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Abstract

Conventional dimensionality reduction methods like Multidimensional Scaling (MDS) are
sensitive to the presence of orthogonal outliers, leading to significant defects in the embedding.
We introduce a robust MDS method, based on the geometry and statistics of simplices formed
by data points, that allows to detect orthogonal outliers and subsequently reduce dimensionality.
We validate our methods using synthetic datasets, and further show how it can be applied to a
variety of large real biological datasets, including cancer image cell data and human microbiome
project data.

1 Introduction

Multidimensional scaling (MDS) is a commonly used and fast method of data exploration and
dimension reduction, with the unique capacity to take non-euclidean dissimilarities as its input.
However, sensitivity to outliers is a major drawback [1, 2]. As arbitrary removal of outliers is
undesirable, a possible alternative is to detect outliers and accommodate their influence on the
MDS embedding, thus leveraging the information contained in outlying points.

Outlier detection has been widely used in biological data. Sheih and Yeung proposed a method
using principal component analysis (PCA) and robust estimation of Mahalanobis distances to detect
outlier samples in microarray data [3]. Chen et al. reported the use of two PCA methods to
uncover outlier samples in multiple simulated and real RNA-seq data [4]. Outlier influence can
be mitigated depending on the specific type of outlier. In-plane outliers and bad leverage points
can be harnessed using ℓ1-norm [5–7], correntropy or M-estimators [8]. Outliers which violate the
triangular inequality can be detected and corrected based on their pairwise distances [2]. Orthogonal
outliers are another particular case, where outliers have an important component, orthogonal to
the hyperspace where most data is located.

Although MDS is known to be very sensitive to such orthogonal outliers [9, 10], none of the
existing methods addresses orthogonal outliers to the best of our knowledge. We present here
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a robust MDS method, called DeCOr-MDS, Detection and Correction of Orthogonal outliers
using MDS. DeCOr-MDS takes advantage of geometrical characteristics of the data to reduce the
influence of orthogonal outliers, and estimate the dimension of the dataset. Our paper is organized
as follows. We first describe the procedure and its implementation in detail. We then validate
our method on synthetic data to confirm the accuracy and characterize the importance of different
parts of our procedure. We further run the method on different experimental datasets, from single
cell images and microbiome sequencing, illustrating how it can be broadly applied to interpret and
improve the performance of MDS on biological datasets. Finally, we discuss the advantages and
limitations of our method and future directions.

2 Material and Methods

2.1 Background: Height and Volume of n-simplices

We recall some geometric properties of simplices, which our method is based on. For a set of n
points (x1, . . . , xn), the associated n-simplex is the polytope of vertices (x1, . . . , xn) (a 3-simplex is
a triangle, a 4-simplex is a tetrahedron and so on). The height h(Vn, x) of a point x belonging to
a n-simplex Vn can be obtained as [11]

h(Vn, x) = n
Vn

Vn−1
, (1)

where Vn is the volume of the n-simplex, and Vn−1 is the volume of the (n − 1)-simplex obtained
by removing the point x. Vn and Vn−1 can be computed using the pairwise distances only, with
the Cayley-Menger formula [11]:

Vn =

√
|det(CMn)|
2n · (n!)2

,

where det(CMn) is the determinant of the Cayley-Menger matrix CMn, that contains the pairwise
distances di,j = ∥xi − xj∥, as

CMn =



0 1 1 ... 1 1
1 0 d21,2 ... d21,n d21,n+1

1 d22,1 0 ... d22,n d22,n+1

... ... ... ... ... ...
1 d2n,1 d2n,2 ... 0 d2n,n+1

1 d2n+1,1 d2n+1,2 ... d2n+1,n 0

 .

2.2 Orthogonal outlier detection and dimensionality estimation

We now consider a dataset X of size N × d, where N is the sample size and d the dimension
of the data. We associate with X a matrix D of size N × N , which represents all the pairwise
distances between observations of X. We also assume that the data points can be mapped into
a vector space with regular observations that form a main subspace of unknown dimension d∗

with some small noise, and additional orthogonal outliers of relatively large orthogonal distance
to the main subspace (Fig.1A). Our proposed method aims to infer from D the dimension of the
main data subspace d∗, using the geometric properties of simplices with respect to their number of
vertices: Consider a (n+2)-simplex containing a data point xi and its associated height, that can be
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computed using equation (1) in section 2.1. When n < d∗ and for S large enough, the distribution of
heights obtained from different simplices containing xi remains similar, whether xi is an orthogonal
outlier or a regular observation (see Fig.1B). In contrast, when n ≥ d∗ , the median of these heights
approximately yields the distance of xi to the main subspace (Fig.1C). This distance should be
significantly larger when xi is an orthogonal outlier, compared with regular points, for which these
distances are tantamount to the noise.

To estimate d∗ and for a given dimension n tested, we thus randomly sample, for every xi in X,
S(n+ 2)-simplices containing xi, and compute the median of the heights hni associated with these
S simplices. Upon considering, as a function of the dimension n tested, the distribution of median
heights (hn1 , ..., h

n
N ) (with 1 ≤ i ≤ N), we then identify d∗ as the dimension at which this function

presents a sharp transition towards a highly peaked distribution at zero. To do so, we compute h̃n,
as the mean of (hn1 , ..., h

n
N ), and estimate d∗ as

n̄ = argmax
n

h̃n−1

h̃n
. (2)

Furthermore, we detect orthogonal outliers using the distribution obtained in n̄, as the points
for which hn̄i largely stands out from h̃n̄. To do so, we compute σn̄ the standard deviation observed
for the distribution (hn̄1 , ..., h

n̄
N ), and obtain the set of orthogonal outliers O as

O =
{
i | hn̄i > h̃n̄ + c× σn̄

}
, (3)

where c > 0 is a parameter set to achieve a reasonable trade-off between outlier detection and
false detection of noisy observations.

2.3 Correcting the dimensionality estimation for a large outlier fraction

The method presented in the previous section assumes that at dimension d∗, the median height
calculated for each point reflects the distance to the main subspace. This assumption is valid when
the fraction of orthogonal outliers is small enough, so that the sampled n-simplex likely contains
regular observations only, aside from the evaluated point. However, if the number of outliers gets
large enough so that a significant fraction of n-simplices also contains outliers, then the calculated
heights would yield the distance between xi and an outlier-containing hyperplane, whose dimension
is larger than a hyperplane containing only regular observations. The apparent dimensionality of
the main subspace would thus increase and generates a positive bias on the estimate of d∗.

Specifically, if X contains a fraction of p outliers, and if we consider on,p,N the number of outliers
drawn after uniformly sampling n + 1 points (to test the dimension n), then on,p,N follows a
hypergeometric law, with parameters n + 1, the fraction of outliers p = No/N , and N . Thus, the
expected number of outliers drawn from a sampled simplex is (n+1)×p. After estimating n̄ (from
section 2.2), and finding a proportion of outliers p̄ = |O|/N using equation (3), we hence correct n̄
a posteriori by substracting the estimated bias δ, as the integer part of the expectation of on,p,N ,
so the debiased dimensionality estimate n∗ is

n∗ = n̄− ⌊(n̄+ 1)× p⌋. (4)

2.4 Outlier distance correction

Seeing that outliers have been identified previously, and because the detected dimension d∗ is a key
information on the main subspace containing regular points, it is meaningful to correct the pairwise
distances that contain outliers in the matrix D, in order to apply a MDS that projects the outliers
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in the main subspace. In the case where the original coordinates cannot be used (e.g, as a result of
some transformation or if the distance is non Euclidean), we perform the two following steps: (i)
We first apply a MDS on D to place the points in a euclidean space of dimension d, as a new matrix
of coordinates X̃. (ii) We run a PCA on the full coordinates of the estimated set of regular data
points (i.e. X̃ \ O), and project the outliers along the first n̄∗ principal components of the PCA,
since these components are sufficient to generate the main subspace. Using the projected outliers,
we accordingly update the pairwise distances in D to obtain the corrected distance matrix D∗.
Note that in the case where D derives from a euclidean distance between the original coordinates,
we can skip step (i), and directly run step (ii) on the full coordinates of the estimated set of regular
data points.

2.5 Overall procedure and implementation

The overall procedure, called DeCOr-MDS, is described in Algorithm 1. We also provide an imple-
mentation in Python 3.8.10 available on this github repository.

Algorithm 1 n-Simplices

Input D the pairwise distance matrix of the dataset of size N × d, Edim the set of dimensions
(≤ d) to be tested, c a user-specified constant
Output n̄∗ the relevant dimension of the dataset, O the list of orthogonal outliers, and D∗ the
matrix of corrected pairwise distances

for n in Edim do
for i in [1,N] do
for j in [1,S] do
Sample a (n+ 2)-simplex Vi,j containing xi

Compute the height (using D and eq. (1)) h
(j,n)
i := hji (Vi,j , xi)

end for
hni := median(h

(1,n)
i , h

(2,n)
i , ..., h

(S,n)
i )

end for
h̃n := mean(hn1 , h

n
2 , ..., h

n
N )

σ(n) := std(hn1 , h
n
2 , ..., h

n
N )

end for
n̄ := argmax

n

h̃n−1

h̃n

O :=
{
i | hn̄i > h̃n̄ + c× σn̄

}
p := |O|/N
n̄∗ = n̄− ⌊(n̄+ 1)× p⌋
(Skip if using original coordinates) Apply a MDS on D to create an euclidean space of dimension
d, resulting X̃
Apply a PCA on X̃ \O to get the main subspace of dimensionality n̄
for outlier i in O do

Project xi on the main subspace, and correct the coordinates of xi in X̃
end for
Recompute the pairwise distance matrix D∗ from X̃.

return n̄∗, O and D∗
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2.6 Datasets

The datasets of our study, described next, are available at this OSF page.

Synthetic datasets: The “cross” dataset [5], which is a two-dimensional dataset representing
a simple cross structure (Fig.2) was generated with N = 25 points, and d∗ = 2. We introduced
orthogonal outliers by randomly sampling three points and by adding a third coordinate of random
amplitude to them. Other synthetic datasets were generated by sampling Gaussian-distributed
coordinates in the main subspace, and adding some small noise in the whole space with variance
between 0.0001 to 0.0003. A fraction p of the points was considered to define the orthogonal outliers,
with coordinates modified by randomly increasing the coordinate(s) orthogonal to the plane; the
amount increased is drawn from a uniform distribution between -30 and 30 or -100 to 100. These
datasets were generated for a main subspace of dimension 2, 10 and 40, with p = 0.05 for dimensions
d∗ = 2 and 10, and p varying between 0.02 and 0.1 for d∗ = 40. For all the synthetic datasets, the
pairwise distance matrix was calculated using the Euclidean distance.

Cell shape image dataset: The cell shape dataset contains mouse osteosarcoma 2D imaged
cells [12], that were processed into a 100×2 vector of coordinates that define the cell shape contour,
used as a test dataset in the Python package Geomstats [13] (for more details, see also [14] and the
associated Github link). We more specifically considered the subset of “DUNN” cells (that denotes
a specific lineage) from the control group (no treatment on the cells), which yields 207 cells in total.
The pairwise distance matrix of all cell shapes was obtained from the same reference [13,14] using
the so-called Square Root Velocity metric that derives from the L2 distance between velocities of
the curves [15].

HMP dataset: The Human Microbiome Project (HMP) [16] dataset represents the micro-
biome measured across thousands of human subjects. The human microbiome corresponds to
the set of microorganisms associated to the human body, including the gut flora, or the skin
microbiota. The data used here corresponds to the HMP1 phase of clinical production. The
hypervariable region v13 of ribosomal RNA was sequenced for each sample, which allowed to
identify and count each specific microorganism, called phylotype. The processing and classifi-
cation were performed by the HMP using MOTHUR, and made available as low quality counts
(https://www.hmpdacc.org/hmp/HMMCP/) [16]. We downloaded this dataset, and subsequently,
counts were filtered and normalized as previously described [10]. For our analysis, we also restricted
our dataset to samples collected in nose and throat. Samples and phylogenies with less than 10
strictly positive counts were filtered out [10], resulting in an n × p-matrix where n = 270 samples
and p = 425 phylotypes. Next, the data distribution was identified with an exponential distribu-
tion, by fitting its rate parameter. Normalization was then achieved by replacing the abundances
(counts) with the corresponding quantiles. Lastly, the matrix of pairwise distances was obtained
using the euclidean distance.

3 Results

3.1 Using n-simplices for orthogonal outlier detection and dimensionality re-
duction

We propose a robust method to reduce and infer the dimensionality of a dataset from its pairwise
distance matrix, by detecting and correcting orthogonal outliers. The method, called DeCOr-MDS,
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can be divided into three sub-procedures detailed in sections 2.2-2.4), with the overall algorithm
provided in section 2.5. The first procedure detects orthogonal outliers and estimates the subspace
dimension using the statistics of simplices that are sampled from the data, using equations (2) and
(3). The second procedure corrects for potential bias in estimated dimension when the fraction of
outlier is large. The third procedure corrects the pairwise distance of the original data, by replacing
the distance to orthogonal outliers by that to their estimated projection on the main subspace. The
overall complexity, which we evaluate in details in Appendix (Supplementary file) is O(SN5), where
S is the number of sampled simplices used in section 2.2, and N is the sample size of the data.

3.2 Performance on synthetic datasets

We first illustrate and evaluate the performance of the method on synthetic datasets, (for a detailed
description of the datasets and their generation, see the Methods section 2.6). On a simple dataset
of points forming a 2D cross embedded in 3D (Fig.2A), we observed that the MDS is sensitive to
the presence of orthogonal outliers and distorts the cross when reducing the data in 2D (Fig.2B).
In contrast, our procedure recovers the original geometry of the uncontaminated dataset, with
the outliers being correctly projected (Fig.2C). The same results were obtained when sampling
regular points from a 2D plane (Supplementary Fig.S1). We further tested higher dimensions, and
illustrate in Fig.3A how the distribution of heights becomes concentrated around 0, when testing
for the true dimension (d∗ = 10), as suggested in the Methods section 2.2. As a result, our method
allows to infer the main subspace dimension from Eq. (2), as shown in Fig.3B. In addition, the
procedure accurately corrects the pairwise distances to orthogonal points with the distances to their
projections on the main subspace, as shown in Fig.3C.

When the dimension of the subspace and fraction of outliers get significantly large, we finally
illustrate the importance of the correction step (see Methods section 2.3), due to the sampling of
simplices that contain several outliers. Upon using synthetic datasets with d∗ = 40 and varying
the fraction of outliers from 2% to 10%, we observe this bias appearing before correction, with d∗

being overestimated by 2 or 3 dimensions (Fig.4). Using the debiased estimate n∗ from equation
(4) successfully reduced the bias, with an error ≤ 1 for all the parameters tested.

3.3 Application to cell shape image data

We further show howDeCOr-MDS can be broadly applied to biological data, ranging from images to
high throughput sequencing. We first studied a dataset of single cell images, from osteosarcoma cells
(see Fig.5A), which were processed to extract from their contour a 100× 2 array of xy coordinates
representing a discretization of a closed curve (see Dataset section 2.6). We obtained a pairwise
distance matrix on this set of curves by using the so-called Square Root Velocity (SRV) metric, which
defines a Euclidean distance on the space of velocities that derive from a regular parameterization
of the curve [13,15]. Using DeCOr-MDS, we found a main subspace of dimension 2 (Fig.5B), with
14 outliers detected among the 207 cells of this dataset. The comparison between the resulting
embedding and that obtained from a simple MDS is shown in Supplementary Fig.S2, and reveals
that outliers, when uncorrected, affect the embedding coordinates, while our correction mitigates
it. By examining in more details the regular and inferred outlier cells (Fig.5C, with all cell shapes
shown in Supplementary Fig.S3.), we found regular observations to approximately describe elliptic
shapes, which is in agreement with the dimension found, since ellipses are defined by 2 parameters.
One can also visually interpret the orthogonal outliers detected as being more irregular, with the
presence of more spikes and small protusions. Interestingly, the procedure also identified as outliers
some images containing errors, due to bad cropping or segmentation (with two cells shown instead
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of one), which should thus be removed of the dataset for downstream analysis.

3.4 Application to HMP dataset

As another example of application to biological data, we next considered a dataset from the Human
Microbiome Project (HMP). The Human Microbiome Project aims at describing and studying the
microbial contribution to the human body. In particular, genes contributed by microbes in the
gut are of primary importance in health and disease [16]. The resulting data is an array which
typically contains the abundance of different elements of the microbiome (typically 102 to 103),
denoted phylotypes, measured in different human subjects. To analyze such high dimensional
datasets, dimensionality reduction methods including MDS (often denoted Principal Coordinates
Analysis PCoA), are typically applied and used to visualize the data [17–19]. To assess our method
incrementally, we restricted first the analysis to a representative specific site (nose), yielding a
136× 425 array that was further normalized to generate Euclidean pairwise distance matrices (see
Material and Methods section 2.6 for more details). Upon running DeCOr-MDS, we estimated the
main dimension to be 3, with 6.62 % orthogonal outliers detected, as shown in Fig.6A. This is also
supported by another study that the estimated dimension of HMP dataset is 2 or 3 [20]. We also
computed the average distance between these orthogonal outliers and the barycenter of regular
points in the reduced subspace, and obtained a decrease from 1.21 when using MDS to 0.91 when
using DeCOr-MDS. This decrease suggests that orthogonal outliers get corrected and projected
closer to the regular points, to improve the visualization of the data in the reduced subspace, like
in our experiments with the synthetic datasets (Fig. 2 and Supplementary Fig. S2). In Fig.6B,
we next aggregated data points from another site (throat) to study how the method performs in
this case, yielding a 270 × 425 array that was further normalized to generate Euclidean pairwise
distance matrices. As augmenting the dataset brings a separate cluster of data points, the dimension
of the main dataset was then estimated to be 2, with 4.8 % orthogonal outliers detected, as shown in
Fig.6B. The average distance between the projected outliers and the barycenter of projected regular
points are approximately the same when using MDS (1.46) as when using DeCOr-MDS (1.45) for
nose, and are also approximately the same when using MDS (1.75) to when using DeCOr-MDS
(1.74) for throat. This decrease also suggests that orthogonal outliers get corrected and projected
closer to the regular points.

4 Discussion

We proposed DeCOr-MDS, a novel approach using geometric characteristics to detect dimension,
and to correct orthogonal outliers in high dimensional space. That is, to the best of our knowledge,
the first statistical tool that addresses the challenge of the presence of orthogonal outliers in high
dimensional space. We validated the method using synthetic datasets and demonstrated its poten-
tial applications to analyze biological datasets, ranging from cell shape images to count arrays from
microbiome data. The visualization and numerical comparison confirmed that DeCOr-MDS effec-
tively detects dimensionalities in many instances, corrects orthogonal outliers, and demonstrates
superior performance to classical dimension reduction methods.

The notion of simplices is used frequently with the aim of robustness, either to detect the coreness
of data (data depth and multivariate median [21, 22]), or to detect outlying features (detection of
extreme directions [23]). Simplices can also be used to build a flexible network of points for
informative visualization [24]. Outlier detection and accommodation have been addressed by a
wide array of methods, which can be broadly divided into three categories: (1) robust metrics [3–7],
(2) robust estimation [8], or (3) exploiting the characteristics of outliers [2,7]. Our method resorts
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to both (3) by using the geometry of data, and (1) by using the median as centrality estimator.
Our method also aims at estimating dimension. A common approach to do so is the screeplot (or
elbow) test in principal components analysis, where a notable drop in the proportion of variance
(or distance) explained can be taken as a cutoff, and as the most relevant dimension. High-
dimensional biological datasets challenge this strategy, because fine-scale structure confounds in
practice downstream analyses. Because of this, authors often use an arbitrary large set of 10, or
sometimes 20 or 50 components [25–30]. Power analyses based on simulations also provide a way to
assess an adequate number of components [26]. In this work, we proposed an alternative approach,
by exploiting the structure of the dataset to determine essential versus non-essential dimensions.

Limitations of DeCOr-MDS include the non-automated choice of the cutoff parameter c. This
parameter sets the maximum tolerated number of standard deviations σ before a point is considered
an outlier. A value for c = 3, which corresponds approximately to the 0.1% most extreme points in
a normal distribution, may be selected, for instance. Although the method remained tractable for
the datasets we analyzed, runtime complexity (analyzed in SI) is also significantly larger than for
a standard MDS. Finally, dimension detection is still imperfect in datasets where the distribution
of regular points (e.g. with distant clusters) may prevent the height criterion for outlier detection
to be effective. There are various potential directions to improve the dimension detection in real
datasets of high dimension. This may be achieved by studying the behaviour of the Cayley-Menger
determinant, which is central in the procedure, in higher dimensions. One may also associate the
height criterion with a distribution criterion [10], which would be sensitive to clusters or other
notable structure, as was apparent in the HMP dataset. Another beneficial improvement would be
to reduce computing time, for instance by implementing a parallelized version or using a call to a
compiled program. Finally, one could optimize the cutoff parameter c automatically, either through
a hyperparameter search, or by using a data-driven procedure, during the exploration phase of the
algorithm.
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FIGURES

A B c

Figure 1: Example of a dataset with orthogonal outliers and n-simplices. A: We represent a
dataset with regular data points (blue) belonging to a main subspace of dimension 2 with some
noise, and orthogonal outliers in the third dimension. B: We show two 3-simplices (triangles), one
with only regular points (left) and the other one containing one outlier (right). The height drawn
from the outlier is similar to the height of the regular triangle. C: Upon adding other regular points
to get tetrahedrons (4-simplices), the height drawn from the outlier gets significantly larger than
the height drawn from the same point as in (B).
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Figure 2: Application of DeCOr-MDS on a cross dataset. A Original cross dataset. the points
selected to be orthogonal outliers are highlighted in red. B MDS embedding of the original data
with an outlying component added to the selected points. A MDS embedding after preprocessing
using DeCOr-MDS. Note that after correction, we recover the original cross structure.
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Figure 3: Application of DeCOr-MDS on a synthetic dataset with a main subspace of dimension
10. A Distribution of median heights per data point xi as a function of the tested dimension
n. B Dimensionality inference based on the ratio of median heights (see also Eq. (1)), with the
optimal ratio found for the true dimension 10. C Shepard diagram comparing the pairwise distances
between regular points and outliers that are projected to the main subspace (true δij), with the
same distances obtained after directly running MDS on the original pairwise distance matrix (red
dots), or after correcting these distances using our procedure (black dots).
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Figure 4: Application of DeCOr-MDS on a dataset with a main subspace of dimension 40: Di-
mension correction effect versus the fraction of outliers. The vertical axis represents the remaining
bias between the inferred and actual dimensions, before and after bias correction. After correction,
the differences between the estimated dimensions and the true dimension are always closer to 0
regardless of the fraction of outliers.
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Regular Cell Shapes

Orthogonal Outliers A B C

Figure 5: Application of DeCOr-MDS on a cell shapes dataset. A: An example of osteocarcoma
cell image obtained from fluorescence microscopy. We process and extract the cell contour in our
analysis. B: Dimensionality inference of the dataset obtained from 207 cell shapes using DeCOr-
MDS. We estimate the dimension of the main subspace n∗ = 2. C: Examples of cell shapes,
including regular cells (in black), and orthogonal outliers detected. Among these outliers, we
highlight cell shapes that are likely to be invalid due to segmentation errors (in blue), with the
other outliers shown in red.
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SimplicesMDS

nSimplicesMDSB

A nSimplices

Figure 6: Application of DeCOr-MDS on HMP dataset. A: Structure restituted on 3 axes using
MDS (left) and our procedure (right) using data from the nose site. The points marked with cross
represent orthogonal outliers detected by DeCOr-MDS, which are also put closer to regular points
after correction. B Same comparison as in (A) using data from nose and throat. The two clusters
formed by nose and throat have a better seperation using DeCOr-MDS.
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