of CpGs divided by 499 

the length of the region). Of note, we found that a majority of (90%) bivalent domains were hypermethylated, and higher 500 

density of CpGs was positively correlated with methylation level difference (Pearson’s r=0.554, p < 10-308). Final ranks 501 

were obtained by taking geometric mean of methylation level difference and CpG density for each bivalent domain and 502 

the top 454 bivalent domains spanning 499,859bp were selected for the panel.  503 

Targeted enzymatic methyl-seq 504 

505 

506 

507 

508 

509 

510 

511 
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512 

513 

Genome annotations 514 

All the bioinformatics analyses were performed with hg38 human reference genome. Annotations for human CpG islands 515 

were downloaded from UCSC Table Browser. Based on the CpG island annotations, annotations for CpG shores (defined 516 

as up/downstream 2kb regions flanking CpG islands) and CpG shelves (defined as further up/downstream 2kb regions 517 

flanking the borders of CpG shores) were obtained using BEDTools45 v2.26.0. Gene annotations were obtained from 518 

GENCODE46 v32 release. Annotations for CpG methylation canyons were obtained from a previous study47. 519 

Identification of differentially methylated regions 520 

Differentially methylated regions (DMRs) between various DNMT3A subclasses were identified by metilene v0.2-818. We 521 

required at least 4 CpGs for a region to be called as a DMR, while allowing at most 500bp-away adjacent CpG pair within 522 

a DMR. Among those candidate regions, regions showing methylation difference greater than 0.2 and showing Benjamini-523 

Hochberg adjusted p-value less than 0.01 were finally called as DMRs. 524 

Drug response analysis 525 

Drug response analyses were conducted by reanalyzing public experimental results for Cancer Cell Line Encyclopedia 526 

(CCLE)48 cell lines. Only the cell lines of hematopoietic lineage derived from AML that have associated raw RRBS data 527 

were used. Raw RRBS data were obtained under SRA accession SRP186687 and processed as described above. To avoid 528 

spurious methylation calls we excluded CpGs that overlaps with SNPs using dbSNP version 151. Moreover, we excluded 529 

CpGs located at ENCODE blacklisted regions49 and their flanking 1000bp regions from analysis. 530 

The responses of the cell lines to hypomethylating agents were adopted from Cancer Therapeutics Response Portal 531 

(CTRP) v250. Area under drug response curve (AUDRC) was used as a measure of drug response, and the fitted curve was 532 

reconstructed and visualized with the following four-parameter logistic nonlinear regression model51: 533 

𝑦 = 1 +
𝑏 − 1

1 + (
𝑐
𝑥

)
𝑠 534 

where 𝑥 is the concentration of the drug at which the response of cells is to be computed, 𝑐 is the dosage of the drug 535 

where the 50% of cells shows response, 𝑏 is the baseline response, which denotes the response of cells at sufficiently high 536 

concentration of the drug and 𝑠 is the steepest slope of the logistic curve. 537 

  538 
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Supplementary Figures 699 

Supplementary Figure 1.  700 

Structural properties of DNMT3A amino acid residues inducing protein instability upon mutation. Predicted structure of full-length 701 

DNMT3A was obtained from AlphaFold Protein Structure Database under Uniprot accession Q9Y6K1. (a) Residues were colored according 702 

to predicted local distance difference test (pLDDT) values produced from AlphaFold2 model. (b) Residues were colored according to the 703 

conserved domains. (c) Destabilizing residues (n=125) were colored in red. (d) Non-destabilizing residues (n=123) were colored in blue. (e) 704 

Boxplot showing the difference of pLDDT values between non-destabilizing and destabilizing residues. The center line denotes the median, 705 

the upper and lower box limits denote upper and lower quartiles, and the whiskers denote 1.5×  interquartile range. 706 
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Supplementary Figure 2.  708 

Bisulfite conversion rate did not affect the observed high LPMD in DNMT3AINS. (a) Boxplot showing the distribution of bisulfite 709 

conversion rate for each DNMT3A subclasses in Li2016 eRRBS data. (b) No correlation was observed between bisulfite conversion rate 710 

and genomewide LPMD values. 711 
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Supplementary Figure 3.  713 

R736S mutation disrupts the oligomerization of DNMT3A. (a) DNMT3A tetramer status was modeled based on DMNT3A-DMNT3L 714 

heterotetramer (PDB ID 6BRR) by superimposing DMNT3A on DMNT3L. The location of R736S at the DNMT3A oligomer interface is 715 

indicated with a red dotted box. The detailed view of the interaction between Arg736 (R736) and the Arg771 and Phe772 from the adjacent 716 

DNMT3A molecule (left panel). The hydrocarbon region in the Arg771 side chain and the phenyl ring in Phe772 form a hydrophobic patch 717 

where the hydrocarbon region of Arg736 interacts. The adjacent DNMT3A molecule is shown in electrostatic surface representation, 718 

showing the hydrophobic interaction among Arg736, Arg771 and Phe772. The mutation of Arg736 would interfere this interaction. (b) An 719 

SDS-PAGE gel shows the purified DNMT3AWT and DNMT3AR736S. A gel-filtration chromatograms of DNMT3AWT (WT) and DNMT3AR736S 720 

(R736S) shows that R736S disrupts the oligomerization states. (c) Negative-stain EM analysis of DNMT3AWT and DNMT3AR736S. 721 

DNMT3AR736S exhibits smaller particles than DNMT3AWT. 722 
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Supplementary Figure 4.  724 

Mutational co-occurrence analysis. Heatmaps show the significance of the co-occurrence (red) and mutual exclusion (blue) of a pair of 725 

mutations for (a) TCGA-LAML, (b) BeatAML and (c) Leucegene cohorts. Colors denote unadjusted p-values from Fisher’s exact test. Gene 726 

pairs with p < 0.05 were indicated with purple squares. FLT3-ITD, FLT3 with internal tandem duplication; FLT3-Other, FLT3 with mutations 727 

other than FLT3-ITD. 728 
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Supplementary Figure 5.  730 

Differentially methylated region (DMR) analysis. (a) Average methylation levels of TCGA-LAML cohort samples within hypo-DMRs in 731 

DNMT3AR882 (vs DNMT3AWT) defined in Li2016 cohort. (b) Methylation levels of SNUH cohort samples surrouding hypo-DMRs in 732 

DNMT3AR882 (vs DNMT3AWT) defined in Li2016 cohort. (c) Average methylation levels of Li2016 cohort samples surrounding hyper-DMRs 733 

in DNMT3AINS (vs normal bone marrow cells). (d) Frequencies of genomic contexts covered by hyper-DMRs (vs normal bone marrow cells) 734 

for each DNMT3A subclasses in Li2016 cohort. NBM, normal bone marrow. 735 
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Supplementary Figure 6.  737 

Testing enrichment of differentially methylated regions for chromatin contexts. (a) Fold enrichment of the occurrence of hyper-DMRs 738 

(vs normal bone marrow cells) for each chromHMM chromatin state. Fold enrichment was computed by taking the ratio between the length 739 

of the observed and expected intersection between DMRs and each chromatin state. (b) Fold enrichment of the occurrence of hypo-DMRs 740 

(vs normal bone marrow cells) for each chromHMM chromatin state. 741 
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Supplementary Figure 7.  743 

Purity and cell type composition analysis. (a) Sample purity distribution across DNMT3A subclasses in Li2016 cohort. Purities were 744 

computed using ABSOLUTE. (b) Distribution of the entropy of cell type proportion across DNMT3A subclasses in Li2016 cohort. Cell type 745 

proportions were computed using CIBERSORT. The center line denotes the median, the upper and lower box limits denote upper and lower 746 

quartiles, and the whiskers denote 1.5×  interquartile range. 747 
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Supplementary Figure 8.  749 

Responses of AML cell lines to azacitidine. Association between genomewide (left) or bivalent-domain-specific LPMD (bivLPMD; right) 750 

and area under dose response curve (AUDRC) are shown. No significant correlation was observed (n.s.). 751 
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Supplementary Figure 9.  753 

Association between regulatory region-specific LPMD and response to hypomethylating agent. Association between LPMD values 754 

within promoters, methylation canyons, CpG islands, CpG shores and CpG shelves and AUDRC for hypomethylating agent treatment are 755 

shown. Pearson’s correlation coefficient and corresponding p-values are shown. 756 
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Supplementary Figure 10.  758 

Association between non-regulatory region-specific LPMD and response to hypomethylating agent. Association between LPMD 759 

values within exons, LTRs and LINEs and AUDRC for hypomethylating agent treatment are shown. Pearson’s correlation coefficient and 760 

corresponding p-values are shown. 761 
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Supplementary Figure 11.  763 

LPMD at bivalent domains are not associated with age. (a) Relationship between cell line age at sampling and bivLPMD values in CCLE 764 

AML cell lines. No significant correlation was observed (n.s.). (b) Relationship between patient ages and bivLPMD values in our own cohort 765 

for retrospective HMA response analysis (see Figure 5f, g). No significant correlation was observed (n.s.). 766 
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Supplementary Figure 12.  768 

Prevalence of non-R882 mutations that may contribute to dimeric preference of DNMT3A through weakening interactions in 769 

tetramer interface. (a) Structure of DNMT3A tetramer interface. Destabilizing residues (stability score < 0.75) that are in the vicinity of the 770 

tetramer interface are highlighted. DNMT3A tetramer status was modeled based on DMNT3A-DMNT3L heterotetramer (PDB ID 6BRR) by 771 

superimposing DMNT3A on DMNT3L. (b) Top 60 DNMT3A residues that are most frequently mutated in hematological malignancies are 772 

shown. Data was downloded from COSMIC. Frequency for R882 (n=1748) was not shown for the visibility. Red bars denote the destabilizing 773 

amino acid residues that are placed in the vicinity of tetramer interface of DNMT3A.774 
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Supplementary Tables 776 

Supplementary Table 1. Destabilizing and non-stabilizing residues. Position refers to the 1-based position of an amino acid residue. 777 

Position Stability ratio (normalized to WT) Destabilizing 

12 0.8555979 No 

30 0.8360113 No 

90 1.084197 No 

181 1.044739 No 

183 1.060101 No 

192 1.047929 No 

254 0.4813288 Yes 

267 1.016953 No 

272 1.022709 No 

281 1.017266 No 

288 1.017836 No 

290 0.4599451 Yes 

292 1.014288 No 

293 0.3443498 Yes 

295 0.3435179 Yes 

297 0.1578041 Yes 

298 0.3447503 Yes 

299 1.024477 No 

301 1.012748 No 

302 1.032172 No 

304 0.9931188 No 

307 0.1565844 Yes 

308 0.342584 Yes 

309 0.5492893 Yes 

310 0.1712749 Yes 

312 0.6274686 Yes 

314 1.072061 No 

316 1.071478 No 

318 0.9328556 No 

322 1.053182 No 

324 0.4608576 Yes 

326 0.252030067 Yes 

328 0.2114281 Yes 

332 0.373928 Yes 

337 0.3451776 Yes 

339 0.1308347 Yes 

342 0.8949588 No 

344 0.1882434 Yes 
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352 0.966761 No 

359 0.5646341 Yes 

361 0.8742617 No 

365 0.1697705 Yes 

366 0.65244465 Yes 

368 0.3986021 Yes 

369 0.3906805 Yes 

376 0.3382373 Yes 

378 1.0956 No 

379 0.916074 No 

380 0.9477463 No 

385 1.072299 No 

400 1.15719 No 

407 0.6492172 Yes 

410 0.2881317 Yes 

413 0.8793166 No 

414 0.2475144 Yes 

419 0.9446362 No 

424 0.9331912 No 

426 0.9512829 No 

428 0.973034 No 

431 0.9554172 No 

436 0.9696032 No 

437 1.043213 No 

438 1.000848 No 

455 1.150239 No 

458 1.0636 No 

474 1.130067 No 

477 1.098108 No 

478 1.088251 No 

484 1.138854 No 

494 0.4751771 Yes 

495 0.9011877 No 

497 0.2767733 Yes 

507 0.5604438 Yes 

508 0.5859341 Yes 

511 0.5064597 Yes 

514 0.5244856 Yes 

517 0.5214359 Yes 

518 1.109377 No 

525 0.8306941 No 

527 0.8820262 No 
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529 0.8778251 No 

531 1.107685 No 

532 0.7987965 No 

533 0.8857338 No 

537 0.4448991 Yes 

543 0.9069754 No 

545 1.100344 No 

547 0.9057181 No 

548 0.8853955 No 

549 0.2513217 Yes 

550 0.848029 No 

554 0.579103 Yes 

556 1.040666 No 

562 0.4254519 Yes 

563 0.8841944 No 

567 0.8097687 No 

571 1.04459 No 

572 1.0849 No 

573 1.00304 No 

575 1.062243 No 

579 1.09785 No 

580 1.087125 No 

581 0.767763 No 

583 0.4330766 Yes 

586 0.4554169 Yes 

596 1.063925 No 

598 0.7779466 No 

604 0.8633119 No 

623 0.7358614 Yes 

627 0.8867821 No 

631 0.4886155 Yes 

635 0.40598 Yes 

636 0.3582201 Yes 

637 0.2517871 Yes 

638 0.4007301 Yes 

639 0.3937565 Yes 

641 0.7750524 No 

642 0.6365951 Yes 

645 0.856708 No 

646 0.4442819 Yes 

647 0.4245519 Yes 

648 0.3928059 Yes 
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649 0.5172071 Yes 

650 0.4159871 Yes 

653 0.3714397 Yes 

657 0.4237124 Yes 

659 0.7358019 Yes 

660 0.3594055 Yes 

661 0.4046589 Yes 

662 0.4288399 Yes 

663 0.4802697 Yes 

665 1.060347 No 

668 0.8538262 No 

669 0.7318646 Yes 

672 0.8466228 No 

675 0.9984979 No 

676 0.5809479 Yes 

677 0.8412493 No 

684 0.3898449 Yes 

685 0.4403994 Yes 

686 0.3386339 Yes 

687 0.4086413 Yes 

688 0.8012436 No 

690 0.3550435 Yes 

691 0.4553243 Yes 

695 0.9120905 No 

699 0.3200215 Yes 

700 0.3495642 Yes 

701 0.4556982 Yes 

702 0.3932404 Yes 

703 0.4818903 Yes 

704 0.6508228 Yes 

705 0.3875358 Yes 

706 0.387481 Yes 

707 0.3802217 Yes 

709 0.8902627 No 

710 0.9437781 No 

714 0.6880003 Yes 

716 1.033337 No 

717 0.9261547 No 

718 0.7192777 Yes 

720 1.061631 No 

728 0.8359543 No 

729 0.363541 Yes 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528223
http://creativecommons.org/licenses/by-nd/4.0/


731 0.40776975 Yes 

733 0.426707 Yes 

734 0.3905955 Yes 

735 0.8630975 No 

736 0.3158816 Yes 

737 0.4684402 Yes 

741 0.6665348 Yes 

742 0.3868087 Yes 

743 0.4593113 Yes 

747 0.7108312 Yes 

749 0.3392981 Yes 

751 0.3471555 Yes 

752 0.3410564 Yes 

754 0.3862334 Yes 

755 0.4103273 Yes 

756 0.9537112 No 

758 0.8622715 No 

759 0.96031345 No 

761 0.9529492 No 

768 0.636552 Yes 

769 0.4562491 Yes 

770 0.4189152 Yes 

771 0.5270026 Yes 

772 0.7405099 Yes 

774 0.2667145 Yes 

777 0.4505224 Yes 

778 0.3130035 Yes 

780 0.4925803 Yes 

781 0.9319379 No 

783 1.10281 No 

789 1.081251 No 

792 0.9790729 No 

793 0.4067298 Yes 

794 0.6260574 Yes 

795 0.3420015 Yes 

796 0.5078561 Yes 

797 0.4046881 Yes 

798 0.40725 Yes 

799 0.325236 Yes 

800 0.9266615 No 

801 0.4246202 Yes 

803 0.9229618 No 
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804 1.028859 No 

811 0.9130292 No 

813 1.025642 No 

814 1.049149 No 

815 0.9383628 No 

822 1.007593 No 

825 0.9238034 No 

826 1.062891 No 

828 1.062804 No 

829 0.9500532 No 

835 0.9569821 No 

836 0.9760696 No 

838 0.9859692 No 

849 0.5965496 Yes 

850 1.02501 No 

857 0.937554 No 

860 0.9209173 No 

865 0.5922805 Yes 

868 0.9252796 No 

869 0.5570258 Yes 

872 1.025123 No 

873 1.041027 No 

879 0.8984118 No 

880 0.9616624 No 

881 0.6161368 Yes 

882 0.9764945 No 

884 1.002667 No 

886 1.072883 No 

893 0.9518706 No 

896 0.8088213 No 

898 0.7921419 No 

899 0.8239997 No 

901 0.4658968 Yes 

902 0.36474025 Yes 

904 0.2603852 Yes 

905 0.4671688 Yes 

906 0.6004309 Yes 

907 0.3925456 Yes 

908 0.4078807 Yes 

909 0.327513 Yes 

910 0.5581608 Yes 

911 0.5075343 Yes 
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 778 

Supplementary Table 2. Characteristics of SNUH AML patients for bisulfite sequencing analysis. 779 

 780 

Sample Age (yr) Sex Karyotype 

SNUH4794 46 F 46,XX,t(8;21)(q22;q22)[20] 

SNUH5053 48 M 45,X,-Y,t(8;21)(q22;q22)[20] 

SNUH5070 51 F 46,XX[20] 

SNUH5160 41 M 46,XY[20] 

SNUH5174 56 F Unknown 

SNUH5196 64 F 46,XX,del(13)(q12q14)[16]/46,XX[5] 

SNUH5323 43 M 46,XY[20] 

SNUH5347 64 M 
44,XY,-3,add(5)(q?15),der(7)t(7;12)(p13;q13)add(7)(q22),+8,-10,-

12,add(17)(q21)[17]/88,slx2[1]/46,XY[2] 

SNUH5553 68 M 46,XY,der(7)t(7;14)(q22;q24),add(18)(q21.1)[21] 

SNUH5576 77 F 47,XX,+4[20] 

SNUH5696 66 M 46,XY[21] 

SNUH5763 71 M 47,XY,+10[4]/46,XY[17] 

SNUH6002 54 F 46,X,t(8;21)(q22;q22)[18]/46,XX[2] 

SNUH6076 79 F 46,XX[11] 

SNUH6407 65 F 46,XX,t(8;21)(q22;q22)[17]/46,XX[4] 

SNUH4939 68 F 46,XX[20] 

SNUH5253 61 F 46,XX[20] 

SNUH5996 61 M 46,XY[20] 

SNUH5997 47 M 
44,XY,der(3;5)(q10;p10),add(7)(p22),-8,-

9,add(17)(p13),+r,~100dmin[19]/88,idemx2[1].nuc ish(MYC amp)[192/200] 

SNUH6446 55 F 46,XX,add(12)(q12)[12]/46,idem,add(7)(p22)[2]/46,XX[6] 
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Supplementary Table 3. Characteristics of patients with hematological disorders for HMA response analysis. 783 

Sample Age (yr) Sex Disease classification 

SNUH2715 68 F Acute Myeloid Leukemia 

SNUH2789 79 F Acute Myeloid Leukemia 

SNUH2996 68 M Acute Myeloid Leukemia 

SNUH3173 73 M Acute Myeloid Leukemia 

SNUH3190 77 F Acute Myeloid Leukemia 

SNUH3313 67 F Acute Myeloid Leukemia 

SNUH3626 73 M Acute Myeloid Leukemia 

SNUH3651 70 M Acute Myeloid Leukemia 

SNUH4028 73 M Acute Myeloid Leukemia 

SNUH4390 82 M Acute Myeloid Leukemia 

SNUH4590 74 F Acute Myeloid Leukemia 

SNUH4819 70 F Acute Myeloid Leukemia 

SNUH4871 72 M Acute Myeloid Leukemia 

SNUH4995 70 F Acute Myeloid Leukemia 

SNUH5018 68 M Acute Myeloid Leukemia 

SNUH5137 64 M Acute Myeloid Leukemia 

SNUH5167 68 M Acute Myeloid Leukemia 

SNUH5189 66 M Acute Myeloid Leukemia 

SNUH5199 76 F Acute Myeloid Leukemia 

SNUH7090 75 F Acute Myeloid Leukemia 

SNUH7098 58 F Myelodysplastic Syndrome (RAEB) 

SNUH7103 71 F Acute Myeloid Leukemia 

SNUH7196 67 M Acute Myeloid Leukemia 

SNUH7247 66 F Myelodysplastic Syndrome (t-MDS) 

SNUH7349 70 M Acute Myeloid Leukemia 

SNUH7366 73 M Acute Myeloid Leukemia 

SNUH7383 67 F Myelodysplastic Syndrome (t-MDS) 

SNUH7509 69 M Acute Myeloid Leukemia 

SNUH7549 52 F Myelodysplastic Syndrome (RAEB) 

SNUH7666 71 M Myelodysplastic Syndrome (RAEB) 
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SNUH7683 72 M Acute Myeloid Leukemia 

SNUH7692 65 M Myelodysplastic Syndrome (RAEB) 

SNUH7720 64 M Myelodysplastic Syndrome (RAEB) 

SNUH7783 79 M Acute Myeloid Leukemia 
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