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Abstract: Immunoglobulin (Ig)G antibodies coordinate immune effector responses by 
selectively binding to target antigens and then interacting with various effector cells via the 
Fcγ receptors. The Fc domain of IgG can promote or inhibit distinct effector responses 
across several different immune cell types through variation based on subclass and Fc 15 

domain glycosylation. Extensive characterization of these interactions has revealed how 
the inclusion of certain Fc subclasses or glycans results in distinct immune responses. 
During an immune response, however, IgG is produced with mixtures of Fc domain 
properties, so antigen-IgG immune complexes are likely to almost always be comprised of 
a combination of Fc forms. Whether and how this mixed composition influences immune 20 

effector responses has not been examined. Here, we measured Fcγ receptor binding to 
immune complexes of mixed Fc domain composition. We found that the binding properties 
of the mixed-composition immune complexes fell along a continuum between those of the 
corresponding pure cases. Binding quantitatively matched a mechanistic binding model, 
except for several low-affinity interactions mostly involving IgG2. We found that the 25 

affinities of these interactions are different than previously reported, and that the binding 
model could be used to provide refined estimates of these affinities. Finally, we 
demonstrated that the binding model can predict effector-cell elicited platelet depletion in 
humanized mice, with the model inferring the relevant effector cell populations. Contrary to 
the previous view in which IgG2 poorly engages with effector populations, we observe 30 

appreciable binding through avidity, but insufficient amounts to observe immune effector 
responses. Overall, this work demonstrates a quantitative framework for reasoning about 
effector response regulation arising from IgG of mixed Fc composition. 

Summary points 
• The binding behavior of mixed Fc immune complexes is a blend of the binding 35 

properties for each constituent IgG species. 
• An equilibrium, multivalent binding model can be generalized to incorporate immune 

complexes of mixed Fc composition. 
• Particularly for low-affinity IgG-Fcγ receptor interactions, immune complexes provide 

better estimates of affinities. 40 

• The FcγR binding model predicts effector-elicited cell clearance in humanized mice.  
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Introduction 

Antibodies are both a core component of adaptive immunity and a versatile platform for 
developing therapies. An antibody’s role in promoting immunity is defined by its selectivity 

toward a target antigen, as determined by its variable region, and its ability to elicit effector 45 

cell responses, defined by the composition of its constant, fragment crystallizable (Fc) 

region. Antibodies of the IgG type direct effector response by binding to the Fcγ receptor 

(FcγR) family via their Fc-portion. FcγR activation is initiated through IgG-mediated 

clustering, which in turn is caused by the engagement of several antibodies on an antigen 

target forming an immune complex (IC). Depending upon the receptors included, this 50 

interaction may promote or prevent an effector response. This clustering mechanism 

ensures that more than one IgG is present whenever effector responses occur. 

The immune response triggered by an IgG IC consisting of a specific Fc form, including 

subclass or glycosylation, is defined by its binding to specific Fcγ receptors, each of which 

differs in signaling effect and expression patterns1. Consequently, accurate estimates of 55 

IgG Fc-FcγR affinities are essential to understanding their effect. Most existing FcγR 

affinity measurements have been performed by surface plasmon resonance (SPR) using 

monovalent IgG2,3. SPR accurately assesses protein-protein binding kinetics, but many 

antibody-Fc receptor interactions are weak enough to fall outside the assay’s quantitative 

range when assessed in monovalent form. Clustering leads to avidity effects, wherein even 60 

weak interactions can cooperatively lead to strong binding4. Indeed, avidity is widely 

employed in natural and engineered systems to promote binding through low-affinity 

interactions5. Therefore, direct measurement of IC binding might more accurately quantify 

IgG Fc properties, particularly for low-affinity interactions. Measuring Fc binding as 

multivalent ICs additionally resembles the relevant in vivo context of effector responses6. 65 

Physiological antibody responses universally involve Fc mixtures. For instance, during the 

course of infection, the composition of IgG subclasses shifts dynamically to different 

subclasses due to class switching7. Even when recombinantly manufacturing monoclonal 

therapeutic antibody preparations, heterogeneity exists in the glycosylation forms derived, 

and this glycan heterogeneity likely exists during endogenous antibody production as 70 

well8,9. With a mixture of antibodies of different Fc compositions but identical antigen 
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binding, there might be an additive combination of effect, or a minor species (e.g., 

glycosylation variant) might present an outsized effect promoting or preventing effector 

responses. Therefore, knowledge of how these different forms influence the behavior of 

one another would allow one to modulate immune responses by adjusting the combination 75 

of different subclasses. With respect to therapeutic monoclonal antibody preparations, this 

would help guide the evaluation of biosimilars by determining whether glycosylation forms 

present at small fractions might influence overall therapeutic efficacy10. 

After binding to Fc receptors, effector cell-elicited responses to IgG include several 

different functionally distinct mechanisms, including antibody-dependent cell cytotoxicity 80 

(ADCC) and phagocytosis (ADCP). Effector responses are coordinately regulated by the 

cell types present within a tissue11,12, the FcγRs expressed on those effector cells13, the Fc 

properties present within an immune complex1, and properties of antigen engagement14,15. 

Regulation at the Fc receptor and cell population level is a challenge to engineering 

antibodies with desirable cell-killing functions, as well as understanding both productive 85 

and pathogenic immune responses. Furthermore, it has become clear that in addition to 

NK cells, tissue-resident macrophages and bone marrow-derived monocytes participate in 

cytotoxic antibody-dependent target cell clearance. In contrast to NK cells (expressing only 

one activating FcγR, FcγRIIIA), these myeloid cell subsets express a broader set of 

activating FcγRs and the inhibitory FcγRIIB13. Thus, mixed IC may trigger all or specific 90 

subsets of activating/inhibitory FcγRs, resulting in further complexity. Despite the presence 

of and capacity to bind to multiple activating FcγRs on myeloid effector cells, our previous 

studies have demonstrated that individual IgG subclasses, such as mIgG2a/c for example, 

may mediate their activity through select activating FcγRs, indicating that there may be 

specialization in FcγR signaling6. 95 

Our team recently demonstrated that a model of IC-FcγR binding accurately captured and 

could predict in vitro binding across various IgG isotypes16. Further, it could accurately 

predict antibody-elicited tumor cell killing in mice across antibodies of varied isotype, 

glycosylation status, and FcγR knockouts16. Directly quantifying and predicting cell 

clearance makes it possible to accurately anticipate and optimize for antibody-mediated 100 

therapeutic effects. However, it is still unclear whether such a modeling strategy can 

accurately predict the response of human immune cells, particularly given the divergent 
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properties between the murine and human receptors17–19, and whether this modeling 

strategy can extend to ICs of mixed composition.  

Here, we examined the binding properties of ICs with mixed IgG Fc composition. We 105 

quantified the binding of these ICs to each individual FcγR and observed that mixed-

composition ICs resulted in a continuum of binding responses. A multivalent binding model 

extended to hetero-valent immune complex mixtures captured binding overall. However, 

surprisingly, it did not match certain low-affinity interactions20. Investigating the source of 

this discrepancy allowed us to improve the estimates of these interactions’ affinities. We 110 

additionally demonstrate that the binding model can be used to both predict in vivo effector 

responses in humanized mice and infer the cell types responsible for these responses. 

Thus, while antibody effector responses operate through a complex milieu of antibody 

species, Fc receptors, and cell types, IC profiling paired with modeling provides a 

framework to reason about the role of each molecular and cellular element. 115 

Results 

Profiling the binding effects of mixed-composition immune complexes 
To determine the effect of having multiple Fc forms present within an immune complex 

(IC), we developed a controlled and simplified in vitro system. Like in previous work, we 

employed a panel of CHO cell lines expressing one of six individual human FcγRs16 120 

(Fig. 1a). ICs were formed by immobilizing anti-2,4,6-trinitrophenol (TNP) human IgG on 

conjugates of TNP and bovine serum albumin (TNP-BSA) with an average valency of 4 or 

33. IgG binding was then quantified after incubation with the cells, using a constant IC 

concentration of 1 nM (Fig. S1). In contrast to our previous work using a single IgG 

isotype, we assembled ICs from mixtures of each IgG isotype pair16. For each pair of IgGs, 125 

ICs were formed with a spectrum of six compositions of the IgG pair, including 100%/0%, 

90%/10%, and 67%/33% mixtures. Combinations of 6 FcγRs, 2 valencies, 6 IgG pairs, and 

6 IgG compositions resulted in 432 distinct experimental conditions. One-way ANOVA 

showed that more than 70% variance in the data are between experimental conditions 

rather than within them, indicating that more than 70% of the variance could be explained 130 

by biological differences. This suggests that, within each condition, measurements were 

consistent (Tbl. S1). 
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Inspection of the resulting binding data revealed several expected patterns. Among the 

conditions with only one IgG present, the measured binding showed a strong, positive 

correlation with the documented IgG-FcγR interaction affinities (Fig. 1b). The higher 135 

valency ICs universally showed greater binding signal compared to their matching lower-

valency counterparts, and there is an obvious negative trend between documented 

affinities and the ratio between the 33-valent and 4-valent complex binding (Fig. 1c). This 

trend is expected since, although complexes of both valencies can bind densely with high-

affinity units, only high-valent complexes compensate for low affinity through avidity4. 140 

Therefore, while high-affinity complexes result in greater binding, low-affinity complexes 

have greater intervalency binding ratios. Finally, mixtures spanning 100% of one IgG 

isotype to another generally showed a monotonic shift with composition (Fig. S1). These 

patterns, along with their reproducibility (Tbl. S1), gave us confidence in the quality of the 

binding measurements. 145 

We also observed several unexpected trends among the binding measurements. There 

was appreciable binding from IgG2-FcγRI interactions, despite this combination being 

reported as non-binding3 (Fig. 1d). We also saw an increase in binding along the shift from 

IgG4 to IgG1 with FcγRIIIA-158F, even though these two isotypes are documented to have 

identical affinity3 (Fig. 1e). These two observations are consistent with previous binding 150 

measurements using the same TNP-based IC system16. 

To better visualize the binding measurements, we performed principal component analysis 

(PCA) on the median measurement of each condition, with each isotype mixture and 

valency as a sample and each receptor as a feature. The first principal component (PC1) 

explains more than 86% of the variance, and the first two components (PC1 and PC2) 155 

explain 93% (Fig. 2a). Inspecting the scores, we found that the 33-valent measurements 

are more broadly distributed, consistent with their greater expected binding (Fig. 2b/c). 

PC1 mostly separates IgG3 binding from other isotypes, reflecting that IgG3 has the 

greatest binding among IgG subclasses (Fig. S1). PC2 separated the genotype variants of 

FcγRIIA and FcγRIIIA and associated most strongly with IgG3 and IgG4 (Fig. 2d), 160 

reflecting that these two subclasses showed larger differences in binding with genotype 

(Fig. S1). 
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In all, these data support that TNP-assembled ICs provide a controlled in vitro system in 

which we can profile the effects of mixed IC composition on binding to effector cell 

populations. Quantifying binding using ICs may, in fact, provide more precise quantification 165 

of IgG-FcγR interaction affinities, particularly for lower affinity pairs, and mixed Fc 

composition ICs showed binding between that of the corresponding single Fc cases. 

A multivalent binding model accurately predicts in vitro IgG mixtures binding and 
updates Fc-FcγR affinities 

To model the effects of polyclonal antibody responses, we extended a simple, equilibrium 170 

binding model that we have previously used to model antibody effector response16,20. 

Briefly, immune complexes are assumed to bind to FcγRs on the cell surface with 

monovalent binding kinetics, and then can engage additional receptors with a propensity 

proportional to their affinity (Fig. 3a). Though additional assumptions are not required for 

modeling ICs of mixed isotype composition, this extension leads to a large combinatorial 175 

expansion in the number of binding configurations. Through some properties of 

combinatorics, we derived simplified expressions for many macroscopic quantities to allow 

this model to scale to multi-ligand, multi-receptor, and multivalent situations20. 

We first used the measured receptor expression (Tbl. S2) and documented affinities3 with 

the model and obtained reasonable agreement overall (Fig. 3c). While the predicted values 180 

mostly agreed with the measurements, there were several notable outliers, most 

prominently an underestimate of IgG2-FcγRI binding (Fig. 3c, red circle). To improve the 

measurement fit, we reversed the estimation process and used the measured binding to 

infer the interaction affinities via Markov chain Monte Carlo (MCMC) (Fig. 3b). We first 

created a baseline fit quality by fitting all but the affinities (e.g., receptor abundance and 185 

the crosslinking parameter 𝐾!∗, Fig. 3d). Although the fit improved, outliers persisted 

(circled in red in Fig. 3d). Therefore, we next performed the fitting while allowing the Fc-

FcR affinities to vary. Although we only used the single-IgG measurements to infer the Fc 

affinities (Fig. 3e), we obtained much more accurate predictions for all measurements of 

both single and mixed IgG compositions (Fig. 3f). 190 

To further confirm the generality of these updated affinities, we validated these new affinity 

estimates with an independent dataset collected in a previous study16. This previous study 

independently measured the binding of BSA-TNP complexes in vitro with two distinct 
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average valencies (4 and 26), but only the binding of single IgG isotypes. We set the Fc 

affinities to either documented or updated values and let MCMC fit the other parameters. 195 

The new affinities resulted in a vastly improved agreement with the data (Fig. 3g/h). 

To illustrate the impact of the affinity changes, we compared the binding predictions with 

two sets of affinities (Fig. S2/S3) to their corresponding measurements (Fig. S1). For 

FcγRI binding to IgG2-IgG4 mixtures, the experiment indicated that there is still notable 

binding with mostly or 100% IgG2, while IgG2-FcγRI was documented as non-binding3. 200 

The updated values amended the prediction and reflected this interaction, especially for 

the 33-valent complex (Fig. 3i/j, green circle). For FcγRIIB-232I binding to IgG3-IgG4, the 

documented affinities indicated there should be more binding to IgG4 compared to IgG3, 

contrary to our observation (Fig. 3k). The updated affinities instead accurately predicted 

the binding of all mixtures at both valencies (Fig. 3l). These examples demonstrate that the 205 

affinity adjustments greatly improved agreement with the binding measurements. 

As our Fc affinity inference was constructed in a Bayesian fashion, both the prior 

(documented) and the posterior (updated) affinity values are represented as distributions 

accounting for uncertainty. Inspecting these updated distributions (Fig. 4a–d; Tbl. S3), we 

noted several trends. The model made the largest adjustments to the Fc affinities of IgG2 210 

(Fig. 4b), followed by IgG4 (Fig. 4d). Most IgG1 (Fig. 4a) and IgG3 (Fig. 4c) affinities 

remained unmodified, except for a slight increase in their FcγRIIB-232I affinities. The most 

notable update occurred to IgG2-FcγRI. Previously reported as nonbinding, FcγRI was 

revised to be the highest affinity receptor for IgG2, consistent with the receptor’s high 

affinity to other human IgG subclasses. This discrepancy was reflected in the model 215 

prediction before affinity fitting, where the IgG2-FcγRI binding was the striking outlier (Fig. 

3d/g). Another significant adjustment occurred with IgG3-FcγRIIB-232I. Although FcγRIIB-

232I has a low affinity for all IgG subclasses, our update led to IgG3 being the strongest-

binding subclass (Fig. 4c, S2 & S3). More subtle differences can be observed from specific 

model predictions (Fig. S2 & S3). The revised affinities showed a similar overall correlation 220 

with binding overall (Fig. 4e). The inter-valency binding ratios show a more prominent 

negative correlation, however, due to the movement of the IgG2-FcγRI outlier (Fig. 4f). 
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Multivalent binding predicts antibody-elicited effector responses in humanized mice 

We next sought to link the binding of ICs to their effects on the clearance of antigen targets 

in vivo. To quantify the antibody-driven activity of each effector cell, we first measured the 225 

binding of each human IgG subclass to immune effector cells in vitro in IC of two 

valencies, 4 and 33 (Fig. 5a–d). The measurements show that the binding amounts of 

IgG1 and IgG3 were generally about 10-fold higher in magnitude than those of IgG2 and 

IgG4. For the latter two subclasses, their 4-valent complex binding was almost negligible. 

In all cases except IgG2, neutrophils had more binding than classical and nonclassical 230 

monocytes. 

We predicted the same quantities of IC binding by the multivalent binding model with either 

the previously documented3 or updated affinities (Tbl. S4), and the quantification of FcγR 

abundance13 (Tbl. S6, Fig. 5e–h). These estimated binding amounts broadly aligned with 

the measurements. Between the two sets of affinities, the predictions for IgG1 and IgG3 235 

remained almost identical (Fig. 5e/g), while some differences were reflected in IgG2 and 

IgG4 (Fig. 5f/h), consistent with the affinities changing more for IgG2 and IgG4 (Fig. 4a–d). 

Most prominently, the predicted binding to nonclassical and classical monocytes was 

adjusted to be much higher for 33-valent IgG2 (Fig. 5f), better matching the measured 

values (Fig. 5b). These changes indicate that the updated affinities better predict IgG IC 240 

binding to effector cells, suggesting that they may also help improve the estimation of in 

vivo cell response. 

Next, we used the multivalent binding model with regression to predict in vivo antibody 

effector cell-driven platelet depletion in humanized mice. In the process of extending our 

previous model, we elected to use the cumulative density function of the exponential 245 

distribution as the link function in our generalized linear regression model to link the overall 

cell activity to the amount of target (e.g., platelet) depletion (Fig. 6a). Since the cell 

depletion effects have a limited range—one cannot deplete an antibody target of more 

than 100% or less than 0%—we must use a non-linear link function to transform the linear 

combination. While many functions provide this general relationship (such as the 250 

hyperbolic tangent function used before16), we realized that the extent of target cell 

depletion can be thought of as a form of survival analysis. In other words, given a certain 

antibody activity, a target cell has a certain probability of being cleared within the given 
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timescale of the experiment. Assuming all target cells have an equal propensity of being 

cleared dictates an exponential relationship for the link function21. 255 

Having refined the cell clearance model, we applied it to a previously-collected dataset 

examining platelet depletion in humanized mice22. After fitting the cell type weighting, we 

found the model fit the experiments well, especially considering the experiment-to-

experiment variability due to donor graft variation and other sources of experimental 

uncertainty (Fig. 6b/c). The fitting was almost identical when using documented (Fig. 6b) or 260 

updated (Fig. 6c) FcγR affinities. 

A benefit of the generalized linear regression model is that it provides an easy 

interpretation of each component. Inspecting the cell type weights, we found that classical 

monocytes were inferred to be the predominant effector cell type (Fig. 6d/e). IgG2 had 

some binding to each effector cell type, but no activity was inferred whatsoever (Fig. 5f, 265 

6d/e). As the affinity updates are most relevant to IgG2, and this isotype had no in vivo 

effect, it is reasonable that these changes had little effect on agreement with the data (Fig. 

5f, 6e). While classical monocytes were inferred to exert the greatest impact on platelet 

depletion across isotypes, neutrophils, not classical monocytes, had the greatest binding 

(Fig. 5a–d). This demonstrates that the most bound cell type does not equate to the most 270 

potent effector. The regression model can incorporate the molecular level binding 

estimation and the depletion outcome to provide insights into the overall potency of each 

cell type. Overall, we found that the binding model could predict antibody-elicited effector 

responses in vivo in humanized mice. 

Discussion 275 

In this work, we explored the binding properties of ICs with mixed IgG Fc composition and 

linked their in vitro effects to in vivo effector cell-elicited platelet depletion. To quantify the 

binding of mixed IgG ICs in vitro, we measured every human IgG subclass pair across a 

range of compositions multimerized at two different valencies (Fig. 1). Fitting these 

measurements to a model of multivalent interactions using documented affinities for each 280 

interaction, our model captured overall binding trends, with some outliers (Fig. 3). We 

uncovered that the model discrepancies could be explained by inaccurate estimates of 

especially low-affinity Fc receptor interactions, most prominently involving IgG2. We 
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validated revised affinities within an independent dataset and found it greatly improved 

concordance with the data there as well. Finally, we used measurements of binding to 285 

effector cell populations to predict in vivo antibody-driven depletion of platelets in 

humanized mice (Fig. 5 & 6). While the updated affinities did not change the agreement of 

the model with the data, it did change the interpretation of IgG2’s small effect on 

depletion—rather than not binding to classical monocytes, IgG2 binds strongly when in a 

larger IC, but platelets might provide insufficient avidity to observe sufficient engagement 290 

(Fig. 6).  

Considering that polysaccharide antigens present during bacterial infections or upon 

vaccination efficiently trigger IgG2 responses23, our data would support the notion that 

FcvR-dependent effector functions such as phagocytosis of opsonized bacteria may 

contribute to protective IgG responses in humans more than expected. Reversely, 295 

autoreactive IgG2 responses observed during many autoimmune diseases may contribute 

to autoimmune pathology via FcγRs, which may warrant to develop therapeutic 

interventions blocking this pathway also in IgG2-dominated autoimmune diseases24. 

Finally, with respect to the use of human IgG2 antibody formats as immunomodulatory 

antibodies for the therapy of cancer, our results would support strategies to engineer IgG2 300 

variants with reduced binding to activating FcγRs and optimized binding for the inhibitory 

FcγRIIb, which has been shown to be critical for immunomodulatory IgG activity to further 

improve their therapeutic activity and reduce unwanted side-effects25. 

IgG subclasses and glycan variants are defined by their differing affinity toward each Fc 

receptor3,19,26. Therefore, accurate measurements of each Fc receptor affinity are critical to 305 

understanding the differences in immune responses to each IgG. Using a mechanistic 

multivalent binding model alongside in vitro binding fluorescence measurements, we were 

able to derive a new set of Fc affinities distinct from those measured by surface plasmon 

resonance (SPR). Due to the heightened avidity, we found that multivalent ICs are better 

at detecting low-affinity IgG-Fc receptor interactions (Fig. 4b). Examining binding through 310 

ICs also better simulates the relevant structure of Fc-FcR interactions in vivo. Harnessing 

avidity to overcome the low affinity of interactions is a common theme in immunology and 

its experimental characterization. For instance, tetramers are routinely used for isolating 
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antigen-selective T cells27. Here, we additionally show that these complexes can be used 

alongside quantitative models to infer properties of these systems. 315 

Our results suggest that, within ICs comprised of several distinct subclasses or 

glycosylation variants, the Fc interaction effects are a blend of the constituent species’ 

properties. This means that ICs’ most extreme binding and effector responses should 

predominantly arise from whichever species is most potent in soliciting binding or a 

response. It also should provide some encouragement that the effector responses elicited 320 

from therapeutic antibodies should vary roughly in proportion to their relative composition, 

and small contaminants of alternative Fc subclasses or glycosylation can only have a 

substantial effect if those species differ extremely in their responses alone. One caveat of 

this observation is that we only examined mixtures of antibodies with differing Fcs but 

identical antigen binding—polyclonal mixtures of antibodies will have still other interaction 325 

effects, in part because antigens can form a higher valency complex when they are 

present in combination28. While in this work we only demonstrated Fc subclasses mixtures, 

the same lessons likely apply to glycosylation mixtures, both in vitro and in vivo, since 

different subclasses and glycosylation variants exert their effect through divergent affinities 

toward Fc receptors. 330 

Fc receptor-mediated effects are central to protection from both endogenously produced 

and therapeutic antibodies. Our work demonstrates that computational methods greatly 

facilitate reasoning about the complex signaling of the Fcγ receptor pathway quantitatively 

and at both cellular and organismal levels. This work extends our previous modeling to the 

depletion of platelets as a target and humanized mice16. Humanized mice serve as an 335 

ideal surrogate for understanding human immunity29. However, this model system is 

complicated by graft-to-graft differences, including the level of humanization and genetic 

heterogeneity of human stem cell donors29. The depletion data reflected these 

complications, with high donor-to-donor and mouse-to-mouse variation22 (Fig. 6b/c). We 

anticipate that mechanistic models of antibody-mediated protection, such as the one here, 340 

will continue to grow in their utility for studying model systems such as humanized mice. In 

fact, as other features of antibodies are incorporated, such as variation in antigen 

specificity, it may become possible to connect behavior in vitro all the way to protection in 

human subjects30,31. 
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Methods 345 

Data and Software Availability 

All analysis was implemented in Julia and can be found at https://github.com/meyer-

lab/FcRegression.jl. 

Chinese hamster ovary (CHO) cell FcγR Expression Quantitation  

Human FcγR expression on stably transfected CHO cells was quantified by determining 350 

the antibody binding capacity (ABC) for antibodies specific for the respective Fcγ receptor 

(Tbl. S2)13. Quantum Simply Cellular (QSC) anti-mouse beads (Bangs Laboratories Ltd.) 

with known binding capacities for mouse IgG were used according to manufacturer’s 

instructions. Subsequently, a reference curve was generated by correlating the 

fluorescence intensity (caused by the respective anti-FcγR antibody) and the number of 355 

antibody binding sites of the different QSC beads. This reference curve was established in 

each experiment for all FcγR-specific antibodies of interest (PE-conjugated clone 10.1 to 

detect FcγRI, clone AT10 to detect FcγRIIa/b and clone 3G8 to detect FcγRIIIa, all from 

Biolegend) and used to calculate receptor numbers based on fluorescence intensity of 

FcγR staining on CHO cells. Samples were measured on a FACSCantoII flow cytometer 360 

and analyzed with FACSDiva software. 

Generalized multi-ligand, multi-receptor multivalent binding model 

To model polyclonal antibody-antigen immune complexes (ICs), we employed a 

multivalent binding model to account for ICs of mixed IgG composition previously 

developed and detailed in Tan and Meyer20. 365 

In this model, we define 𝑁# as the number of distinct monomer Fc’s and 𝑁$ as the number 

of FcRs, and the association constant of monovalent Fc-FcR binding between Fc 𝑖 and 

FcR 𝑗 as 𝐾%,'(. Multivalent binding interactions after the initial interaction are assumed to 

have an association constant of 𝐾!∗𝐾%,'(, proportional to their corresponding monovalent 

affinity. The concentration of complexes is 𝐿), and the complexes consist of random ligand 370 

monomer assortments according to their relative proportion. The proportion of ligand 𝑖 

among all monomers is 𝐶'. By this setup, we know ∑ 𝐶'
*!
'+, = 1. 𝑅-.-,' is the total number of 
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receptors 𝑖 expressed on the cell surface (where this term is used synonymously for the 

actual determined number of binding sites for the respective anti-FcR antibodies), and 𝑅/0,' 

the number of unbound receptors 𝑖 on a cell at the equilibrium state during the ligand 375 

complex-receptor interaction. 

The binding configuration at the equilibrium state between an individual complex and a cell 

expressing various receptors can be described as a vector 𝐪 =

,𝑞,), 𝑞,,, . . . , 𝑞,*" , 𝑞1), . . . , 𝑞1*" , 𝑞2), . . . , 𝑞*!*"0 of length 𝑁#(𝑁$ + 1), where 𝑞'( is the number 

of ligand 𝑖 bound to receptor 𝑗, and 𝑞') is the number of unbound ligand 𝑖 on that complex 380 

in this configuration. The sum of elements in 𝐪 is equal to 𝑓, the effective avidity. For all 𝑖 

in {1,2, . . . , 𝑁#}, let 𝜑'( = 𝑅/0,(𝐾%,'(𝐾!∗𝐶' when 𝑗 is in {1,2, . . . , 𝑁$}, and 𝜑') = 𝐶'. Then, the 

relative number of complexes in the configuration described by 𝐪 at equilibrium is 

𝑣𝐪,/0 = :
𝑓
𝐪;

𝐿)
𝐾!∗
< 𝜑'(

4#$
'+*!,(+*"

'+,,(+)
, 

with =5𝐪> being the multinomial coefficient. Then the total relative amount of bound receptor 385 

type 𝑛 at equilibrium is 

𝑅6.789,: =
𝐿)𝑓
𝐾!∗

@ 𝜑;:

*!

;+)

A@ 𝜑'(	
'+*!,(+*"

'+,,(+)	
B
5=,

. 

By conservation of mass, we know that 𝑅-.-,: = 𝑅/0,: + 𝑅6.789,: for each receptor type 𝑛, 

while 𝑅6.789,: is a function of 𝑅/0,:. Therefore, each 𝑅/0,: can be solved numerically from 

its 𝑅-.-,: measured experimentally. Similarly, the total relative number of complexes bind to 390 

at least one receptor on the cell is 

𝐿6.789 =
𝐿)
𝐾!∗
CA@ 𝜑'(	

'+*!,(+*"

'+,,(+)	
B
5

− 1E. 

FcRs are activated through crosslinking. The amount of each kind of receptor in a 

multimerized complex can be calculated as 

𝑅>7?-@,: =
𝐿)𝑓
𝐾!∗

@ 𝜑;:	
*!

;+,
CA@ 𝜑'(	

'+*!,(+*"

'+,,(+)	
B
5=,

− 1E. 395 
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Immune Complex Binding Measurement  

Chinese hamster ovary (CHO) cells stably expressing human FcγRs were used to assess 

IgG-IC binding to hFcγRs as previously described6. Briefly, ICs were generated by 

coincubation of 10 μg/ml anti-TNP human IgG subclasses (clone 7B4) and 5 μg/ml BSA 

coupled with either an average of 4 or 33 TNP molecules (Biosearch Technologies) to 400 

mimic low or high valency ICs, respectively, for 3 h with gentle shaking at room 

temperature. To address the impact of distinct subclass combinations on hFcγR binding, 

human IgG1 through IgG4 subclasses were mixed at specific conditions (100%, 90%, 

66%, 33%, 10% of one subclass filled up to 10µg/ml with the respective second subclass) 

before the addition of TNP-BSA. ICs were subsequently incubated with 100,000 FcγR 405 

expressing or untransfected control CHO cells for 1 h under gentle shaking at 4°C. Bound 

ICs were detected using a PE-conjugated goat anti-human IgG F(ab’)2 fragment at 0.5 

µg/ml (Jackson ImmunoResearch Laboratories) on a BD FACSCanto II flow cytometer. 

Each IC binding measurement was normalized to the average of all the points within that 

replicate. 410 

Alternatively, binding to human primary peripheral blood leukocytes co-expressing specific 

FcγRs was studied. Blood was drawn from healthy volunteers with informed consent of the 

donor and the local ethical committee. Erythrocytes were lysed by the addition of ddH2O 

for 30 sec at room temperature to obtain total leukocytes. Immune complexes were 

generated as described above and incubated with 200,000 leukocytes. Leukocyte 415 

subpopulations were identified by staining of cell-type-specific surface markers. 

Fluorescently labeled antibodies PE/Cy7-conjugated anti-CD19, PerCP-conjugated anti-

CD3, APC-conjugated anti-CD33, Brilliant Violet 510 conjugated anti-CD14, FITC-

conjugated anti-CD56 and APC-Fire 750 conjugated anti-CD45 were obtained from 

Biolegend.  420 

The cell identification strategy was as follows: aggregates of cells were excluded by their 

forward light scatter (FSC) characteristics (area vs. height) and dead cells based on 

staining with DAPI. Leukocytes were identified by expression of common leukocyte marker 

CD45. Among those, neutrophils were gated based on high side light scatter (SSC) 

characteristics and lack of surface CD14 and classical monocytes based on intermediate 425 

SSC and expression of CD14. Within the CD14-SSClow cells, B and T cells were gated by 
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expression of CD19 or CD3, respectively. Staining of CD56 was used to distinguish NK 

cells. The remaining CD33 expressing cells are gated as non-classical monocytes. 

Data were analyzed with FlowJo or FACSDiva Flow Cytometry Analysis Software. The 

relative fluorescence units were normalized so that measurements of each day have 430 

geometric means of 1.0. The variance explained calculated for principal component 

analysis was defined as 1 − ‖B=BC‖%
&

‖B‖%
& , where ‖∙‖D1  indicates the Frobenius norm. 

Immune Complex Binding Analysis  

Fitting the parameters in the binding quantification was performed by Monte Carlo Markov 

Chain (MCMC) implemented by Turing.jl32.  435 

At first, we plugged in the documented values into the binding model for all parameters 

without fitting, thus the geometric means of CHO cell receptor expression (Tbl. S2), 

documented affinities3, nominal valencies (4 and 33), and 𝐾!∗ as 6.31 × 10=,2cell ∙ M16, as 

estimated in previous work (Fig. 3c)33. To examine the role of affinity fitting, we used 

MCMC to fit all parameters except (Fig. 3d) and including (Fig. 3e) affinities. CHO receptor 440 

prior distributions were inferred from their measured values through maximal likelihood 

estimation (MLE) in Distributions.jl34 for both IgG mixture dataset (Tbl. S2) and validation 

Robinett et al.33 dataset (Tbl. S5). The affinity priors were inferred from documented Fc 

affinities and standard errors with these rules: (1) each prior follows a lognormal 

distribution; (2) the mode of the distribution is the documented value, and the interquartile 445 

range of the distribution is the standard error; (3) if the values of mode or standard errors 

are too small, the mode was clipped to 1 × 10EM=,, and the interquartile range was clipped 

to 1 × 10FM=, to deal with recorded nonbinding cases3,35. The priors of valencies and 

crosslinking constant were as follows 

𝑓E	~	log𝑁(𝜇 = log(4) , 𝜎 = 0.2), 450 

𝑓22	~	log𝑁(𝜇 = log(33) , 𝜎 = 0.2), 

𝐾!∗	~	log𝑁(𝜇 = log(6.31 × 10=,2) , 𝜎 = 2.0). 
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MCMC was initialized with the maximum a posteriori estimation (MAP) optimized by a 

limited-memory BFGS algorithm implemented by Optim.jl36, then sampled through a No U-

Turn Sampler (NUTS) implemented by Turing.jl32. 455 

In vivo Regression Model 

We extended the in vivo antibody-elicited target cell depletion regression model with both 

cell type weights and FcγR weights (Fig. 6a). Depletion, 𝑦, was represented as the percent 

reduction in the number of target cells. 

To quantify the activity of each effector cell, we first used the multivalent binding model to 460 

predict the amount of multimerized FcγR of each kind, 𝑅>7?-@,', assuming each IC is 4-

valent. Then the activity of this cell type is assumed to be a linear combination of these 

predictions and a set of cell type weights, 𝑝', that are set to either +1 or -1 for activating or 

inhibitory receptors, respectively, clipped to 0 if it is negative: 

𝑥: = max	(𝑝,𝑅>7?-@,, + 𝑝1𝑅>7?-@,1 +⋯ , 0). 465 

To determine how these cell types bring the depletion effect at the organism level, we 

combine their estimated effects, 𝑥:, with a weighted sum, where we introduce another set 

of weights, 𝑤:, that are specific to each cell type. To convert the activities to a limited 

range of depletion, (i.e., one cannot have a reduction over 100%), the regression was 

transformed by an exponential linker function (the cumulative density function of 470 

exponential distribution) such that the predicted effectiveness: 𝑦_ = 𝐹/GH(𝑤𝑥) = 1 −

exp(−𝑤𝑥) so that limB→J𝐹/GH(𝑋) = 1. Together, we have the estimated depletion as 

𝑦_ = 𝐹/GH(𝑤,𝑥, +𝑤1𝑥1 +⋯). 

We did not estimate the amount of each cell type in an individual, nor did we include them 

in the model, because the weights, 𝑤:, were supposed to absorb these quantities, while 475 

requiring effector cell abundance can limit the application of this model to specific organs 

where the tissue resident cell abundance cannot be accurately quantified. 

The regression against in vivo effectiveness of IgG treatments was performed via Monte 

Carlo Markov Chain (MCMC) implemented by Turing.jl32. For the multivalent binding 

model, the ligand concentration was assumed to be 1 nM and valency to be 4. The 480 
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receptor expression level was set to the geometric means of the values measured in 

previous work (Tbl. S6)13. For the receptor weights, 𝑝', we set the weight of the only 

inhibitory receptor, FcγRIIB, as −1.0, while every activating receptor to be +1.0.  

MCMC was initialized with the maximum a posteriori estimation (MAP) optimized by a 

limited-memory BFGS algorithm implemented by Optim.jl36, then sampled through a No U-485 

Turn Sampler (NUTS) implemented by Turing.jl32. 
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Figure Captions 

Figure 1: Profiling the binding effects of mixed-composition immune complexes. a) 495 

Schematic of the immune complex (IC) binding experiment. Individual or mixtures of IgG 

subclasses are immobilized on multivalent TNP complexes. The binding of these 

complexes to CHO cells expressing a single Fc receptor is then quantified. b) Measured 

binding in relative fluorescence units (RFU) versus the previously reported affinity of each 

interaction. Only single subclass conditions are plotted. Error bars represent the 500 

interquartile range of the measurements. c) The ratio of median binding quantified between 

valency 33 and 4, versus the reported affinity of the interaction. d) IgG1-IgG2 mixture 

binding to FcγRI shows appreciable binding, even though IgG2-FcγRI is documented to be 

non-binding. The RFU level here was normalized to match the FcγRI expression to the 

FcγRIIIA-158F expression (shown in e) on CHO cells. e) IgG1-IgG4 mixture binding to 505 

FcγRIIIA-158F. 

Figure 2: Principal component analysis (PCA) visualizes the variance in mixture 
binding measurements and their associated factors. a) Variance explained by each 

component in PCA. We found that the first two principal components (PC), PC1 and PC2, 

can explain more than 93% of the variance in the measurement. b,c) Scores of PC1-PC2 510 

for immune complexes of average valency 4 (b) and 33 (c); PC1 shows that most of the 

variance in data comes from 33-valent complexes, especially in IgG3. d) Loadings of PC1-

PC2 indicate that PC2 is mostly associated with separating the allelic variants of FcγRIIA 

and IIIA. FcγRI and FcγRIIb points overlap. 

Figure 3: A multivalent binding model accurately accounts for in vitro binding of IgG 515 

mixtures. a) Schematic of the multivalent binding model. b) Schematic of the process of 

predicting binding with documented affinities and inferring affinities from measurements. c) 

Measured versus predicted binding by the binding model with raw parameters. Points also 

vary in the IgG subclass used, which is not indicated. d) Binding model prediction with all 

parameters but affinities fitted by Monte Carlo Markov Chain (MCMC). In (c) and (d), the 520 

IgG2-FcγRI outliers were circled in red. Since this interaction was previously reported as 

nonbinding, the actual predictions were all 0, only clipped to a nonzero value (1/10 of the 

next smallest value) to be plotted on logscale. e) Binding model prediction of all 

measurements (single and mixed IgG) with affinity inferred from single IgG measurements. 
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f) Binding model prediction of mixture IgG measurements with affinities updated with single 525 

IgG measurements. g,h) Validate the updated affinities with a separate dataset16 by 

predicting the binding with either documented (g) or updated (h) affinities. i-l) Predicted 

binding of IgG4-IgG2 mixture to FcγRI (i,j) and IgG4-IgG3 mixture to FcγRIIB-232I (k,l), 

with either documented (i,k) or updated affinities (j,l, solid line and left axis) compared with 

measured binding (j,l, dashed line and right axis).  530 

Figure 4: Inferred affinities from the binding data. a-d) The prior (documented) 

distributions of binding affinities (assume all follow log-normal distributions) and posterior 

(updated) affinities of IgG1 (a), IgG2 (b), IgG3 (c), and IgG4 (d). e) Updated affinities plot 

against the binding measurements of single IgGs. Error bars represent the interquartile 

range of the measurements. f) Updated affinities plot against the ratio of median binding 535 

between valency 33 and 4 complexes. 

Figure 5: Predict IgG effector cell binding with the multivalent binding model. a-d) 

Measured in vitro binding of IgG1 (a), IgG2 (b), IgG3 (c), and IgG4 (d) IC of either 4- or 33-

valent to selective immune effector cells, classical (cMO) or nonclassical (ncMO) 

monocytes and neutrophils (Neu). e-h) Model-predicted IgG1 (e), IgG2 (f), IgG3 (g), and 540 

IgG4 (h) IC of 4- or 33- valent binding on each effector cell type under documented versus 

updated affinities. 

Figure 6: Perform in vivo target cell depletion regression on humanized mice. a) 

Schematic of in vivo platelet depletion regression. To predict the percentage decrease of 

platelet abundance after antibody injection in mice, we combined the binding model 545 

predictions with Fc receptor and effector cell type weights, then transformed the sum into 

depletion percentage with an exponential distribution cumulative density function. b-e) 

Results of regression ran on documented (b,d) and updated (c,e) affinities: b,c) Actual vs. 

predicted depletion of platelet; d,e) Predicted effector cell type weights; Error bars indicate 

the interquartile range from MCMC runs.  550 
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