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ABSTRACT

Motivation: The positional Burrows-Wheeler Transform (PBWT) has been introduced as a key data
structure for indexing haplotype sequences with the main purpose of finding maximal haplotype
matches in h sequences containing w variation sites in O(hw)-time with a significant improvement
over classical quadratic time approaches. However the original PBWT data structure does not allow
queries over the modern biobank panels of haplotypes consisting of several millions of haplotypes, as
they must be kept entirely in memory.
Results: In this paper, we present a method for constructing the run-length encoded PBWT for
memory efficient haplotype matching. We implement our method, which we refer to as µ-PBWT,
and evaluate it on datasets of 1000 Genome Project and UK Biobank data. Our experiments
demonstrate that the µ-PBWT reduces the memory usage up to a factor of 25 compared to the best
current PBWT-based indexing. In particular, µ-PBWT produces an index that stores high-coverage
whole genome sequencing data of chromosome 20 in half the space of its BCF file. In addition,
µ-PBWT is able to index a dataset with 2 million haplotypes and 2.3 million sites in 4 GB of
space, which can be uploaded in 20 seconds on a commodity laptop. µ-PBWT is an adaptation of
techniques for the run-length compressed BWT for the PBWT (RLPBWT) and it is based on keeping
in memory only a small representation of the RLPBWT that still allows the efficient computation of
set maximal matches (SMEMs) over the original panel.
Availability: Our implementation is open source and available at https://github.com/dlcgold/
muPBWT. The binary is available at https://bioconda.github.io/recipes/mupbwt/README.
html
Contact: Paola Bonizzoni paola.bonizzoni@unimib.it

1 Introduction

Improved haplotype phasing in large cohorts is facilitating the comprehensive collection and study of variations at
chromosome-level for genome evolution and clinical applications. This has been demonstrated by the haplotype-
resolved whole-genome sequence data collected from hundreds of thousands of individuals for projects such as the UK
Biobank [1] and TOPMed projects [2]. In the field of phased genomics, the positional Burrows-Wheeler Transform
(PBWT), which is a data structure that represents permutations of each column of a h× w binary matrix M[1..h][1..w],
is a key instrument, offering compact representation and efficient haplotype matching for large haplotypes datasets [3].
Indeed, due to the intrinsic capability of the PBWT of saving space in memorizing haplotype data and even in analyzing
large haplotypes panels, it is becoming a relevant data structure also in the field of computational pangenomics [4].
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Although the PBWT is a vital solution for analyzing pangenomic haplotype data, it has not received as much attention
as the famous Burrows-Wheeler Transform (BWT). The seminal paper on BWT by Burrows and Wheeler has been
cited more than 3500+ times, which is almost two orders of magnitude larger than that for first PBWT paper by Durbin
(364 times acc. Google Scholar). As a result, efficient construction and representation of the PBWT on large datasets is
in a relatively nascent stage by comparison to the BWT. As a matter of fact, analysis of data such as the UK Biobank
data remains to be challenging. In November 2022, Jared Simpson tweeted: What is the largest publicly available
haplotype reference panel? 1000 genomes? I’m looking for a pre-built PBWT index but don’t want to go through
dbGAP to get the HRC panel. Unfortunately, there are not yet solutions to this tweet as the only response was “We used
UK biobank a lot. But it’s also behind the door.” by Deghi Zhi. The underlying question remains then as to how to
efficiently build a PBWT index in an efficient manner that can be used on a commodity machine.

One of the main goals of the original work proposing the PBWT data structure, was to develop a means to find maximal
haplotype matches in a set of h sequences, each containing w variation sites and represented in a matrix M. The main
idea behind the construction of the PBWT is that of stably sorting the rows of M in co-lexicographic order (i.e., sorted
order from right-to-left). Durbin [3] showed that maximal haplotype matches can be found in O(hw)-time since it
amounts to finding set-maximal exact matches (SMEMs) using the PBWT, where a SMEM is defined to be the longest
fully-terminated match covering a positionbetween the pattern and the string. In this context, it is assumed that each
variation site is bi-allelic, meaning that there exists only two observed alleles at a locus in the genome and no insertions
or deletions. Although this binary encoding of genetic information appears to remove significant information, it is
common practice in the analysis of variations of diploid species, where variations are filtered to only contain bi-allelic
sites [5, 6].

Since its initial development, the PBWT has been applied and extended in numerous ways. It has been used for
genotype imputation [7], and to create a genotype database search method that is privacy-preserving (PBWT-sec) [8].
Novak et al. [9] and Sirén et al. [10] used the PBWT to encode a graph for haplotype matching (g-PBWT) and graph
pangenome indexing [4]. Sanaullah et al. [11] replaced all arrays with linked lists to define a dynamic version of the
PBWT (d-PBWT). The original PBWT has been used to compute all-pairs Hamming distances [12] and for finding all
maximal perfect haplotype blocks in linear time [13].

In this paper, we consider the problem of Durbin [3] that aims to find SMEMs in haplotype data using the PBWT. We
demonstrate how it can be efficiently constructed and stored in run-length encoded space. Run-length encoding is a
concept that was originally motivated and applied to the BWT; if you consider the BWT for large repetitive input then it
is witnessed that there are long repetitions of the same character, which are referred to as runs. The number of runs is
routinely denoted as r, where r is usually significantly smaller than n on repetitive input. Hence, Mäkinen and Navarro
[14] noticed that the the BWT can stored in O(r) space while still efficiently supporting some standard queries (i.e.,
count). Although this was noticed by Durbin in 2014, run-length encoding has not been explored since then. Here, we
implement a run-length encoding of the PBWT, which we refer to as µ-PBWT, and compare it to Durbin’s PBWT [3]
and Syllable-PBWT [15] on both 1000 Genome Project [16] data and simulated panels [1], achieving improvements in
the space needed to store the PBWT index.

We demonstrate that µ-PBWT uses from 1.1 to 25 time less space than Syllabe-PBWT, while uses up to 25000 times
less space than Durbin’s PBWT at the cost of up to 2x increase in construction and query time. The experiments show
that the best performance of µ-PBWT is achieved on whole genome sequences data (UK-Biobank chromosome 20
and simulated date). We showed a proof of concept of the scalability of µ-PBWT to today’s biobanks by producing
an index of 13GB for high-coverage whole genome sequencing data on chromosome 20 (stored in a 29GB BCF file).
Finally, we show that µ-PBWT is able to store and query a dataset with 2 million haplotypes and 2.3 million sites in 4
GB of space, which could be easily store on a commodity laptop.

2 Preliminaries

2.1 Positional Burrows-Wheeler Transform

We define a sequence S over a finite, ordered alphabet Σ = {c1, . . . , cσ} of σ characters to be the concatenation of n
characters S = S[1..n]. We denote the empty sequence as ε. We denote the i-th prefix of S as S[1..i], the i-th suffix as
S[i..n], and the sequence spanning position i through j as S[i..j], with S[i..j] = ε if i > j.

The Positional Burrows-Wheeler Transform has been introduced by Durbin as a data structure for handling a matrix M,
representing a set S = {S1, . . . , Sh} of h sequences of length w and over a binary alphabet, simply called haplotypes,
by updating two arrays for each column j: the prefix array PAj and the divergence array DAj .
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1) PAj is the ordering of {1, . . . , h} induced by the co-lexicograph ordering of prefixes of S up to column j − 1,
i.e. formally PAj [i] = k, if Sk[1..j − 1] is the i-th element in co-lexicographically ordered list of prefixes S1[1..j −
1], . . . , Sh[1..j − 1].

2) DAj [i] stores the length of the longest common suffix between the sequences of index PAj [i] and PAj [i− 1] up to
the (j − 1)-th column.

The PBWT of M is another matrix PBWT[1..h][1..w] that has the first column identical to the one of M while the j-th
column of M with j > 1 is obtained by stably sorting the rows of M[1..h][1..j − 1] in co-lexicographic order. We note
that we denote the PBWT matrix as PBWT. Assuming to denote the j-th column of a matrix M by col(M)j , formally
col(PBWT)1 = col(M)1 and col(PBWT)j [i] = col(M)j [PAj [i]] for all i = 1..h and j = 2..w.

The main idea is that the prefix-array stores in each column j the permutation of the rows induced by a co-lexicographic
ordering of the previous columns up to column j − 1 while the divergence array stores in column j and position i the
length of a longest common suffix between row i and the previous one in the permutation induced by the prefix array in
column j. Together these two arrays allow to efficiently compute matching queries over haplotype sequences. We note
that we frequently use n = h · w to bound the space- and time- complexity.

If we consider the PBWT shown in Figure 1 and Column 5, then DA[5][7] = 3 because the co-lexicographically 6-th
and 7-th row-prefixes (corresponding to PA[5][6] = 18 and PA[5][7] = 16 rows in the input matrix) up to Column 4 are
0100 and 1100 and their longest common suffix 100 has length 3.

2.2 Run-Length Encoded PBWT

Durbin noted that run-length encoding—originally described by Makinen et al. [14]) for the BWT—can be adapted to
the PBWT. We denote the run-length encoded PBWT matrix as RLPBWT. This extension is made by observing that
the the concept of run can be defined for the PBWT, i.e., the number of runs in the PBWT as the number of binary
substrings containing occurrences of the same symbol which are maximal in length. Given rj as the number of runs
in a RLPBWT column, we denote r as

∑
1≤j≤w rj . In the following we will use the term PBWT without a specific

distinction with the RLPBWT, as the RLPBWT distinguishes for the components it uses.

2.3 Set-Maximal Exact Matches

One of the fundamental tasks of the PBWT is one-vs-all set-maximal exact matches (SMEMs) finding: the main idea is
finding the longest common matching substrings between an external sequence P and any other sequence of the same
length that are represented in the PBWT. Formally, given w-length input sequences S = {S1, . . . , Sh} (sorted in M)
and a pattern P [1..w], we define P [i..j], where 1 ≤ i ≤ j ≤ w, to be a SMEM if it occurs in one of the input sequences
of S and one of the following holds: i) i = 1 and j = w; ii) i = 1 and P [1..j + 1] does not occur in S; iii) j = w and
P [i− 1..w] does not occur in S; iv) P [i− 1..j] and P [i..j + 1] do not occur in S.

We next define two problems related to finding the SMEMs. First we define the problem of identifying the SMEMs in
the pattern P .

Problem 1 (SMEM-finding) Given a set S = {S1, . . . , Sh} of h sequences of length w and a pattern P [1..w], find
the list L of pairs (p, ℓ) such that for all (p, ℓ) ∈ L, P [p..p+ ℓ− 1] are the SMEMs between S and P .

Then we define the problem of locating all the occurrences of the SMEMs in the panel.

Problem 2 (SMEM-locating) Given a set S = {S1, . . . , Sh} of h sequences of length w and a pattern P [1..w], find
the list L of triples (p, ℓ, O) such that for all (p, ℓ, O) ∈ L, P [p..p+ ℓ− 1] is an SMEMs between S and P where O is
the list of haplotypes where the SMEM occur.

Durbin’s Algorithm 5 [3] is able to solve Problem 2 in O(w)-time and O(n)-space, which corresponds to about 13n
bytes. This memory consumption is the major downside of this algorithm and the motivation that led us to develop a
run-length encoded PBWT that supports SMEMs finding and locating. For example, in Figure 1 (a), we have 9 SMEMs
computed by the pattern P in Figure 1 (c).

3 Methods

Our main contribution is a significant reduction in the memory used to store the PBWT via efficient sampling and storing
the PA and DA arrays. In particular, we reduce the space of Durbin’s PBWT, which is O(n)-space, to O(r)-space. And
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(a) Input Matrix M.
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1
2 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1
3 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
4 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
5 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
6 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
7 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
8 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1
9 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1
10 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
11 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
12 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
13 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
14 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
15 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
16 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
17 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1
18 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1
19 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1
20 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1

(b) PBWT.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1
2 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1
3 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1
4 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1
5 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1
6 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
7 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0
8 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1
9 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1

10 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
11 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1
12 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1
13 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
14 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
17 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
18 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1
19 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1
20 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1

(c) Pattern P with matching statistics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1
row 20 20 17 16 14 14 20 20 20 20 12 12 18 18 18
len 1 2 3 4 5 6 4 5 6 7 4 5 2 3 4

(d) Prefix array.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 5 1 1 9 15 15 15 15 1 1 1 8 2 19
2 2 6 2 2 12 16 16 16 16 17 17 17 20 10 5
3 3 7 3 3 13 18 1 1 1 9 12 19 2 11 6
4 4 8 4 4 14 1 10 10 10 12 19 18 15 19 7
5 5 9 5 5 15 5 11 11 11 19 18 5 16 5 3
6 6 10 6 6 16 6 17 17 17 18 5 6 10 6 4
7 7 11 7 7 18 7 9 9 9 5 6 7 11 7 12
8 8 12 8 8 19 8 12 12 12 6 7 8 1 3 13
9 9 13 9 9 20 10 13 13 13 7 8 20 17 4 14

10 10 14 10 10 1 11 14 14 14 8 20 2 19 12 9
11 11 15 11 11 2 17 19 19 19 20 2 3 18 13 8
12 12 16 12 12 3 9 20 2 18 2 3 4 5 14 20
13 13 17 13 13 4 12 2 3 5 3 4 15 6 9 15
14 14 19 14 14 5 13 3 4 6 4 15 16 7 8 16
15 15 20 15 15 6 14 4 18 7 15 16 10 3 20 1
16 16 1 16 16 7 19 18 5 8 16 10 11 4 15 17
17 17 2 17 17 8 20 5 6 20 10 11 12 12 16 18
18 18 3 19 18 10 2 6 7 2 11 13 13 13 1 2
19 19 4 20 19 11 3 7 8 3 13 14 14 14 17 10
20 20 18 18 20 17 4 8 20 4 14 9 9 9 18 11

Figure 1: The input matrix M of 20 individuals of 15 bi-allelic sites (a), its PBWT (b), a query pattern P and its
matching statistics with respect to M (c), the prefix array (PA) of M (d). SMEMs are circled in both the pattern and the
input matrix M. We illustrate the SMEM-finding via computation of matching statistics. We start from an arbitrary row.
In this case, we choose the 20-th, where col(PBWT)1[20] = 0. Since we have that P [1] = 0, we proceed to the next
column, and store A[1].row = 20 and A[1].len = 1. To advance by column, we compute the mapping function of row
20 from first column to the second. Observe that the mapping function is used to compute index k of col(PBWT)i+1

that contains A[i].row (details in section 3). Hence, the result is that we are mapping to col(PBWT)2[15]. At the
second column, we have P [2] = col(PBWT)2[15], so we can proceed to the next column, storing A[2].row = 20
and A[2].len = 2. Following the mapping of the row 20, we move onto col(PBWT)3[19]. We have a mismatch at
column 3 since P [3] ̸= col(PBWT)3[19]. At this point, we can move to either the last character of the previous run,
col(PBWT)3[17], or the first character of the next run, col(PBWT)3[20], having PA3[17] = 17 and PA3[20] = 18. If
we look at the input matrix M, we have that, up to column 3 excluded, row 17 has a common suffix to row 20 longer than
row 18. So, the best option to maximize the length of the current match is to move to row 17, storing A[3].row = 17
and A[3].len = 3. Now we use row 17 to compute the mapping function from column 3 to column 4. We proceed in
this way until we complete the computation of A. Finally, with a sweep from left to right over A, we can compute all the
SMEMs looking at the indices where A[i].len ≥ A[i+1].len, as shown through the colored rounded boxes covering P .
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while most of the PBWT operations which require O(1)-time in Durbin’s PBWT—which explicitly stores the input
matrix and the associated divergence and prefix arrays—take O(log r)-time, this runtime is not observed in practice.
We point to the experimental result for illustration of this fact in section 4. Lastly, we refer the reader to Bonizzoni et
al. [17] for a more thorough evaluation of the data structures for the PBWT that support different time/space tread-offs
for SMEM-finding.

3.1 Overview of µ-PBWT

The problem of finding SMEMs can be cast into the problem of computing matching statistics for P . Given a pattern
P [1..w], the matching statistics of P with respect to S are an array A[1..w] of (row, len) pairs such that for each
position 1 ≤ j ≤ w A[j].row is one row of the input matrix M where a longest shared common suffix of length
A[j].len, ending in position j in the pattern P and in SA[i].row, occurs. SMEMs can be computed from the matching
statistics for the PBWT as follows. We scan the matching statistics from right to left, and report a SMEM at the column
j − A[j].len + 1 (of the input matrix) of length A[j].len if either j = w, or A[j].len ≥ A[j + 1].len. Informally,
A[j].len ≥ A[j + 1].len occurs when we cannot extend to the right the current longest common suffix (of length
A[j].len) shared by P and any row in the input matrix. We show an example of matching statistics for the input matrix
M in Figure 1.

Next, in Section 3.2, we show how to compute the matching statistics in O(r)-space by storing the following: (1) A
mapping structure to support the navigation of the RLPBWT; (2) The samples of the prefix array (PA) in correspondence
of the beginning and end of each run in the RLPBWT; and (3) The thresholds identifying the positions of the first
minimum divergence array (DA) value in each run in the RLPBWT. In Section 3.3, we show how to solve Problem 2 in
O(r)-space of a small data structure that we refer to as Φ for the PBWT.

3.2 Finding SMEMs in µ-PBWT

As previously mentioned, our solution to finding SMEMs in O(r)-space requires three data structures, which we now
describe.

3.2.1 Mapping Structure

Given the position of a bit σ in the PBWT, say the i-th row and j-th column, our mapping data structure returns the
positions in the next column of the PBWT of the bits immediately to the right in M. This is equivalent to forward
stepping in the PBWT:

FL[i][j] =
{
uj [i] + 1 if σ = 0

vj [i] + c[j] + 1 if σ = 1

Where i) uj [i] is the number of zeros until i in col(PBWT)j ii) vj [i] is the amount of ones until i in col(PBWT)j and
iii) c[j] is the total amount of zeros in col(PBWT)j , as in Durbin’s paper.

This mapping allows us to step from one column to the next one (to right) in the PBWT. Here, we remind the reader
that due to the co-lexicographical ordering on the PBWT, it follows that FL-mapping and forward stepping is the
analogous counterparts of the LF-mapping and the backward stepping in the BWT. Summarizing, for each column j in
the RLPBWT, we store i) the rj run head indices pj , ii) a single r-length data structure uvj for both uj and vj , iii) the
integer c[j], iv) a boolean value b storing the symbol of the first run.
In particular, the representation uvj for both uj and vj consists of an interleaved representation for each integer
i, with 1 ≤ i ≤ r of the value vj (or uj , respectively), up to the start of run i, if the i-th run consists of zeros
(or ones, respectively). For example, given col(PBWT)j = 00101111000000000000 (with r = 5), we store: i)
pj = [1, 3, 4, 5, 9], ii) uvj = [0, 2, 1, 3, 5], iii) c[j] = 15, iv) bj = ⊤.

3.2.2 PA Samples and Thresholds

Given the RLPBWT, we store the positions of the first minimum divergence array (DA) value for each run in each
column of the RLPBWT. We refer to these as thresholds. More formally, let col(PBWT)k[i..j] be a maximal run
in the k-th column of the PBWT, we store the PA sampled at run boundaries, i.e., the values of PAk[i], PAk[j]. We
implement the thresholds as bit-compressed integer vectors to store both PA samples and thresholds.

3.2.3 Computing the Matching Statistics

Given our data structure, we show how to compute the matching statistics using an algorithm similar to the one used
by Rossi et al. [18], which computes the matching statistics in the BWT. In particular, we compute the matching
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statistics in a two-pass algorithm over the input pattern P . During the first scan, we process the pattern P from left
to right, storing for each position the row component of the matching statistics. In the second scan, we process the
pattern P from right to left, and with the use of a random access data structure on the binary array M, we compute
the len component of the matching statistics. We assume that we computed the matching statistics component up to
position k − 1, and are processing the k-th column. We let i be the row of the PBWT that matches the longest suffix
of P [1..k − 1] that is suffix of S1[1..k − 1], . . . , Sh[1..k − 1], and let p be the corresponding row in M i.e., for all
j ∈ [1..h], lcs(P [1..k − 1], SPAk[i]

[1..k − 1]) ≥ lcs(P [1..k − 1], SPAk[j]
[1..k − 1]) with p = PAk[i] where lcs(S, T )

denotes the longest common suffix between two sequences S and T . Then we distinguish two cases: match in k-th
column, i.e. when col(PBWT)k[i] = P [k] and mismatch in k-th column, i.e. when col(PBWT)k[i] ̸= P [k]. If we
have a match, then row i can be used to extend the suffix of P [1..k − 1] to P [1..k]; hence we can assign A[k].row = p,
A[k].len = A[k − 1].len + 1, i = FL[i][k], and p does not change. Otherwise, if we have a mismatch, it means that
for extending the suffix of P [1..k − 1] to P [1..k] we need to move to a run before or after the one containing row i in
col(PBWT)k, as the value P [k] ̸= col(PBWT)k[i]. Thus let col(PBWT)k[s..e] be a maximal run containing position i,
then the longest suffix of P [1..k] that is suffix of S1[1..k], . . . , Sh[1..k] is either the one corresponding to the preceding
end or following start of a run of value P [k] in col(PBWT)k with respect to position i, i.e., either SPAk[s−1]

[1..k]

if s > 1 or SPAk[e+1]
[1..k] if e < n. Since for each run we have stored the samples of PA at the beginning and at

the end of each run, and we have the value of p, we can use the thresholds to decide which candidate to choose. Let
t be the position of the threshold in the current run. Indeed the thresholds by definition report the positions of the
first minimum divergence array (DA) value in each run. More precisely, if the position t is such that i < t it means
that lcs(P [1..k], SPAk[s−1]

[1..k]) ≥ lcs(P [1..k], SPAk[e+1]
[1..k]) and we can assign A[k].row = p = PAk[s − 1]

and i = FL[s− 1][k]. Otherwise, lcs(P [1..k], SPAk[s−1]
[1..k]) ≤ lcs(P [1..k], SPAk[e+1]

[1..k]) hence we can assign
A[k].row = p = PAk[e+ 1] and i = FL[e+ 1][k].

Once we have collected all the occurrences of maximal matches between the pattern and the matrix, we can compute
the lengths of those matches by scanning the pattern P from right to left and by comparing the characters in the pattern
P and in the matrix in correspondence of row A[i].row. To iterate this row, we use the reverse mapping. An illustration
of the computation of the matching statistics is shown in Figure 1.

3.3 Locating SMEM in µ-PBWT

We note that although it is reasonably straightforward to report the number of occurrences of a given SMEM in S, it is
more challenging to find the location of all the occurrences in S. To accomplish this, we store a small data structure
that answers queries of the form: given a column index and a prefix array value j, return the previous and the next
prefix array value in that column. We observe that these two values correspond to rows that we need to consider for
finding common suffixes with row j—and thus, the occurrence(s) of a SMEM in S. We refer to these as Φ-queries in
the PBWT.

More formally, given an index k, we let IPAk be the inverse permutation of PAk, i.e. IPAk[PAk[i]] = i, and define the
Φ function [19] for all 1 < l ≤ h as Φk(l) = PAk[IPAk[l]− 1]. Therefore if IPAk[l] = i, or equivalently PAk[i] = l, it
follows that Φk(PAk[i]) = PAk[i−1], i.e., given a value of PAk in position i, the Φ function returns the preceding value
of PAk in position i− 1. Analogously, we can define the inverse of Φ for all 1 ≤ i < h as Φ−1

k (i) = PAk[IPAk[i] + 1].
For example, assuming PA6 = [15, 16, 1, 10, 11, 17, 9, 12, 13, 14, 19, 20, 2, 3, 4, 18, 5, 6, 7, 8] and i = 3, we have that
Φ6(4) = 3 and Φ−1

6 (3) = 18. Gagie et al. in [20] showed that the Φ (or Φ−1) function for the BWT can be stored in
O(r) words, and evaluated in O(log logw(n/r))-time, where w = Ω(log n).

To better understand the Φ-function, we observe that whenever we perform an FL mapping in a column of the PBWT
of two consecutive equal symbols (0 or 1), the resulting positions of the haplotypes in the PBWT are consecutive in the
next column after the mapping and their relative order is preserved. Formally, for all 1 ≤ j < w and for all 1 ≤ i < h,
if col(PBWT)j [i] = col(PBWT)j [i− 1] then FL[i][j] = FL[i− 1][j] + 1 = k and therefore, PAj [i] = PAj+1[k] and
PAj [i − 1] = PAj+1[k − 1]. This implies that if we store the PA samples at the beginning and at the end of each
PBWT run, and the whole PAw column then if we can compute the value of Φ(PAj [i])—i.e., compute the value of
PAj [i− 1]—by performing a FL mapping as long as the corresponding PBWT values are the same. Now if we assume
k is the column and i′ is the row corresponding to the PBWT values mismatch, then we have that PAk[i

′] = PAj [i] and
PAk[i

′ − 1] is sampled since it is at the end of a run. Therefore, by the above observation, we can retrieve the value of
PAj [i− 1] = PAk[i

′ − 1]. An example of iterative FL mapping to perform Φ queries is depicted in Figure 1d.

We observe that we can use at this point the DA samples together with the information of the current row of a SMEM
and the next/previous row retrieved by Φ function, to directly check if also the latter shares the same SMEM. Therefore,
if we store the DA sample at the beginning of each PBWT run, while computing the Φ-function for PAj [i], we can
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recover the value of DAj [i] as DAk[i
′]− (k− j), that is removing from the sampled value DAk[i

′] the distance travelled
by the repeated application of the FL mapping.

To avoid performing O(k − j − 1) FL steps, it is possible to store a successor data structure maintaining the columns
where the haplotypes appear as PA sample at the beginning of a run and storing the corresponding sample at the end of
the previous run and the DA sample as satellite information. For example, consider the SMEM in Figure 1 identified by
A[6].pos = 14 and A[6].len = 6. Since ϕ(14) = 13 and DA7[10] = 6 (having PA7[10] = 14) then it follows that we
know 13-th row shares the same SMEM. Using ϕ, we can iterate until ϕ(9) = 17, having that DA7[7] = 1. Using ϕ−1,
we reach 19-th row (ϕ−1(14) = 19) but DA7[11] = 3, which is less than A[6].len = 6—so we don not have any other
row that share this SMEM.

4 Results

We demonstrate the performance of µ-PBWT by comparing µ-PBWT with: Durbin’s Algorithm 5 (implemented as
matchIndexed if the official source code) and Syllable-PBWT [15]. More precisely, for Durbin’s Algorithm 5, we will
evaluate a) the memory usage peak and b) the time required for SMEMs finding. For Syllable-PBWT we will evaluate
a) the memory usage peak for index construction and b) the size of serialization files. We could not compare µ-PBWT
performance in SMEMS-finding with Syllable-PBWT since Syllable-PBWT implementation allows to computes only
L-long matches, that are matches length at least L sites. Therefore, L-long matches are a superset of SMEMs. Finally,
we report some statistical results on µ-PBWT.

Implementation details. µ-PBWT is implemented in C++17 using standard library data structures and relying on the
Succinct Data Structure Library (sdsl) [21] for succinct data structures implementations such as int_vectors and
sd_vectors with rank and select support. VCF and BCF files input files are supported using the htslib library
[22].

Experimental setup. We demonstrate the performance of µ-PBWT on real-world and simulated datasets. We report
the time and memory used for construction and SMEM-locate queries.

We ran experiments on a machine with an Intel Xeon CPU E5-2640 v4 (2.40GHz), 756 GB RAM, and 768 GB of swap,
running Ubuntu 20.04.4 LTS (64bit, kernel 5.4.0). The compiler was g++ version 9.4.0 with -O3 option. The running
time and the maximum resident set size was computed by /usr/bin/time.

Datasets. We first tested µ-PBWT on all chromosome panels from the 1000 Genome Project. The VCF files were
downloaded1 and converted to contain only bi-allelic sites via bcftools view -m2 -M2 -v snps [23]. The resulting
chromosome panels have 5008 haplotypes and a number of bi-allelic sites ranging from ∼1 million to ∼6 millions.
Statistics of the 1000 Genome project panels are in Table 1. Experimentally, we observed these panels are sparse,
having indeed fewer ’1’s compared to ’0’s. The sparsity of data is confirmed by the average number 11 of runs per
column in the run-length encoded PBWT.

We used UK Biobank SNP array data across all autosomes (any chromosome that is not a sex chromosome) and
high-coverage whole genome sequencing data on chromosome 20 [24]. For the SNP array data, we applied the
standard QC recommended by the original authors [24], and phased the data using SHAPEIT4 [25] resulting in 976,754
haplotypes and a total of 670,741 SNPs. For the whole genome sequencing data available on the UK Biobank research
analysis platform [1], we used data recently processed and phased by the SHAPEIT5 authors [26], for a total of 300,238
haplotypes and 13,780,193 bi-allelic SNPs and indels on chromosome 20. For the UK Biobank WGS dataset, we
applied our method independently to 13 regions of at least 4 megabases and 4 centimorgans on chromosome 20.

Finally, we simulated a 10 megabase region of European samples simulated with msprime [27] with an increasing
number of haplotypes up to 2 million (10k, 100k and 1000k individuals, namely panels 1,2 and 3). We also sub sampled
the panel with 1000k individuals to obtain two additional panels, namely panels 4 and 5, with the same amount of sites
but with 100k and 250k individuals. In Table 2 we have collected the quantitative data of these panels. The BCF files
were pre-processed to contain only bi-allelic sites.

Results on 1000 Genomes Project data. In Figure 2 a) we report: i) memory peak during construction of µ-PBWT
ii) memory peak during querying of µ-PBWT and iii) Syllable-PBWT memory peak of construction. To improve the
readability, we excluded Durbin’s Algorithm 5 memory requirements from the plot, ranging from 60GB to 400GB. We
note that our serialization files, as in Table 1 and Figure 4 a), require only twice the memory compared to the input.

1Publicly available at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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Table 1: 1000 Genome Project panels information. Columns from left to right report the chromosome number, the
number of sites, the average number of runs for each column, the size of the input (in BCF), the size of µ-PBWT
serialization file and the size of Syllable-PBWT serialization file. The last two columns are measured in GB. Each panel
has 5008 haplotypes.

Chr Sites Runs BCF µ-PBWT Syllable-PBWT
1 6 196 151 11 0.14 0.29 0.33
2 6 786 300 10 0.14 0.30 0.33
3 5 584 397 10 0.22 0.41 0.54
4 5 480 936 10 0.23 0.45 0.54
5 5 037 955 9 0.28 0.51 0.67
6 4 800 101 10 0.28 0.55 0.69
7 4 517 734 10 0.32 0.63 0.80
8 4 417 368 10 0.29 0.57 0.72
9 3 414 848 11 0.32 0.58 0.78
10 3 823 786 10 0.35 0.60 0.84
11 3 877 543 10 0.47 0.82 1.14
12 3 698 099 10 0.49 0.84 1.19
13 2 727 881 10 0.50 0.87 1.18
14 2 539 149 11 0.43 0.81 1.05
15 2 320 474 12 0.56 0.97 1.36
16 2 596 072 12 0.58 1.03 1.39
17 2 227 080 12 0.64 1.06 1.48
18 2 171 378 11 0.63 1.08 1.55
19 1 751 878 13 0.71 1.19 1.69
20 1 739 315 11 0.71 1.20 1.72
21 1 054 447 14 0.84 1.47 2.09
22 1 055 454 14 0.78 1.44 1.91

Table 2: Simulated panels information. Columns from left to right report an ID, the number of sites, the number of
haplotypes, the average number of runs for each column, the size of the input (in BCF), the size of µ-PBWT serialization
file and the size of Syllable-PBWT serialization file. The last three columns are measured in GB. In addition, in the
last row, we report results on high- coverage whole genome sequencing data on chromosome 20. We were not able to
run all the experiments with the Syllable-PBWT due to disk limits, as the input format of Syllabe-PBWT being only
uncompressed VCF files.

Panel Sites Haplotypes Runs BCF µ-PBWT Syllable-PBWT
1 209 531 20k 9 0.04 0.06 0.25
2 743 171 200k 13 0.55 0.34 8.70
3 2 271 035 200k 4 1.2 0.49 -
4 2 271 035 500k 8 2.6 0.78 -
5 2 271 035 2000k 18 9.8 2.02 -

Chr20 13780193 300238 - 29.6 13 -

Regarding the comparison with Durbin’s Algorithm 5, its memory peak is up to 80 times the memory peak of µ-PBWT
during both building and querying. We have also compared the serialization sizes of Syllable-PBWT. µ-PBWT requires
25% less memory for the serializations but requires up to twice the memory for building.
To test the performance of computing SMEMs, 100 haplotypes were extracted from the input panels (reduced to 4908
samples), to use them as queries. In Figure 2 b) we can compare the building time with Syllable-PBWT and the
SMEM-finding time with Durbin’s Algorithm 5. We note that µ-PBWT requires twice more time than Syllabe-PBWT
for building the index file while regarding the latter our SMEM-finding algorithm requires about twice more time
than Durbin’s Algorithm 5 when considering combined building and querying time, since Durbin’s implementation
of Algorithm 5 computes most of the necessary arrays at query time. In Figure 3 a) we report the stratification of the
memory usage of µ-PBWT for the mapping structure, PA/DA samples, thresholds, and Φ data structure. The Φ data
structure is the component that requires the great amount of memory, since it stores two sparse bitvectors panels and
three bit-compressed int-vectors that scale with the total number of runs of the PBWT.

Results on simulated panels and UK Biobank data. We summarize the UK Biobank SNP array data results across
all autosomes in Table 3. Due to the low sparsity of these panels, this produced µ-PBWT with an high number of
runs for each column, for example about 13462 for chromosome 20 panel. We run in parallel µ-PBWT on all the 22
chromosomes, building our serialization files in less than 2 hours. We also applied our method on the UK Biobank
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Table 3: Results on UK Biobank SNP array panels. Columns from left to right report the chromosome number, the
number of sites, the size of the input (in BCF) and the size of µ-PBWT serialization file. Each panel has 976754
haplotypes. The last three columns are measured in GB.

Chr Sites BCF µ-PBWT
1 54 432 4.2 13
2 53 433 4.2 13
3 44 935 3.6 11
4 41 678 3.3 10
5 40 020 3.2 9.6
6 46 515 3.9 9.4
7 36 682 3.0 8.9
8 34 141 2.7 8.2
9 29 581 2.4 7.7

10 33 086 2.7 8.2
11 33 827 2.7 7.8
12 32 011 2.6 8
13 22 344 1.9 6.3
14 21 708 1.8 5.8
15 21 286 1.8 6.1
16 24 314 2.0 6.4
17 22 856 1.9 6.2
18 19 432 1.6 5.8
19 19 845 1.6 5.3
20 17 515 1.5 5.2
21 9940 0.8 3.4
22 11 160 0.9 3.6
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Figure 2: Results comparison on 1000 genome Project data. In a) we have maximum memory usage during building
and querying. In b) we have time results, for building, loading and querying.
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Figure 3: Results comparison on a) 1000 Genome Project data and b) simulated panels, regarding memory usage of the
main components of µ-PBWT.
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Figure 4: Results comparison on a) 1000 genome Project data and b) simulated panels, regarding BCFs, µ-PBWT
serialization file and Syllable-PBWT serialization files.
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Figure 5: Results comparison on simulated panels. a) Memory usage, combining the size of the various files and the
memory peak usages during building. b) Running time for both building and loading the index. Results regarding the
original implementation of the PBWT are estimated. We were not able to run all the experiments with the Syllable-
PBWT due to disk limits, as the input format of Syllabe-PBWT being only uncompressed VCF files.

high-coverage whole genome sequencing data on chromosome 20. In this setting, our method is able to build an
index for the full chromosome 20 in 13 GB of space that represents an almost three times decrease compared to the
original gzipped BCF files (stored in a 29GB file), highlighting the potential of our method for compressed genomics
on next-generation datasets. Full results are available in Supplementary Material (Table 4).

Additionally, more detailed results were obtained on the simulated panels. Only the two smaller datasets (panel 1
and panel 2) allowed experimentation with Syllable-PBWT, which takes as input only raw (not gzipped) VCF files.
Syllable-PBWT produced serialization files requiring up to 25 times more space, 16 times more memory and 16 times
more time compared to µ-PBWT. The results are displayed in Figure 4 b). As baseline, we also plot Durbin’s Algorithm
5 estimations on memory usage. On the largest panel, µ-PBWT reduces the memory consumption of about 25000
times compared to the original PBWT implementation. The average number of runs in each column confirms the high
sparsity of these simulated panels, achieving greater effectiveness in the use of run-length encoding and data structures
that scale linearly (both in space and time) on the number of runs.

All the serialization files generated by µ-PBWT are loaded less than 30 seconds on a commodity laptop (AMD Ryzen7
3700U and 16 GB RAM), drastically reducing the hardware requirements for data sharing and analysis whole genome
sequencing data.

5 Conclusions

In this paper, we present µ-PBWT, introducing a light index for the PBWT data structure. It leverages the run-length
encoding paradigm to solve in small space the problem of finding maximal matches in a set of haplotype sequences.
More precisely, we show how significantly it reduces the space requirements for solving two major problems: the
SMEMs-finding (i.e. computing maximal matches) and SMEMs-location (i.e. finding occurrences). The main idea
behind our method is that µ-PBWT stores only the information needed to navigate the PBWT by leveraging the
runs of haplotypes. Compared to the investigation of the use of the BWT for large genomics data, the PBWT has
been comparatively overlooked by the data structures community, even though the increased demand of tools for
managing large phased datasets, such as the UK Biobank whole genome sequencing data, for which the PBWT has
been originally proposed, making the urgent need of space efficient solutions to store and use these data. Our results
address this need, as we show that µ-PBWT allows a very light indexing of modern biobank data, potentially allowing
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large whole-genome datasets to be stored and used on a commodity laptop. Results on both the 1000 Genome Project
data and simulated panels suggest that µ-PBWT can scale on whole genome genotype data and it can be used for future
analysis on large and repetitive datasets.
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