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The critical brain hypothesis states that the brain can benefit from

operating close to a second-order phase transition. While it has been

shown that several computational aspects of sensory information

processing (e. g., sensitivity to input) are optimal in this regime, it is

still unclear whether these computational benefits of criticality can be

leveraged by neural systems performing behaviorally relevant com-

putations. To address this question, we investigate signatures of

criticality in networks optimized to perform efficient encoding of stim-

uli. We consider a spike-coding network of leaky integrate-and-fire

neurons with synaptic transmission delays and input noise. Previ-

ously, it was shown that the performance of such networks varies

non-monotonically with the noise amplitude. Interestingly, we find

that in the vicinity of the optimal noise level for efficient coding, the

network dynamics exhibits signatures of criticality, namely, the dis-

tribution of avalanche sizes follows a power law. When the noise

amplitude is too low or too high for efficient coding, the network

appears either super-critical or sub-critical, respectively. Our work

suggests that two influential, and previously disparate theories of

neural processing optimization – efficient coding, and criticality – may

be intimately related.
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Attempts to understand information processing in the brain1

have led to the formulation of various optimality principles.2

Two major paths, among others, have been explored to uncover3

these principles. On one hand, a large body of studies starts4

from the theoretical and experimental finding that neural net-5

works operate close to criticality (1, 2). Researchers have thus6

sought to investigate what, if any, could be the computational7

advantages of a network operating near a critical point (3).8

Meanwhile, another line of research presumes that neural net-9

works have evolved to efficiently encode natural inputs (given10

constraints such as limited energy and noise). Here, the key11

question was investigating how neural networks could achieve12

such optimal encoding, and what are the resulting dynamics.13

In a nutshell: one line of research starts with an observation14

about neural dynamics (i.e., that they are near-critical) and15

seeks to find the coding advantages; the other starts with a16

coding objective (e.g., efficient coding) and seeks to under-17

stand the resulting dynamics. However, despite the prevalence18

of both approaches, connections between theories based on19

closeness to criticality and efficient coding hypothesis remain20

elusive.21

To address this shortcoming, we introduce a complementary22

approach. Instead of tuning the network around the critical23

point and evaluating its statistical information processing per-24

formance, we optimize a network to perform a clearly defined25

computation and investigate if signatures of critical dynamics26

emerge in the optimized network. We focus on efficiently en-27

coding the input, a well-established and functionally relevant28

computation, accompanied by a rich body of normative models 29

(4) and neural dynamics (e. g., 5). 30

We analyzed a network of leaky integrate-and-fire (LIF) 31

neurons that can be optimized (by adjusting the noise) to 32

code a one-dimensional input (6). We evaluate the signatures 33

of criticality, such as scale-freeness of the activity propaga- 34

tion cascades, termed neuronal avalanches, in networks with 35

different noise amplitudes. Interestingly, we only observed 36

scale-free neural avalanches in the vicinity of optimal noise 37

for efficient coding. This result suggests that coding-based 38

optimality co-occur with closeness to criticality. 39

Results 40

We investigate a network of LIF neurons consisting of an exci- 41

tatory and an inhibitory population. The network’s dynamics 42

and connectivity is set up such that it can precisely encode a 43

feed-forward input using a minimal number of spikes. In an 44

idealized network with instantaneous synapses (7), recurrent 45

inhibition removes redundancy between neurons. However, 46

the introduction of realistic synaptic delays leads to network 47

synchronization that impairs coding efficiency (for more de- 48

tails, see, e. g., , 6). In the presence of synaptic delays, this 49

network can nonetheless be optimized for efficient coding by 50

adding noise (6, 8, 9) (or increasing the L1 norm which controls 51

the spiking threshold, see 10). As it was shown in previous 52

studies (see, e. g., 6, 15), the network’s performance depends 53

non-monotonically on the noise amplitude, with the optimal 54

performance achieved for an intermediate noise level. 55

To assess the signatures of criticality in the efficient coding 56

network, we investigate the distribution of neural avalanches 57

in networks with different levels of noise. To begin, we keep 58

the network size fixed, at N = 100 (as originally used in, 6). A 59

neuronal avalanche is defined as an uninterrupted cascade of 60

spikes in the network (11). As suggested by (11), the period 61

without spiking signifies the end of the previous avalanche 62

if it is longer than the mean inter-spike interval (ISI) in the 63

compound spike train (obtained by collapsing the spike trains 64

of all neurons). Similar results were obtained using other 65

thresholding choices (see supplementary methods), as in (11). 66

In a system operating close to criticality, the avalanche size 67

(number of spikes in the cascade) follows a power-law distri- 68

bution. We demonstrate that the distribution of avalanche 69
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Fig. 1. Co-occurrence of the criticality and optimal

settings for efficient coding.

(A) Avalanche-size distributions of efficient coding net-

works with different noise levels (indicated in the legend

and with consistent color code across all panels). (B)

Deviation from criticality measure κ for three noise lev-

els. Left: small noise (0.5, network appears supercritical,

many large avalanches); middle: medium noise (1.3,

network close to criticality); right: strong noise (5.5, net-

work exhibit subcritical behavior with predominantly small

avalanches). (thicker lines in A): The area of gray-shaded

regions between the actual avalanche size distribution

and fitted power-law distribution defines the deviation

measure κ (in the middle panel, the filled region is not vis-

ible, as the avalanche size distribution is very close to the

ideal power-law). Vertical lines indicate the choices of left

and right cut-offs (see main text for more details). Distribu-

tions for the chosen noise levels are highlighted in bold in

panel A (matching colors). (C) Deviation from power-law

κ as a function of noise level (left y-axis), color matching

the panel A. Gray dotted line indicates mean-square-error

(MSE) (right y-axis) as a function of noise. Vertical contin-

uous line (purple) indicates the noise level corresponding

to minimal κ (the most scale-free avalanche size distri-

bution), Vertical broken line (cyan) indicates the noise

level corresponds to minimum MSE (the best efficient

coding performance). These two vertical lines overlap

exactly, demonstrating the coincidence of noise levels for

scale-free behavior and efficient coding.

sizes systematically changes with the strength of added noise70

(Figure 1A). In networks with a small amount of noise (e. g.,71

noise strength 0.5, thick blue line in Figure 1A, or Figure 1B72

left), large avalanches dominate the distribution of avalanche73

sizes (a bump in the tail of the distribution signifies a transient74

synchronization in the network). On the other hand, for a75

large amount of noise (e. g., noise strength 5.5, thick red line76

in Figure 1A, or Figure 1B right), the distribution is concen-77

trated on the small avalanches (an exponential distribution).78

However, for intermediate levels of noise (e. g., noise strength79

1.3, thick green line in Figure 1A, or Figure 1B middle), the80

avalanche-size distribution resembles a power-law (appears as81

a linear function in the log-log coordinates), which is a key82

signature of criticality in neural systems (see, e. g., 11).83

To determine the most scale-free avalanche distribution84

(closest to a power-law distribution), we use a deviation mea-85

sure κ that quantifies deviation from an ideal power-law dis-86

tribution. Our κ measure closely follows the non-parametric87

measure introduced by Shew and colleagues (12) but does88

not assume a particular scaling exponent (see supplementary89

methods). κ is defined as the normalized area between the90

empirical and the ideal (fitted power-law for the portion of91

data between two cut-offs) distribution (Figure 1B). κ takes92

small (close to zero) values for a scale-free distribution (Fig-93

ure 1B middle) and deviates from zero otherwise (Figure 1B94

left and right panels).95

We measure how deviations from a power-law, κ, and the96

network’s reconstruction error depends on the noise strength.97

We confirm the previous observation that the performance98

of this network depends non-monotonically on the noise am-99

plitude (gray dotted curve in Figure 1C), with the optimal100

performance achieved for an intermediate noise level (6, 15).101

Interestingly, the change in κ with the noise level demon-102

strates a similar non-monotonic behavior (colorful circles in103

Figure 1C). Remarkably, they both are minimized at the same104

noise level, resulting in a coincidence of the optimal point for 105

coding and the most scale-free distribution (vertical purple 106

and cyan line in Figure 1C). This observation offers additional 107

support to the criticality hypothesis for the brain, namely that 108

the various information processing measures are optimized 109

close to the critical point (3, 13). 110

We next verify the stability of this result to changes in the 111

network’s size by considering networks of various sizes in a 112

range between N = 50 and N = 400 neurons. We find that 113

all networks demonstrate similar non-monotonic behavior for 114

the dependence of reconstruction error (Figure 2A) and the 115

scale-freeness deviation measure κ (Figure 2B) on the strength 116

of noise. This non-monotonic behavior of the reconstruction 117

error is less pronounced for larger networks. This is expected, 118

because the recurrent network used in our study is particularly 119

suitable to code a single dimension of input by a small number 120

of neurons(6, 7), i. e., hundreds, rather than thousands, of 121

neurons per input dimension (see 10, as to how this problem 122

could be alleviated for large networks by encoding higher 123

dimensional inputs). 124

We observe the co-occurrence of efficient coding optimal- 125

ity with criticality optimality across all network sizes. The 126

noise levels where coding error is minimal (x-coordinates in 127

Figure 2C) and where κ is minimal (y-coordinates in Fig- 128

ure 2C) are highly correlated across different network sizes. 129

Furthermore, this observation is robust to variations in the 130

choice of the right cut-off needed for calculating κ (whiskers 131

in Figure 2C indicate the standard deviation with respect to 132

changing the ways κ is computed). Lastly, the location of the 133

cut-off of the scale-free distribution shifts right (to the larger 134

values) with the size of the network (Figure 2D), hinting at 135

the correct finite-size scaling behavior (see, e. g., 11, 14). 136
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Fig. 2. Co-occurrence of the criticality and efficient coding optimality across networks of different sizes.

(A) Mean-square-error (MSE) of stimulus reconstruction for different injected noise amplitudes (similar to Figure 1C, gray line). Curves with different colors correspond to

different network sizes (specified in the legend of panel B). (B) Deviation measure (κ) as function of noise (similar to Figure 1C, colorful dots). As in (A), different curves

represent κ-noise relationship for networks of different sizes. (C) Y-coordinate of each point specifies the value of optimal noise chosen based on scale-freeness of the

avalanche size distributions (minimum of κ), and the X-coordinate specifies the value of optimal noise chosen based on efficient coding criterion (minimum MSE). Error bars

(mean ± standard deviation) indicate the variability across a wide range of choices of free parameters used for computing the deviation measure κ (see the supplementary text

for more detail). (D) The cutoff of the power-law distribution for the most scale-free avalanche size distribution (resulting in smallest κ on panel B) for different network sizes

shifts with the network size as expected from finite-size scaling ansatz for critical systems (colors are specified in the legend of panel B).

Discussion137

In this study, we probe the connection between the optimality138

discussed in the context of criticality hypothesis of the brain,139

and the optimality discussed in theories of neural computa-140

tions. To this end, we examine an efficient coding network141

(6, 7) for signatures of criticality. We find signatures of criti-142

cality (scale-free dynamics of the neural avalanches) emerging143

in a network that was designed based on criticality-agnostic144

principles merely by optimizing the coding performance. This145

suggests criticality and efficient coding are intimately related.146

Our approach contrasts with previous work investigating147

the criticality hypothesis, which used models (e. g., a branching148

network, a recurrent neural network) that can attain various149

(critical/non-critical) states depending on a limited number of150

control parameters (e. g., branching ratio, connection strength)151

and then quantified how the computational primitives (3,152

13), such as sensitivity to an input, depend on these control153

parameters. These state-generating models aim at reproducing154

realistic neuronal dynamics. They are typically driven by a155

slowly delivered noise and have no specific input and no read-156

out strategy. Therefore, studies based on branching networks157

are largely agnostic to computational objectives central to158

theories of neural computation. Our approach thus paves the159

way for new questions about the relevance of criticality for160

precisely defined and task-relevant computations.161

Future research should address why and how critical dy-162

namics enables optimal efficient coding. For instance, it is not163

clear what is the exact role of neural avalanches, and why and164

how their scale-free distribution may be optimal for neural165

coding. Answering such questions requires going beyond our166

simulation-based approach, and, similar to (15). Mathemat-167

ical analysis is needed to understand how the distribution168

of avalanches depends on different attributes of the network169

(noise, delay, connection weights, etc) and how those attributes170

affect the coding optimality. Such approaches will provide a171

mechanistic insight for our observations, and also, allow us172

to extend our framework to more sophisticated computations.173

We believe, our study opens up promising avenues for future in-174

vestigations to establish the connection between other aspects175

of criticality (e. g., 16, 17) and theories of neural computations 176

(e. g., 7). 177

Materials and Methods 178

Further details are provided in the Supporting Information. 179
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Supporting Information Text9

Materials and methods10

Efficient coding network. The neuronal network model used in this study was introduced and described extensively in the11

previous studies (1, 2), thus we restrict ourselves to a brief explanation of the key aspect of the model. Our network can be12

optimized to encode a sensory input efficiently (i. e., with a minimal number of spikes) and accurately (i. e., with minimal13

reconstruction error). Network optimization objective is incorporated in the loss function E(t),14

E(t) = (x(t) − x̂(t))
2

+ α
∑

i

ri(t) + β
∑

i

ri(t)
2

, [1]15

where x(t) is a given one-dimensional sensory input (similar to 2, 3), x̂(t) is the reconstructed sensory input, ri(t) is the firing16

rate of the neuron i, and α and β are the weights of the L1 and L2 penalties on the firing rate.17

It is assumed that the input can be reconstructed by performing a linear readout of the spike trains, more precisely, by a18

weighted leaky integration of output spike trains,19

τ
dx̂(t)

dt
= −x̂(t) +

∑

i

wioi(t) , [2]20

where oi indicates the output spike trains for the neuron i,21

oi(t) =
∑

k

δ
(
t − t

k

i

)
, [3]22

and τ is the read-out time constant∗, and wi is a constant read-out weight associated to the neuron i.23

Given an idealized network with instantaneous synapses, the optimal network could be derived from first principles. Boerlin24

et al. (1) demonstrated that the dynamics of each leaky-integrate and fire (LIF) neuron can be expressed by conventional25

differential equation governing the dynamics of the membrane potentials,26

τ
dVi(t)

dt
= −Vi(t) + wic(t) − wi

∑

k

wkok(t) − βoi(t) + σνi(t) , [4]27

where Vi is the membrane potential of the neuron i, wi is the constant readout which was introduced in Equation 2, c(t) is the28

input to the network, oi(t) is the spike train of neuron i, β is the regularizer that was introduced in Equation 1, and ν(t) is a29

white noise with unit variance that was manually added in the original derivation of (1) for biological realism. Notably, in this30

network we have two types of input, a feed-forward input, wic(t) and a recurrent input −wi

∑
k

wkok(t). The recurrent input31

is the result of a fully connected network. In this network, neurons that receive a common input, decorrelate their activity to32

avoid communicating redundant information via instantaneous recurrent inhibition.33

Chalk et al. (2) introduced a more biologically plausible variants of (1)’s network by incorporating synaptic delays and34

introducing a balance network of inhibitory and excitatory population of neurons. They incorporated realistic synaptic delays35

by assuming that each spike generates a continuous current input to other neurons, with a dynamic that is described by the36

conventional alpha function,37

h(t) =





1
τd−τr


e

−(t−τtr)
τd − e

−(t−τtr)
τr


if t > τtr

0 if t > τtr

[5]38

where τr and τd are respectively synaptic rise and decay times. Adding realistic synaptic delays, led to network synchronization,39

which impairs coding efficiency. Chalk et al. (2) demonstrated that, in the presence of synaptic delays, this network of LIF40

neurons can nonetheless be optimized for efficient coding by adding noise to the network. In this study, we implement the41

additional noise, as white noise added to the membrane potentials. However, (2) also demonstrated similar dependency of42

network’s performance to noise by using other ways of incorporating noise, for instance, by inducing unreliability in spike43

elicitation (also see, 4–6, for other approaches).44

The original network introduced by (1) was a pure inhibitory network. (2) introduced a variant of this network that respects45

the Dale’s law. In their network, they introduce a population of inhibitory neurons that tracks the estimate encoded by the46

excitatory neurons, and provides recurrent feedback to the excitatory population (for further detail see, 1, 2)47

Avalanche detection. To investigate the scale-free characteristic of the spiking activity (as a potential signature of networks48

operating close to criticality), similar to previous studies (7), we probe the distribution of neural avalanches. A neuronal49

avalanche is defined as an uninterrupted cascade of spikes in the network (7). In a system operating close to criticality, the50

distribution of avalanche sizes (number of spikes in a cascade) and avalanche life-time follows a power-law (in this study we51

have only investigated the distribution of avalanche sizes).52

∗
In the efficient coding network used in this study (as in 2), for simplicity, the read-out time constant of the input (i. e., time-scale of x(t)) is the same as the time-constant of the membrane potential of the

neurons. Nevertheless, in (1) they are not necessarily the same for more general computations.
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For detecting the avalanches, we followed the procedure used in previous studies (e. g., 7). The period of no spiking activity53

signifies the end of the previous avalanche if it is larger than a threshold ∆. We mainly used as a threshold the mean inter-spike54

interval (∆ = ⟨ISI⟩) in the compound spike train (obtained by collapsing the spike trains of all neurons onto a single time-line).55

Thus, when the compound spike train is interrupted for an interval larger than ∆, we consider that the current avalanche is56

over, and a next spike will be an onset of a new avalanche. The size of the avalanche is the number of spikes between these two57

silent time-points. A slightly different procedure has also been used for avalanche detection. In the alternative approach, for58

computing the ∆, one counts the synchronous spike only once, i. e., excluding zero ISIs. Notably, similar results were obtained59

using the alternative method.60

This choice of threshold ∆ potentially can be made separately for individual network with different noise levels. However, to61

avoid introducing an additional variability across different levels of noise, we fixed the threshold for all the noise levels. For a62

given network size, we took the threshold from the network with the noise level corresponding to minimal mean-square-error63

(MSE), and use that for all noise levels. We also checked that taking slightly different thresholds would not change the results64

of our study.65

Closeness to criticality assessment. We consider the scale-free distribution of neural avalanche as signature of criticality in66

the network (8, 9). Thus, to determine the most scale-free avalanche distribution, we introduce a deviation measure κ, which67

quantifies deviation from an ideal power-law distribution. Our κ measure closely follows the non-parametric measure introduced68

by Shew et al. (10), but does not assume a particular scaling exponent, which might be important, because we do not know69

a priori what is the relevant universality class for neuronal avalanches (see, e. g., 11). We define κ as the area between the70

empirical and the ideal (fitted power-law) distribution, normalized by the number of data-points (in the empirical distribution)71

between left and right cut-offs. Larger values of κ correspond to larger deviations from the power-law distribution. Power-laws72

were fitted between two cut-offs. The left cut-off was always chosen to be 2 (i. e., avalanches with at least two spikes). The right73

cut-off is typically chosen subjectively based on the problem at hand (12), here we swept over a wide range of choices to be as74

objective as possible. We choose it between two possible options: it was either a certain percentile of number of avalanches75

(within the range of 50-95%), or a fraction of the network size (within the range of 10-25%). Between the mentioned choices76

above, the one led to inclusion of more data, i. e., larger proportion of avalanches was selected The ideal power-law distribution77

were also determined based on a linear fit between final choices of left and right cut-offs. Notably, the results were robust to78

variations (in the ranges noted above) in the choice of cut-offs (see Figure 2C of the main text).79
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