New Results
Disentangled deep generative models reveal coding principles of the human face processing network
Paul Soulos, View ORCID ProfileLeyla Isik
doi: https://doi.org/10.1101/2023.02.15.528489
Paul Soulos
1Department of Cognitive Science, Johns Hopkins University
Leyla Isik
1Department of Cognitive Science, Johns Hopkins University
Article usage
Posted February 15, 2023.
Disentangled deep generative models reveal coding principles of the human face processing network
Paul Soulos, Leyla Isik
bioRxiv 2023.02.15.528489; doi: https://doi.org/10.1101/2023.02.15.528489
Subject Area
Subject Areas
- Biochemistry (12934)
- Bioengineering (9834)
- Bioinformatics (31552)
- Biophysics (16259)
- Cancer Biology (13342)
- Cell Biology (19022)
- Clinical Trials (138)
- Developmental Biology (10312)
- Ecology (15320)
- Epidemiology (2067)
- Evolutionary Biology (19554)
- Genetics (12978)
- Genomics (17937)
- Immunology (13055)
- Microbiology (30493)
- Molecular Biology (12716)
- Neuroscience (66570)
- Paleontology (490)
- Pathology (2060)
- Pharmacology and Toxicology (3547)
- Physiology (5532)
- Plant Biology (11403)
- Synthetic Biology (3169)
- Systems Biology (7834)
- Zoology (1769)