1	Plastic Leachate Exposure Drives Antibiotic Resistance and Virulence in Marine
2	Bacterial Communities
3	
4	Eric J. Vlaanderen* ¹ , Timothy M. Ghaly* ^{2,3} , Lisa R. Moore ² , Amaranta Focardi ⁴ , Ian T.
5	Paulsen ^{#,2,3} , Sasha G. Tetu ^{#2,3}
6	¹ College of Science and Engineering, James Cook University, Townsville
7	² School of Natural Sciences Macquarie University, Sydney
8	³ ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney
9	⁴ Climate Change Cluster (C3), University of Technology Sydney, Sydney
10	
11	*These authors contributed equally to this work
12	[#] Corresponding Authors:
13	Sasha G. Tetu ^{# 2,3} , email: <u>sasha.tetu@mq.edu.au</u>
14	Ian T. Paulsen ^{#,2,3} , email: <u>ian.paulsen@mq.edu.au</u>
15	
16	Keywords
17	Plastic pollution, Pathogenicity, Polyvinyl Chloride, Microbiome, One Health, Antimicrobial
18	resistance, AMR spread
19	
20	Competing interest statement: The authors declare no competing interests.

22 Abstract

23

24 Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic 25 waste entering the oceans every year. Plastic debris can have considerable impacts on 26 microbial community structure and functions in marine environments, and has been 27 associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) 28 genes. However, our understanding of these impacts is largely restricted to microbial 29 assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the 30 surface properties of plastics, providing an additional niche for certain microbes residing in 31 biofilms, and/or chemicals leached from plastics, the effects of which could extend to 32 surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) 33 plastic leachate exposure on the relative abundance of genes associated with bacterial 34 pathogenicity and AMR within a seawater microcosm community. We show that PVC 35 leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence 36 genes. In particular, leachate exposure significantly enriches AMR genes that confer 37 multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of 38 genes involved in the extracellular secretion of virulence proteins was observed among 39 pathogens of marine organisms. This study provides the first evidence that chemicals leached 40 from plastic particles alone can enrich genes related to microbial pathogenesis within a 41 bacterial community, expanding our knowledge of the environmental impacts of plastic 42 pollution with potential consequences for human and ecosystem health.

43 1. Introduction

45	Plastic pollution in marine ecosystems has become a serious global problem, with more than
46	12 million metric tonnes of plastic waste ending up in the oceans every year (Borrelle et al.,
47	2020; Jambeck et al., 2015; Lau et al., 2020). As plastic production rates continue to rise and
48	poor waste management practices remain in many areas of the world, issues associated with
49	marine plastic pollution are likely to increase in the future (Borrelle et al., 2020; Jadhav et al.,
50	2022; Lau et al., 2020; Lebreton and Andrady, 2019). To date, recognition of the
51	environmental impacts of plastic debris has largely focused on entanglement and ingestion by
52	marine species (Cózar et al., 2014; Gregory, 2009; Lebreton et al., 2018; Wright et al., 2013).
53	However, additional impacts are increasingly being recognised for marine microorganisms.
54	These include the environmental release of chemicals via leaching from plastic particles,
55	which can significantly alter marine microbial communities (Capolupo et al., 2020; Focardi et
56	al., 2022; Gunaalan et al., 2020; Romera-Castillo et al., 2018) and dissemination of
57	pathogenic microorganisms, via rafting on plastic debris (Bhagwat et al., 2021; Bryant et al.,
58	2016; Zettler et al., 2013; Zhang et al., 2022).
59	Plastics are known to leach a variety of organic and inorganic substances through
60	weathering and biological degradation processes. This includes additives such as plasticizers,
61	UV stabilizers, metals, and dyes, most of which are not chemically bound to the polymer
62	matrix (Hahladakis et al., 2018; Hermabessiere et al., 2017). Some of these additives are
63	known endocrine-disrupters, reproductive toxicants, carcinogens, and mutagens (Wiesinger et
64	al., 2021; Zimmermann et al., 2019). The ability to tolerate exposure to common inorganic
65	and/or organic components of plastic leachate has been shown to be highly variable across
66	different marine microbes. Exposure to chemicals leaching from plastics is detrimental to
67	some marine organisms, such as zooplankton (Gewert et al., 2021; Lithner et al., 2009), green

68 algae (Simon et al., 2021), bacterial picocyanobacteria (Sarker et al., 2020; Tetu et al., 2019), 69 and other keystone marine microbes, including SAR11 (Focardi et al., 2022). However, some 70 marine heterotrophic bacteria appear to benefit from plastic leach exposure, likely from the 71 increase in available dissolved organic carbon (Birnstiel et al., 2022; Focardi et al., 2022; 72 Romera-Castillo et al., 2018). 73 Colonisation of plastic debris by microorganisms, termed the "plastisphere", has been 74 extensively studied, with clear indications that this niche selects for microbial communities 75 differing in abundance and diversity from the surrounding waters (Bryant et al., 2016; 76 Dussud et al., 2018; He et al., 2022; Zettler et al., 2013). Of particular concern is the 77 enrichment of potential pathogens and antibiotic resistant microbes on plastic particles, as 78 well as increases in antimicrobial resistance (AMR) genes (Di Pippo et al., 2022; Loiseau and 79 Sorci, 2022; Oberbeckmann et al., 2015; Sathicq et al., 2021; Sucato et al., 2021; Sun et al., 80 2021; Wang et al., 2020; Yang et al., 2019; Zhang et al., 2022). Studies using metagenomics-81 derived data have found higher relative abundance, diversity and richness indices of human 82 and fish pathogens in the microbial communities attached to plastics in the Mediterranean 83 Sea (Dussud et al., 2018), the North Pacific Gyre (Yang et al., 2019), and in coastal regions 84 of Norway (Radisic et al., 2020), the Gulf of Mexico (Sun et al., 2021), and Eastern Australia 85 (Bhagwat et al., 2021). 86 It is clear that marine plastic debris has the potential to serve as a vector for pathogens 87 and genes involved in virulence and antibiotic resistance. However, it is not clear whether 88 this is due solely to plastic debris providing an additional niche for certain microbes, 89 particularly those residing in biofilms, or because leached plastic chemicals also favour 90 increases in such microorganisms. To our knowledge there have been no studies examining 91 whether chemicals that leach from plastic waste select for higher relative abundances of

92 AMR and pathogenicity traits within a community, independent of the physical effects linked

- 93 to plastic particles. Here we demonstrate that polyvinyl chloride (PVC) plastic leachate
- 94 enriches for virulence and AMR genes in a marine microbial community from Eastern
- 95 Australian coastal shelf waters (Focardi et al., 2022).

- 97 **2. Methods**
- 98
- 99 2.1. Data acquisition
- 100
- 101 Metagenomic data was obtained from our previous study examining the effects of PVC 102 leachate and zinc, an abundant PVC additive, on a seawater microcosm community (Focardi 103 et al., 2022). Methodology for the leachate preparation, and microcosm experiment set-up has 104 been described in our previous study (Focardi et al., 2022). Briefly, microcosm samples were 105 subject to a six-day exposure to either 1% (0.5g/L) PVC leachate (PVC1), 10% (5g/L) PVC 106 leachate (PVC10), 0.13 mg/L zinc chloride (ZnL), 1.3 mg/mL zinc chloride (ZnH) (zinc 107 being the most abundant inorganic component in leachate from this PVC plastic), or left 108 untreated as control samples (SW). DNA extracted from each treatment was used to generate 109 metagenomic libraries at the Ramaciotti Center for Genomics (Sydney, Australia) using the 110 Illumina Nextera DNA Flex library preparation kit, and sequenced on the NovaSeq6000 111 platform (2x150 bp High Output run). Gene sequences, de-replicated at 98% nucleotide 112 identity, and gene counts for each sample were retrieved from Focardi et al. (2022). Detailed 113 methodology for the metagenomic data processing, assembly, gene prediction, and gene 114 counts has been described in our previous study. All raw sequence data are available under 115 NCBI BioProject accession PRJNA756323. 116
- 117 2.2. Identification and quantification of AMR, virulence, and toxin genes

1	1	8
-	-	

119	AMR and pathogenicity-related genes from each sample were identified using PathoFact v1.0
120	(de Nies et al., 2021) with default settings. PathoFact is a pipeline that identifies putative
121	virulence factors, bacterial toxins, and AMR genes. PathoFact further classifies AMR genes
122	by antimicrobial category and resistance mechanism. For cases where AMR genes were
123	assigned multiple resistance mechanisms, we used only the first predicted mechanism from
124	PathoFact.
125	Relative abundance of each gene was estimated with normalised read counts using the
126	simplified transcripts per million (TPM) method described by Wagner et al. (2012). The per-
127	sample mean number of nucleotides mapped per feature was taken as a proxy for read length.
128	One-way ANOVAs followed by post-hoc Tukey-HSD tests were performed to compare the
129	relative abundance of genes in PVC treatment samples (PVC1 and PVC10) and Zn treatment
130	samples (ZnL and ZnH) independently against the control samples (SW) in each of the
131	PathoFact output categories (AMR, Virulence, and Toxin).
131 132	PathoFact output categories (AMR, Virulence, and Toxin).
131 132 133	PathoFact output categories (AMR, Virulence, and Toxin).2.3. Additional screening and categorisation of virulence genes
131 132 133 134	PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes
131 132 133 134 135	 PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes PVC leachate treatment resulted in increases in the relative abundance of virulence genes that
131 132 133 134 135 136	PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes PVC leachate treatment resulted in increases in the relative abundance of virulence genes that were deemed significant, but were close to the significance cut-off (P-value < 0.05) as
131 132 133 134 135 136 137	PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes PVC leachate treatment resulted in increases in the relative abundance of virulence genes that were deemed significant, but were close to the significance cut-off (P-value < 0.05) as predicted by PathoFact. Thus, to investigate this further, we used a second analysis pipeline
131 132 133 134 135 136 137 138	PathoFact output categories (AMR, Virulence, and Toxin).2.3. Additional screening and categorisation of virulence genesPVC leachate treatment resulted in increases in the relative abundance of virulence genes thatwere deemed significant, but were close to the significance cut-off (P-value < 0.05) as
131 132 133 134 135 136 137 138 139	PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes PVC leachate treatment resulted in increases in the relative abundance of virulence genes that were deemed significant, but were close to the significance cut-off (P-value < 0.05) as predicted by PathoFact. Thus, to investigate this further, we used a second analysis pipeline SeqScreen v3.4 (Balaji et al., 2022) with the SeqScreenDB v2.0 (version February 2022) to test whether increases in the relative abundance of virulence genes were significant.
131 132 133 134 135 136 137 138 139 140	PathoFact output categories (AMR, Virulence, and Toxin).2.3. Additional screening and categorisation of virulence genesPVC leachate treatment resulted in increases in the relative abundance of virulence genes thatwere deemed significant, but were close to the significance cut-off (P-value < 0.05) as
131 132 133 134 135 136 137 138 139 140 141	PathoFact output categories (AMR, Virulence, and Toxin). 2.3. Additional screening and categorisation of virulence genes PVC leachate treatment resulted in increases in the relative abundance of virulence genes that were deemed significant, but were close to the significance cut-off (P-value < 0.05) as predicted by PathoFact. Thus, to investigate this further, we used a second analysis pipeline SeqScreen v3.4 (Balaji et al., 2022) with the SeqScreenDB v2.0 (version February 2022) to test whether increases in the relative abundance of virulence genes were significant. SeqScreen utilises a large set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis to both identify and characterise virulence genes. We

143	data for virulence genes and determine which virulence functional categories these genes
144	were assigned to. Since our goal in using SeqScreen was specifically to identify bacterial
145	virulence factors, genes assigned to virus-specific categories or AMR were removed from the
146	SeqScreen output. One-way ANOVAs followed by post-hoc Tukey-HSD tests were
147	performed to compare the relative abundance of virulence genes among all treatment and
148	control groups.
149	
150	2.4. Enrichment of specific AMR/virulence categories and genes
151	
152	For PathoFact-predicted AMR genes, we compared the difference in relative abundance of
153	antimicrobial categories and resistance mechanisms between PVC treatments and control
154	samples. For SeqScreen-predicted virulence genes, we compared the difference in relative
155	abundance of bacterial virulence FunSoC categories. Categories which had a mean relative
156	abundance across PVC and seawater samples below 100 TPM for virulence and 10 TPM for
157	AMR were excluded from the results as we considered them unlikely to be biologically
158	relevant. For all comparisons, normalised gene counts were summed by category for each
159	sample. One-way ANOVA tests were run for each category and followed by post-hoc Tukey-
160	HSD tests where significant results were identified.
161	The set of predicted AMR genes (PathoFact) and virulence genes (SeqScreen) most
162	highly enriched among PVC leachate-treated communities were then identified for further
163	analysis. The genes most enriched in the PVC10 treatment compared to the seawater control
164	were identified by calculating the log2-fold change of genes with a minimum mean relative
165	abundance of 9 TPM for AMR, and 20 TPM for virulence in the treatment group (in order to
166	select genes that were both highly abundant and highly enriched). We assigned putative
167	taxonomy to the 20 most highly enriched AMR genes using a BLASTn search against the

168	NCBI nt database. For virulence genes, we used the taxonomic assignments provided by
169	SeqScreen, which runs both a DIAMOND (Buchfink et al., 2015) search against a curated
170	UniRef100 database (Suzek et al., 2007), as well as running Centrifuge (Kim et al., 2016)
171	against Archaeal and Bacterial RefSeq genomes.
172	
173	2.5. Diversity of AMR and virulence genes
174	
175	Beta-diversity of AMR (PathoFact) and virulence (SeqScreen) gene profiles between treated
176	and untreated microbial communities were visualised using a non-metric muti-dimensional
177	scaling (nMDS) plot based on the Bray-Curtis index of normalised read counts. This was
178	achieved using the vegdist and metaMDS functions of the VEGAN v2.5-7 package (Oksanen
179	et al., 2013) in R (v 4.1.2). Significant differences between treatment groups were analysed
180	using multivariate PERMANOVA using the adonis2 function in VEGAN.
181	Alpha diversity was calculated in R using Shannon-Weiner and Simpson indexes for
182	the AMR (PathoFact) and virulence (SeqScreen) gene sets. One-way ANOVA and post-hoc
183	Tukey-HSD tests were run against the resulting values across PVC1, PVC10 and SW.
184	
185	3. Results and Discussion
186	
187	Previously, we examined the effects of exposure to two concentrations of PVC plastic
188	leachate and of zinc, the most abundant inorganic PVC additive, on a marine microbial
189	community via a six-day microcosm experiment, showing that this leads to substantial
190	changes in community composition and function (Focardi et al., 2022). In this study, we have
191	analysed the metagenomic data from Focardi et al. (2022), to investigate whether exposure to

192 PVC leachate and/or zinc results in significant enrichment of genes associated with

- 193 pathogenicity and drug resistance.
- 194

3.1. Plastic leachate exposure increases antibiotic resistance and virulence genes in marine microbial communities

197

198 Marine microbial communities treated with PVC leachate, in the absence of physical plastic 199 surfaces, showed a concentration-dependent increase in the relative abundance of AMR, 200 virulence and toxin genes compared to non-treated controls, although the increase in toxin 201 genes was not statistically significant (ANOVA, p=0.082, Suppl. Table 1f) (Fig 1a-c, based 202 on PathoFact predictions). Past analyses of leachate from this specific PVC plastic showed it 203 is comprised of a complex mix of both organic and inorganic substances, with levels of zinc, 204 a common PVC additive, found to be particularly high (Tetu et al., 2019). As Zn exposure 205 has previously been shown to increase the prevalence of antibiotic resistant bacteria in the 206 environment (e.g., Poole, 2017; Silva et al., 2021), and promote virulence in host-associated 207 bacteria (Wu et al., 2021), we also looked to see if exposure to zinc alone was sufficient to 208 account for the PVC leachate impact on AMR and virulence gene prevalence. Using 209 PathoFact predictions, we found that treatment with two concentrations of zinc, ZnL (0.13 210 mg/L ZnCl) and ZnH (1.3 mg/mL ZnCl), had no effect on the relative abundance of AMR, 211 virulence or toxicity genes compared to untreated seawater controls (Fig. 1d-f). This suggests 212 that zinc additives alone are not driving the observed effects of PVC leachate on AMR and 213 virulence gene enrichment. 214 AMR gene relative abundance showed a slight, non-significant increase in the 1% 215 PVC leachate treatments and a strong, significant increase in the 10% PVC leachate treatment

relative to untreated seawater controls (Fig. 1a; 2.4-fold increase; TukeyHSD, p-adj.=0.009,

217	Suppl. Table 1a, 1c). Similarly, for the set of virulence-associated genes based on PathoFact
218	predictions, 1% PVC leachate treatment resulted in a small non-significant increased while
219	the 10% PVC leachate treatment drove a significant increase in virulence genes (Fig. 1b; 1.2-
220	fold increase; TukeyHSD, p-adj.=0.049, Suppl. Table 1a, 1e). Given that this increase was
221	close to the significance cut-off, we performed further analysis of virulence genes, using the
222	recently developed SeqScreen pipeline which has a larger, curated virulence database (Balaji
223	et al., 2022). Based on this, both 1% and 10% PVC leachate treatments resulted in significant
224	enrichments of virulence genes (Suppl. Fig. 1, Tukey-HSD, p adj. = 0.022 and p adj. = 0.004,
225	respectively, Suppl. Table 5b), representing a 1.3-fold increase in virulence genes in the
226	PVC1 and 1.4-fold for PVC10 (Suppl. Table 5a).
227	
228	3.2. Plastic leachate exposure changes the makeup of AMR gene suites and resistance
229	mechanisms
230	
231	Both 1% and 10% PVC leachate treatments drove clear shifts in AMR gene profiles, evident
232	from non-metric multidimensional scaling (NMDS) analysis (Fig. 2a, stress value = 0.06 ,
233	indicating clear separation from both the control and zinc treatments) and supported by
234	PERMANOVA (p=0.001, $R^2 = 0.57$, Suppl. Table 2a). However, PVC treatments had no
235	significant effect on the alpha diversity of AMR genes (Fig. 2b, c), indicating that enrichment
236	of AMR genes following PVC leachate exposure is due to an increase in the relative
237	abundance of specific AMR genes, rather than an increase in overall AMR gene diversity.
238	The 10% PVC leachate treatment drove significant enrichments in several AMR
239	categories (Fig. 3a), including aminoglycoside (Tukey-HSD, p adj \leq 0.0001), antimicrobial
240	peptide (Tukey-HSD, p adj=0.001), aminoglycoside:aminocoumarin (Tukey-HSD, p
2/1	adi=0.02) and multidrug resistance (Tukey HSD, p. $adi=0.02$). Aminoglycoside resistance

242	genes were also significantly enriched following the 1% PVC leachate treatment (Tukey-
243	HSD, p adj=0.02). In contrast, genes belonging to the MLS category (macrolides,
244	lincosamides, and streptogramins) were significantly lower in abundance in both 1% and
245	10% PVC leachate treatments compared to the seawater control (Tukey-HSD, p adj=0.04 and
246	p adj=0.005 respectively) (Suppl. Table 3b). As MLS antibiotics are primarily active against
247	Gram positive bacteria, these resistance genes are typically found in these organisms. Thus,
248	this decline in MLS resistance gene abundance may be due to the large increase in relative
249	abundance of Gram negative bacteria following leachate exposure (Focardi et al., 2022).
250	The profiles of resistance mechanisms within PVC leachate-treated communities were
251	also altered (Fig. 3b). In particular, the 10% PVC leachate treatment led to a significant
252	enrichment of genes that confer AMR via antibiotic efflux (Tukey-HSD, p=0.01) and
253	antibiotic target alteration (Tukey-HSD, p<0.01) mechanisms compared to untreated seawater
254	(Suppl. Table 4b). These two resistance mechanism categories encompass the majority of
255	AMR genes identified in this study (46% assigned to antibiotic efflux, 21% assigned to
256	antibiotic target alteration). Resistance genes assigned to the antibiotic target protection
257	category were significantly lower in abundance in 10% PVC compared to seawater, however,
258	this is a small category with fewer than 4% of AMR genes assigned to it overall.
259	The twenty most enriched AMR genes, showing the highest fold change in the 10%
260	PVC leachate treatment, were examined to determine their likely host organism and which
261	AMR category and resistance mechanism each was assigned to (Table 1).
262	Twelve out of the twenty most enriched antibiotic resistance genes are related to
263	antibiotic efflux. These include efflux pumps from the RND, SMR and MATE multidrug
264	efflux pump families, as well as MexT and BaeR, which are regulators of RND efflux pump
265	gene expression (Henderson et al., 2021). All three of these efflux pump families typically
266	have broad substrate specificities, particularly the RND efflux pumps. In addition to

267 antibiotics, these efflux pumps can often export a wide range of complex hydrophobic

268 organic molecules. Thus, it is possible that the increased abundance of efflux pumps

269 following exposure to plastic leachate may be due to their ability to protect against toxic

- 270 organic components in the leachate, exporting such components out of the cell. Of the
- 271 remaining most abundant resistance genes, three are target site alteration and all of these are
- 272 ugd genes, which provide polymyxin resistance via lipopolysaccharide modification, and the
- 273 beta-lactamase gene, *ampC*, involved in antibiotic inactivation.
- 274 Table 1. Characteristics of the most highly enriched AMR genes following 10% PVC

275 exposure.¹

			Mean			
			Relative			
		Fold Change	Abundance			
AMR		PVC10:SW	in PVC10	AMR	Resistance	
Gene	Gene ID	(log ₂)	(TPM)	Category	Mechanism	Predicted genus
ampC	c_00000000144_14	ω	10.8 ± 7	beta-lactam	Antibiotic inactivation	Tritonibacter
emrE	c_00000000007_139	x	9.6 ± 6.5	multidrug	Antibiotic efflux	Tritonibacter
mtrE	c_00000000080_44	00	9.4 ± 5.3	multidrug	Antibiotic efflux	Tritonibacter
ugd	c_00000000038_92	8.8	14.4 ± 9.8	peptide	Antibiotic target alteration	Tritonibacter
abeS	c_00000000316_5	7.6	22.7 ± 17.4	multidrug	Antibiotic efflux	Pseudoalteromonas
acrB	c_00000000018_83	6.8	77.6 ± 45.9	multidrug	Antibiotic efflux	Alteromonas
ugd	c_00000000027_138	6.8	64.6 ± 39.3	peptide	Antibiotic target alteration	Alteromonas
ksgA	c_00000000010_130	6.8	69.3 ± 41.1	aminoglycoside	-	Alteromonas
mexT	c_00000000025_20	6.7	56.7 ± 34.5	multidrug	Antibiotic efflux	Alteromonas

adeF	c_00000000005_64	6.6	66.9 ± 39	multidrug	Antibiotic efflux	Alteromonas
baeR	c_0000000073_7	6	60.8 ± 37.1	aminoglycoside: aminocoumarin	Antibiotic efflux	Alteromonas
mexT	c_00000001693_3	5.9	17.9 ± 14.5	multidrug	Antibiotic efflux	Alteromonas
ksgA	c_000000011168_2	5.3	16.3 ± 12.8	aminoglycoside	-	Paraglaciecola
mexT	c_00000009727_1	5.2	19.8 ± 13.8	multidrug	Antibiotic efflux	Alteromonas
pmpM	c_00000003002_4	4.1	10.7 ± 6.7	multidrug	Antibiotic efflux	Alcanivorax
adeF	c_000000085939_101	4	10.5 ± 6.4	multidrug	Antibiotic efflux	Alcanivorax
qepA	c_00000000289_9	3.8	13 ± 8	fluoroquinolone	-	Alcanivorax
ugd	c_00000006705_2	3.7	20.5 ± 15	peptide	Antibiotic target alteration	Vibrio
crp	c_00000000481_8	3.7	11.3 ± 6.9	unclassified	-	Alcanivorax
baeR	c_00000005224_3	3.7	13.4 ± 8.2	aminoglycoside: aminocoumarin	Antibiotic efflux	Alcanivorax

¹The AMR gene, category, resistance mechanism (as provided by PathoFact), and predicted genus (based on NCBI BLASTn) for AMR genes which were found to be highly enriched in 10% PVC treatments, sorted by fold change (log₂). Fold change has been reported as ∞ for genes which were not observed in the seawater community.

280

281 The most highly enriched AMR genes are all predicted to be found in heterotrophic, 282 predominantly Gram negative bacteria in the microcosms, with Tritonibacter, Alteromonas 283 and *Alcanivorax* the most common predicted hosts of these genes. This is consistent with 284 what taxonomic groups were observed to be most enriched in the PVC treated samples 285 (Focardi et al., 2022). Tritonibacter are marine bacteria, originally described from a cultured 286 representative isolated from oil-contaminated surface water during the Deepwater Horizon oil 287 spill (Klotz et al., 2018). Alteromonas has been reported to be one of the main groups of 288 microbes capable of growing in plastic leachates (Birnstiel et al., 2022). Alcanivorax are

alkane degrading marine bacteria that are found in low abundance in surface marine waters
but are highly enriched in oil contaminated marine environments (Hara et al., 2003) and have
previously been reported to encode multiple multidrug resistance proteins (Sinha et al.,
2021).

293 While none of the genera containing these abundant AMR genes include known 294 human pathogens, with the exception of *Vibrio*, there is potential for gene transfer events, 295 facilitated by mobile genetic elements, to move AMR genes between lineages, and into 296 species which may pose a risk to human health. At least in *Escherichia coli*, plastic leachate 297 has been shown to upregulate horizontal gene transfer (Yuan et al., 2022), opening the 298 possibility of synergistic effects that enrich bacteria harbouring AMR genes, whilst also 299 facilitating AMR spread. Indeed, capture of AMR genes by mobile genetic elements has been 300 well documented, and in many cases, has resulted in their spread into diverse human 301 pathogens across the globe, originating from single mobilisation events (Moellering Jr, 2010; 302 Wang et al., 2018). Further, a large proportion of AMR genes now globally circulating 303 among clinical pathogens are predicted to have originated in marine environments, including 304 several efflux pump and beta-lactamase genes (Ghaly et al., 2021). Alteromonas species 305 harbour large conjugative elements that can facilitate this movement, such as mega-plasmids 306 and integrative and conjugative elements (ICEs) (Cusick et al., 2020; López-Pérez et al., 307 2017). In fact, several characterised ICEs are shared between Alteromonas and human 308 pathogens (López-Pérez et al., 2017; Pang et al., 2016), indicating the potential transmission 309 of genes from environmental to clinical organisms. 310

3.3. Plastic leachate exposure changes the composition of virulence factors

312

313	PVC leachate treatments drove clear shifts in virulence gene profiles (SeqScreen-derived),
314	evident from NMDS analysis (Fig. 4a, stress value = 0.05 , indicating clear separation from
315	both the control and zinc treatments) and supported by PERMANOVA ($p=0.001$, $R^2 = 0.59$,
316	Suppl. Table 6a). PVC 10% treatment had a significant negative effect on the Shannon-
317	Wiener diversity of virulence genes (Fig. 4b; Tukey-HSD, p adj = 0.004, Suppl. Table 6c),
318	however, no such effect was observed on Simpson diversity (Fig 4c). This indicates that
319	enrichment of virulence genes following PVC leachate exposure is due to an increase in the
320	relative abundance of specific virulence genes, rather than an increase in overall virulence
321	gene diversity.
322	PVC leachate treatments led to changes in the composition of virulence genes, based
323	on SeqScreen assigned virulence categories (Fig. 5). Both 1% and 10% PVC treatments
324	resulted in significant increases in the relative abundance of two virulence categories:
325	secretion (Tukey-HSD, p-adj = 0.003 for PVC1, p-adj < 0.0001 for PVC10), and bacterial
326	counter signalling (Tukey-HSD, p-adj = 0.026 for PVC1, p-adj < 0.0001 for PVC10) (Suppl.
327	Table 7b). The secretion category includes the components of bacterial secretion systems, and
328	the bacterial counter signalling category includes genes involved in the suppression of host
329	immune signalling to avoid inflammatory responses. The toxin synthase category, however,
330	was significantly reduced in PVC10 samples (Tukey-HSD, p adj = 0.005, Suppl. Table 7b).
331	This category includes enzymes involved in the production or modification of toxins. In the
332	SeqScreen database, this category is largely focused on mycotoxins (those synthesised by
333	fungi). Plastic leachate has toxic effects on fungi, impairing fungal enzymatic activity (Li et
334	al., 2022). Thus, a decline in this category may be due to the negative effects of PVC leachate
335	exposure on marine fungi within the seawater microcosm.
336	Analysis of the virulence genes most strongly enriched in the 10% PVC leachate
337	treatment was carried out to determine their likely host organism and which virulence

category each falls under. Table 2 lists the twenty genes with the highest fold change

anichment.

340	Sixteen out of the twenty most enriched genes are involved in secretion, encoding
341	components of the general secretion (Sec) pathway and Type II secretion systems (T2SSs).
342	The Sec pathway is used by several bacterial pathogens to secrete proteins that promote their
343	virulence (Green and Mecsas, 2016). Although the Sec pathway does not export proteins
344	outside of the cell, in Gram negative bacteria, proteins delivered by the Sec pathway to the
345	periplasm can be exported with the aid of T2SSs (Green and Mecsas, 2016). T2SS channels
346	are located only in the outer membrane, and thus can only export proteins that have been
347	delivered to the periplasm by other pathways, including the Sec pathway (Korotkov et al.,
348	2012). Thus, the simultaneous enrichment of both T2SS and Sec pathway components
349	suggests that PVC leachate exposure leads to an increase in microbes that employ
350	extracellular protein secretion. Several bacterial pathogens use T2SSs to secrete proteins
351	associated with host disease, such as hemolysins, lipases, proteases, esterases,
352	polygalacturonases, deubiquitinases, aerolysins, DNases, amylases, and mucin-degrading
353	enzymes (Cianciotto and White, 2017).
354	Alteromonas spp. appear to be largely responsible for driving the increase in virulence
355	genes following PVC leachate exposure (Table 2). Several Alteromonas spp. have been
356	reported as coral and algal pathogens (Brown et al., 2013; Peng and Li, 2013; Vairappan et
357	al., 2001), and associated with disease in marine arthropods (Alfiansah et al., 2020). Plastic
358	pollution has been shown to have toxic effects on both algae and marine invertebrates
359	(Haegerbaeumer et al., 2019; Pisani et al., 2022; Simon et al., 2021; Zhu et al., 2022), and
360	entanglement by plastic particles may significantly increase the risk of disease in
361	scleractinian corals (Lamb et al., 2018). Here, we show that an additional consequence of

- 362 plastic pollution for these organisms might be greater disease susceptibility due to the
- 363 enrichment of pathogenic bacteria and their associated virulence traits.
- 364
- **Table 2**. Top 20 Virulence genes enriched in 10% PVC treatments, sorted by fold change
- 366 (log₂) based on SeqScreen analyses.

		Fold				
		Change	Relative			
			Abundance in		Predicted	
Virulence Protein	Virulence Protein Gene ID		PVC10 (TPM)	Virulence Categories	Genus	
GemA protein	c_00000002085_2	9.3	52.7 ± 51.4 Host cell cycle		Muvirus (Phage)	
General secretion pathway protein H	c_00000000015_43	8	78.7 ± 46.9	Secretion	Alteromonas	
PKS_ER domain-containing protein	c_0000000003_132	7.8	68.4 ± 40.4	Toxin synthase	Pseudomonas	
Type II secretion system protein GspC	c_00000000015_38	7.4	80.6 ± 47.1	Secretion	Alteromonas	
General secretion pathway protein H	c_00000000425_11	7.3 70.5 ± 41.6		Secretion	Alteromonas	
Cyclic pyranopterin monophosphate synthase	c_00000000126_22	7.3	60 ± 37.6	Bacterial counter signalling	Alteromonas	
Type II secretion system core protein G	c_00000000015_42	7.3	85.2 ± 50.1	Secretion	Alteromonas	
Type II secretion system protein E	c_00000000015_40	7.2	77.6 ± 45.9	Secretion	Alteromonas	
General secretion pathway protein H	c_00000000034_25	7	41.2 ± 26.7	Secretion	Alteromonas	
General secretion pathway protein F	c_00000000005_71	6.9	62.7 ± 36.5	Secretion	Alteromonas	

General secretion pathway protein E	c_00000000022_5	6.9	71.2 ± 42.4	Secretion	Alteromonas
General secretion pathway protein GspD	c_00000000015_39	6.9	81.3 ± 47.6	Secretion	Alteromonas
Type II secretion system protein J	c_00000000015_45	6.9	78.1 ± 44.3	Secretion	Alteromonas
Type II secretion system protein L	c_00000000015_47	6.9	80.7 ± 47.6	Secretion	Alteromonas
Sec-independent protein translocase protein TatA	c_00000000022_115	6.8	60.4 ± 35.7	Secretion	Alteromonas
General secretion pathway protein F	c_00000000015_41	6.7	79.1 ± 48	Secretion	Alteromonas
GspH domain-containing protein	c_00000000025_100	6.5	62.9 ± 37.9	Secretion	Alteromonas
Cyclic pyranopterin monophosphate synthase	c_000001149559_2	6.5	61.7 ± 35	Bacterial counter signalling	Alteromonas
GspH domain-containing protein	c_00000000025_102	6.5	63.9 ± 38	Secretion	Alteromonas
Type II secretion system protein GspD	c_0000000003_326	6.4	60.9 ± 36.8	Secretion	<i>Phycisphaerae</i> family

367

368

369 **4. Conclusion**

370

There is growing evidence that plastic pollution in marine environments can lead to an enrichment in pathogenic bacteria and AMR genes. However, it is unclear whether these effects are driven by the physical or chemical attributes of plastic marine pollution, as differential colonisation and growth rates on plastic particles may be driven by physical surface properties and/or chemicals leached from the plastic. Here we show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes within a seawater community. The enrichment of pathogenic bacteria and virulence traits 378 may have serious consequences for environments which are frequently exposed to human 379 pollution, such as urban harbours and aquacultural settings. Aquacultural systems are 380 especially vulnerable, as they are exposed to extreme levels of plastic pollution and provide 381 conditions ideal for disease emergence and spread. 382 From a One Health perspective, the selection for AMR genes in non-clinical settings 383 may pose a serious risk to human health. Although, the most strongly enriched AMR genes in 384 the present study were generally found in species not known to be human pathogens, there is 385 potential for horizontal transfer events to move these genes into species of clinical relevance. 386 Indeed, environmental bacteria can not only act as vectors for the transmission of AMR 387 genes, but also as their sources. Thus, the addition of selective forces that drive the 388 enrichment of AMR genes in environmental settings can contribute to their biogeographic 389 expansion. Such processes need only point sources of AMR genes to have global 390 consequences. 391 Given the widespread problem of plastic waste entering the environment, the 392 consequent enrichment of AMR and pathogenic traits is likely occurring in polluted sites 393 worldwide. Such changes pose an interconnected risk to plant, animal, and human health, 394 with the potential to further fuel the global resistance crisis and increase the total burden of 395 disease among marine macroorganisms. 396 397 Acknowledgements 398 399 This work was supported by funding from the Australian Research Council to ST 400 (#DE150100009) and IP (#FL140100021).

401

402 Author contributions

403	
404	ST and EV designed the study. EV, AF, and TG performed the data analyses. All authors
405	contributed to data interpretation, writing the original draft, and reviewed and edited the final
406	draft.
407	
408	References
409	
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430	 Alfiansah, Y.R., Peters, S., Harder, J., Hassenrück, C. and Gärdes, A. 2020. Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp <i>Penaeus vannamei</i> aquaculture. Scientific Reports 10(1), 11980. Balaji, A., Kille, B., Kappell, A.D., Godbold, G.D., Diep, M., Elworth, R.A.L., Qian, Z., Albin, D., Nasko, D.J., Shah, N., Pop, M., Segarra, S., Ternus, K.L. and Treangen, T.J. 2022. SeqScreen: accurate and sensitive functional screening of pathogenic sequences via ensemble learning. Genome Biology 23(1), 133. Bhagwat, G., Zhu, Q., O'Connor, W., Subashchandrabose, S., Grainge, I., Knight, R. and Palanisami, T. 2021. Exploring the Composition and Functions of Plastic Microbiome Using Whole-Genome Sequencing. Environmental Science & Technology 55(8), 4899-4913. Birnstiel, S., Sebastián, M. and Romera-Castillo, C. 2022. Structure and activity of marine bacterial communities responding to plastic leachates. Science of The Total Environment 834, 155264. Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M. and Rochman, C.M. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369(6510), 1515-1518. Brown, T., Bourne, D. and Rodriguez-Lanetty, M. 2013. Transcriptional activation of <i>c3</i> and
431 432	<i>hsp70</i> as part of the immune response of <i>Acropora millepora</i> to bacterial challenges. PLoS One 8(7), e67246.
433 434 435 436	Bryant, J., A., Clemente, T., M., Viviani, D., A., Fong, A., A., Thomas, K., A., Kemp, P., Karl, D., M., White, A., E., DeLong, E., F. and Jansson, J., K. 2016. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. mSystems 1(3), e00024-00016.
437 438 439 440	 Buchfink, B., Xie, C. and Huson, D.H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12(1), 59-60. Capolupo, M., Sørensen, L., Jayasena, K.D.R., Booth, A.M. and Fabbri, E. 2020. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research 169, 115270.
441 442 443	Cianciotto, N.P. and White, R.C. 2017. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infection and Immunity 85(5), e00014-00017.

444 Cózar, A., Echevarría, F., González-Gordillo, J.I., Irigoien, X., Úbeda, B., Hernández-León, S., 445 Palma, Á.T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M.L. and 446 Duarte, C.M. 2014. Plastic debris in the open ocean. Proceedings of the National 447 Academy of Sciences 111(28), 10239-10244. 448 Cusick, K.D., Polson, S.W., Duran, G. and Hill, R.T. 2020. Multiple megaplasmids confer 449 extremely high levels of metal tolerance in *Alteromonas* strains. Applied and 450 Environmental Microbiology 86(3), e01831-01819. 451 de Nies, L., Lopes, S., Busi, S.B., Galata, V., Heintz-Buschart, A., Laczny, C.C., May, P. and 452 Wilmes, P. 2021. PathoFact: a pipeline for the prediction of virulence factors and 453 antimicrobial resistance genes in metagenomic data. Microbiome 9(1), 49. 454 Di Pippo, F., Crognale, S., Levantesi, C., Vitanza, L., Sighicelli, M., Pietrelli, L., Di Vito, S., 455 Amalfitano, S. and Rossetti, S. 2022. Plastisphere in lake waters: Microbial diversity, 456 biofilm structure, and potential implications for freshwater ecosystems. 457 Environmental Pollution 310, 119876. 458 Dussud, C., Meistertzheim, A.L., Conan, P., Pujo-Pay, M., George, M., Fabre, P., Coudane, J., 459 Higgs, P., Elineau, A., Pedrotti, M.L., Gorsky, G. and Ghiglione, J.F. 2018. Evidence of 460 niche partitioning among bacteria living on plastics, organic particles and 461 surrounding seawaters. Environmental Pollution 236, 807-816. 462 Focardi, A., Moore, L.R., Raina, J.B., Seymour, J.R., Paulsen, I.T. and Tetu, S.G. 2022. Plastic 463 leachates impair picophytoplankton and dramatically reshape the marine 464 microbiome. Microbiome 10, 179. Gewert, B., MacLeod, M. and Breitholtz, M. 2021. Variability in Toxicity of Plastic Leachates 465 466 as a Function of Weathering and Polymer Type: A Screening Study with the Copepod 467 Nitocra spinipes. The Biological Bulletin 240(3), 191-199. 468 Ghaly, T.M., Tetu, S.G. and Gillings, M.R. 2021. Predicting the taxonomic and 469 environmental sources of integron gene cassettes using structural and sequence homology of *attC* sites. Communications Biology 4(1), 946. 470 471 Green, E.R. and Mecsas, J. 2016. Bacterial secretion systems: an overview. Microbiology 472 Spectrum 4(1), 4.1.13. 473 Gregory, M.R. 2009. Environmental implications of plastic debris in marine settings— 474 entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. 475 Phil. Trans. R. Soc. B 364, 2013 - 2025. 476 Gunaalan, K., Fabbri, E. and Capolupo, M. 2020. The hidden threat of plastic leachates: A 477 critical review on their impacts on aquatic organisms. Water Research 184, 116170. 478 Haegerbaeumer, A., Mueller, M.-T., Fueser, H. and Traunspurger, W. 2019. Impacts of 479 micro- and nano-sized plastic particles on benthic invertebrates: a literature review 480 and gap analysis. Frontiers in Environmental Science 7, 17. 481 Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E. and Purnell, P. 2018. An overview of 482 chemical additives present in plastics: Migration, release, fate and environmental 483 impact during their use, disposal and recycling. Journal of Hazardous Materials 344, 484 179-199. 485 Hara, A., Syutsubo, K. and Harayama, S. 2003. *Alcanivorax* which prevails in 486 oil-contaminated seawater exhibits broad substrate specificity for alkane 487 degradation. Environmental Microbiology 5(9), 746-753. 488 He, S., Jia, M., Xiang, Y., Song, B., Xiong, W., Cao, J., Peng, H., Yang, Y., Wang, W., Yang, Z. 489 and Zeng, G. 2022. Biofilm on microplastics in aqueous environment:

490	physicochemical properties and environmental implications. Journal of Hazardous
491	Materials 424, 127286.
492 493	Henderson, P.J.F., Maher, C., Elbourne, L.D.H., Eijkelkamp, B.A., Paulsen, I.T. and Hassan, K.A. 2021. Physiological functions of bacterial "multidrug" afflux numps. Chemical
495	R.A. 2021. Physiological functions of bacterial multiding emox pumps. Chemical
494	Hermohassiana I. Dabaut A. Daul Pant I. Lasnaix C. Jazagual P. Saudant P. and Dufles
495	G 2017 Occurrence and effects of plastic additives on marine environments and
490	G. 2017. Occurrence and effects of plastic additives of marme environments and
497	Jadhay, H.S., Fulko, A.B. and Girinunio, M.D., 2022. Recent global incight into mitigation of
490	plactic pollutants sustainable biodegradable alternatives, and recycling strategies
500	International Journal of Environmental Science and Technology
500	Jamback LP. Cover P. Wilcov C. Siggler T.P. Derryman M. Andrody A. Narovan P. and
501	Jambeck, J.K., Geyer, K., Wilcox, C., Siegler, T.K., Perryman, W., Anurauy, A., Narayan, K. anu
502	Law, N.L. 2015. Plastic waste inputs from land into the ocean. Science 347(6223),
503	/08-//I.
504	Kim, D., Song, L., Breitwieser, F.P. and Salzberg, S.L. 2016. Centriluge: rapid and sensitive
505	Classification of metagenomic sequences. Genome Research 26(12), 1721-1729.
500	Kiotz, F., Brinkholl, L., Freese, H.M., Wietz, M., Teske, A., Simon, M. and Giebel, HA. 2018.
507	included from the Decouverter Herizon cilerill Internetional Journal of Systematic and
508	Isolated from the Deepwater Horizon of spill. International Journal of Systematic and
509	Evolutionary Microbiology 68(3), 736-744.
510	Korotkov, K.V., Sandkvist, M. and Hol, W.G.J. 2012. The type II secretion system:
511	biogenesis, molecular architecture and mechanism. Nature Reviews Microbiology
512	IU(3), 330-331.
513	Lamb, J.B., Willis, B.L., Florenza, E.A., Couch, C.S., Howard, R., Rader, D.N., True, J.D., Kelly,
514	L.A., Alimau, A., Jompa, J. and Harven, C.D. 2018. Plastic waste associated with
515	uisease on corai reeis. Science 559(6574), 460-462.
510	Lau, w.w.r., Shiran, F., Balley, R.W., Cook, E., Stuchley, W.R., Koskella, J., Velis, C.A.,
517	Gourrey, E., Boucher, J., Murphy, M.B., Hiompson, K.C., Jankowska, E., Castino
518	Castillo, A., Pilolico, T.D., Dixon, B., Koerseiman, L., Koslor, E., Favoino, E., Guiberlei,
219	J., Baulch, S., Alleya, M.E., Fischer, D., He, K.K., Petit, M.M., Sumalia, O.K., Nell, E., Bernhofen, M.V., Lowronce, K. and Balardy, J.E., 2020. Evaluating seeparies toward
520	Bernholen, M.V., Lawrence, K. and Palardy, J.E. 2020. Evaluating scenarios toward
521	Zero plastic politicion. Science 309(0510), 1455-1461.
522	disposed Delarava Communications 5(1) 6
525	uisposal. Palgrave communications 5(1), 6.
524	Lebreton, L., Siat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, K., Hajbane, S.,
525	Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Marai, H., Schoeneich-
520	Argent, R., Brampini, R. and Reisser, J. 2018. Evidence that the Great Pacific
527	Garbage Patch is rapidly accumulating plastic. Scientific Reports 8(1), 4666.
528	LI, Z., XIE, Y., Zeng, Y., Zhang, Z., Song, Y., Hong, Z., IVIa, L., He, M., Ma, H. and Cul, F. 2022.
529	Plastic leachates lead to long-term toxicity in fungi and promote biodegradation of
550	Lithner D. Demberg, L. Deve, C. and Lerreren Å. 2000. Leashates from plactic consumer
531 527	nroducts – Scrooping for tovicity with Dophnia magna. Chamachara 74(0), 1105
55∠ 522	1200
555 E24	1200.
554 525	dispassed Science of the Total Environment 822
222	useases i science of the rotal environment 823.

- López-Pérez, M., Ramon-Marco, N. and Rodriguez-Valera, F. 2017. Networking in microbes:
 conjugative elements and plasmids in the genus *Alteromonas*. BMC Genomics 18(1),
 36.
- 539 Moellering Jr, R.C. 2010. NDM-1—a cause for worldwide concern. New England Journal of 540 Medicine 363(25), 2377-2379.
- 541 Oberbeckmann, S., Löder, M.G.J. and Labrenz, M. 2015. Marine microplastic-associated 542 biofilms – a review. Environmental Chemistry 12(5), 551-562.
- Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L.,
 Solymos, P., Stevens, M.H.H., Wagner, H. and Oksanen, M. 2013 vegan: Community
 ecology package. https://CRAN.R-project.org/package=vegan.
- Pang, B., Du, P., Zhou, Z., Diao, B., Cui, Z., Zhou, H. and Kan, B. 2016. The transmission and
 antibiotic resistance variation in a multiple drug resistance clade of *Vibrio cholerae*circulating in multiple countries in Asia. PLoS One 11(3), e0149742.
- Peng, Y. and Li, W. 2013. A bacterial pathogen infecting gametophytes of *Saccharina japonica* (Laminariales, Phaeophyceae). Chinese Journal of Oceanology and
 Limnology 31(2), 366-373.
- 552Pisani, X.G., Lompré, J.S., Pires, A. and Greco, L.L.2022. Plastics in scene: A review of the553effect of plastics in aquatic crustaceans. Environmental Research 212, 113484.
- Poole, K. 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology 25(10), 820-832.
- Radisic, V., Nimje, P.S., Bienfait, A.M. and Marathe, N.P. 2020. Marine Plastics from
 Norwegian West Coast Carry Potentially Virulent Fish Pathogens and Opportunistic
 Human Pathogens Harboring New Variants of Antibiotic Resistance Genes.
 Microorganisms 8(8).
- Romera-Castillo, C., Pinto, M., Langer, T.M., Álvarez-Salgado, X.A. and Herndl, G.J. 2018.
 Dissolved organic carbon leaching from plastics stimulates microbial activity in the
 ocean. Nature Communications 9(1), 1430.
- Sarker, I., Moore, L.R., Paulsen, I.T. and Tetu, S.G. 2020. Assessing the toxicity of leachates
 from weathered plastics on photosynthetic marine bacteria *Prochlorococcus*.
 Frontiers in Marine Science 7, 571929.
- Sathicq, M.B., Sabatino, R., Corno, G. and Di Cesare, A. 2021. Are microplastic particles a
 hotspot for the spread and the persistence of antibiotic resistance in aquatic
 systems? Environmental Pollution 279, 116896.
- 569 Silva, I., Tacão, M. and Henriques, I. 2021. Selection of antibiotic resistance by metals in a 570 riverine bacterial community. Chemosphere 263, 127936.
- Simon, M., Hartmann, N.B. and Vollertsen, J. 2021. Accelerated Weathering Increases the
 Release of Toxic Leachates from Microplastic Particles as Demonstrated through
 Altered Toxicity to the Green Algae Raphidocelis subcapitata. Toxics 9(8).
- Sinha, R.K., Krishnan, K.P. and Kurian, P.J. 2021. Complete genome sequence and
 comparative genome analysis of *Alcanivorax* sp. IO_7, a marine alkane-degrading
 bacterium isolated from hydrothermally-influenced deep seawater of southwest
 Indian ridge. Genomics 113, 884-891.
- Sucato, A., Vecchioni, L., Savoca, D., Presentato, A., Arculeo, M. and Alduina, R. 2021. A
 comparative analysis of aquatic and polyethylene-associated antibiotic-resistant
 microbiota in the Mediterranean Sea. Biology 10(3), 200.

581	Sun, Y., Cao, N., Duan, C., Wang, Q., Ding, C. and Wang, J. 2021. Selection of antibiotic
582	resistance genes on biodegradable and non-biodegradable microplastics. Journal of
583	Hazardous Materials 409.
584	Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R. and Wu, C.H. 2007. UniRef:
585	comprehensive and non-redundant UniProt reference clusters. Bioinformatics
586	23(10), 1282-1288.
587	Tetu, S.G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L.D.H., Moore, L.R. and Paulsen,
588	I.T. 2019. Plastic leachates impair growth and oxygen production in
589	Prochlorococcus, the ocean's most abundant photosynthetic bacteria.
590	Communications Biology 2(1), 184.
591	Vairappan, C.S., Suzuki, M., Motomura, T. and Ichimura, T. 2001. Pathogenic bacteria
592	associated with lesions and thallus bleaching symptoms in the Japanese kelp
593	<i>Laminaria religiosa</i> Miyabe (Laminariales, Phaeophyceae). Hydrobiologia 445(1),
594	183-191.
595	Wagner, G.P., Kin, K. and Lynch, V.J. 2012. Measurement of mRNA abundance using RNA-
596	seq data: RPKM measure is inconsistent among samples. Theory in Biosciences
597	131(4), 281-285.
598	Wang, R., van Dorp, L., Shaw, L.P., Bradley, P., Wang, Q., Wang, X., Jin, L., Zhang, Q., Liu, Y.,
599	Rieux, A., Dorai-Schneiders, T., Weinert, L.A., Iqbal, Z., Didelot, X., Wang, H. and
600	Balloux, F. 2018. The global distribution and spread of the mobilized colistin
601	resistance gene <i>mcr-1</i> . Nature Communications 9(1), 1179.
602	Wang, S., Xue, N., Li, W., Zhang, D., Pan, X. and Luo, Y. 2020. Selectively enrichment of
603	antibiotics and ARGs by microplastics in river, estuary and marine waters. Science of
604	The Total Environment 708, 134594.
605	Wiesinger, H., Wang, Z. and Hellweg, S. 2021. Deep Dive into Plastic Monomers, Additives,
606	and Processing Aids. Environmental Science & Technology 55(13), 9339-9351.
607	Wright, S.L., Thompson, R.C. and Galloway, T.S. 2013. The physical impacts of microplastics
608	on marine organisms: A review. Environmental Pollution 178, 483-492.
609	Wu, T., Gagnon, A., McGourty, K., DosSantos, R., Chanetsa, L., Zhang, B., Bello, D. and
610	Kelleher, S.L. 2021. Zinc exposure promotes commensal-to-pathogen transition in
611	<i>Pseudomonas aeruginosa</i> leading to mucosal inflammation and illness in mice.
612	International Journal of Molecular Sciences 22(24), 13321.
613	Yang, Y., Liu, G., Song, W., Ye, C., Lin, H., Li, Z. and Liu, W. 2019. Plastics in the marine
614	environment are reservoirs for antibiotic and metal resistance genes. Environment
615	International 123, 79-86.
616	Yuan, Q., Sun, R., Yu, P., Cheng, Y., Wu, W., Bao, J. and Alvarez, P.J.J. 2022. UV-aging of
617	microplastics increases proximal ARG donor-recipient adsorption and leaching of
618	chemicals that synergistically enhance antibiotic resistance propagation. Journal of
619	Hazardous Materials 427, 127895.
620	Zettler, E.R., Mincer, T.J. and Amaral-Zettler, L.A. 2013. Life in the "Plastisphere": Microbial
621 622	Communities on Plastic Marine Debris. Environmental Science & Technology 47(13),
622	
623	Znang, E., Kim, M., Rueda, L., Rochman, C., VanWormer, E., Moore, J. and Shapiro, K. 2022.
024 625	Association of zoonotic protozoan parasites with microplastics in seawater and
o25	implications for numan and wildlife nealth. Scientific Reports 12(1), 6532.

- 626 Zhu, X., Teng, J., Xu, E.G., Zhao, J., Shan, E., Sun, C. and Wang, Q. 2022. Toxicokinetics and
- 627 toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp.
 628 Environmental Pollution 312, 120069.
- Zimmermann, L., Dierkes, G., Ternes, T.A., Völker, C. and Wagner, M. 2019. Benchmarking
 the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products.
- 631 Environmental Science & Technology 53(19), 11467-11477.
- 632
- 633

634 Figure Captions

635

636	Fig. 1 .	Relative	abundance	(TPM	sum) of	genes	encoding;	(a,	d)	AMR,	(b,	e)	virulence,	and
-----	-----------------	----------	-----------	------	---------	-------	-----------	-----	----	------	-----	----	------------	-----

- 637 (c, f) toxin functions, predicted by PathoFact for 1% PVC leachate (PVC1), 10% PVC
- leachate (PVC10), 0.13 mg/L zinc chloride (ZnL), and 1.3 mg/mL zinc chloride (ZnH)
- 639 treatments, compared with seawater (SW). Tukey-HSD adjusted p-values have been reported
- 640 for treatments which differ significantly from the control. The full set of statistical results for
- 641 these tests are provided in Supplementary Table 1(b-m).
- 642
- **Fig. 2**. a) NMDS plot of AMR gene profiles for all samples, b) Shannon-Wiener, and c)
- 644 Simpson diversity of AMR genes for seawater controls (SW), and 1% PVC leachate (PVC1),
- and 10% PVC leachate (PVC10) treatments.
- 646
- **Fig. 3**. Comparison of the mean relative abundance (TPM sum) between PVC and seawater
- samples for a) antimicrobial resistance categories and b) antibiotic resistance mechanisms.
- Error bars indicate the standard error of the mean and stars (*) denote a significant difference

from the control (SW) (Tukey-HSD, p < 0.05). Full statistical results for tests displayed here

- are provided in Supplementary Tables 3 and 4.
- 652
- **Fig. 4.** a) NMDS plot of virulence gene profiles from SeqScreen for all samples, b) Shannon-
- Wiener, and c) Simpson diversity of virulence genes for seawater controls (SW), and 1%
- 655 PVC leachate (PVC1), and 10% PVC leachate (PVC10) treatments.
- 656
- **Fig. 5**. Comparison of the mean relative abundance (TPM sum) between PVC and seawater
- samples for virulence categories (provided by SeqScreen). Error bars indicate the standard

- error of the mean and stars (*) denote a significant difference from the control (SW) (Tukey-
- HSD, p adj < 0.05). Full statistical results for tests displayed here are provided in
- 661 Supplementary Table 7.

AMR

Virulence

Relative abundance (TPM sum)

Treatment

Toxin

a) AMR categories

SW

b) Resistance mechanisms

Mean relative abundance (TPM sum)

Mean relative abundance (TPM sum)

Treament

