Abstract
Dopamine in the nucleus accumbens helps motivate behavior based on expectations of future reward (“values”). These values need to be updated by experience: after receiving reward, the choices that led to reward should be assigned greater value. There are multiple theoretical proposals for how this credit assignment could be achieved, but the specific algorithms that generate updated dopamine signals remain uncertain. We monitored accumbens dopamine as freely behaving rats foraged for rewards in a complex, changing environment. We observed brief pulses of dopamine both when rats received reward (scaling with prediction error), and when they encountered novel path opportunities. Furthermore, dopamine ramped up as rats ran towards reward ports, in proportion to the value at each location. By examining the evolution of these dopamine place-value signals, we found evidence for two distinct update processes: progressive propagation along taken paths, as in temporal-difference learning, and inference of value throughout the maze, using internal models. Our results demonstrate that within rich, naturalistic environments dopamine conveys place values that are updated via multiple, complementary learning algorithms.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Acknowledgments updated to reflect specific funding mechanisms.