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Dopamine in the nucleus accumbens helps motivate
behavior based on expectations of future reward
("values"). These values need to be updated by experience:
after receiving reward, the choices that led to reward
should be assigned greater value. There are multiple
theoretical proposals for how this credit assignment
could be achieved, but the specific algorithms that
generate updated dopamine signals remain uncertain. We
monitored accumbens dopamine as freely behaving rats
foraged for rewards in a complex, changing environment.
We observed brief pulses of dopamine both when rats
received reward (scaling with prediction error), and when
they encountered novel path opportunities. Furthermore,
dopamine ramped up as rats ran towards reward ports, in
proportion to the value at each location. By examining the
evolution of these dopamine place-value signals, we found
evidence for two distinct update processes: progressive
propagation along taken paths, as in temporal-difference
learning, and inference of value throughout the maze,
using internal models. Our results demonstrate that
within rich, naturalistic environments dopamine conveys
place values that are updated via multiple, complementary
learning algorithms.
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Introduction
Animals frequently make motivated choices based on

prior experiences - for example, selecting paths towards
locations where food was previously found. Achieving such
adaptive decision-making can pose a computational challenge.
In particular, decision points can be separated from rewards
by considerable gaps in time and space. When rewards are
obtained (or unexpectedly omitted) this separation produces a
"credit assignment problem": determining which places and
choices ought to gain or lose value. The specific algorithms
that brains use to solve this problem are not well understood.

Reinforcement Learning (RL) theory provides an array
of candidate algorithms for generating and updating value
signals (1). In “temporal difference” (TD) learning, value is

passed between sequentially experienced states (situations). In
brief, as each state is encountered its associated value becomes
eligible for updating. Unexpected rewards, or transitions
to states with unexpected values, evoke “reward prediction
errors” (RPEs). RPEs are learning signals: they update
the values of eligible states. In this way, values can be
progressively propagated back to earlier states, over repeated
episodes of experience. Temporal difference RPEs can be
encoded by brief (phasic) changes in the firing of midbrain
dopamine (DA) cells (2–5), and by corresponding changes in
DA release in the nucleus accumbens (NAc; (5, 6)). However,
despite the compelling correspondence between phasic DA
and TD RPEs, current evidence that value propagates along
sequences of states in a TD-like manner is sparse at best (7–9).

TD learning is a “model-free” (MF) algorithm: learning
occurs only from direct experience of states, without
using knowledge of how those states are related. A
complementary set of “model-based” (MB) algorithms can
achieve greater flexibility in learning and decision-making by
using knowledge about state relationships to infer and update
values. For example, after taking one path and receiving
reward, MB algorithms can increase values along alternative
paths to the same reward location (10, 11). In at least some
behavioral contexts, DA signals reflect RPEs that incorporate
such inferred information (12–15).

NAc DA release also gradually ramps up as animals
actively approach expected rewards (5, 16–19). These ramps
appear to signal the value of the upcoming reward, discounted
by spatial distance (although they have also been interpreted
as RPEs (20, 21)). As DA ramps are more apparent when the
behavioral context favors use of an internal model (22), they
have been proposed to reflect ongoing MB calculations.

Yet overall, existing evidence does not tease apart
the specific algorithms used to estimate and update values,
or reveal how these values are reflected in DA signals.
Many behavioral tasks (e.g. (5, 23, 24)) commonly
used to investigate DA and value coding involve only
minimal separation between an action and its outcome, thus
avoiding the challenging credit-assignment question. In other
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Fig. 1. Adaptive behavior in the Hex Maze. a, Birds-eye view of the maze. Permanent barriers (black columns) divide the area into
49 hexagon-shaped choice points (“hexes”). Additional movable barriers (absent here) determine the available paths to the reward
ports at each corner. Once visited, a port’s reward probability becomes zero until another port is visited. b, Probability of choosing
an available port (leftward, from the current port) as a function of the difference between that port’s and the alternative port’s reward
probabilities. Grey traces are individual-rat logistic curves fit to the data, and the black line shows the mean relationship. c, Same as
b, but a function of the difference between path lengths to the available ports. d, Results of logistic multiple regressions run for each
individual rat, showing the positive influence of reward probability and the negative influence of path length on choices. Significance
asterisks are from the mixed-effects regression analysis. For b-d, only the second half (trial number > 25) of each block was included to
allow rats time to adapt to changes (n = 10 rats, 82 sessions, 9079 trials). e, Example of a reward probability change. Red circles indicate
hexes containing a movable barrier, dots show the rat’s detected positions (color coded by occupation density; second halves of blocks).
White, empty, hexes indicate the positions of the permanent barriers shown in a. f, Example of a barrier change. Dark red circle with a
pink outline shows the moved barrier. g, Mean change in port choice probability following increases (solid line) or decreases (dashed
line) in reward probability (n = 10 rats, 36 sessions, 134 blocks; error bands indicate ± SEM). "Trials" here include those where the rat
had the opportunity to choose the port in question. h, Mean change in port choice probability following increases (solid line) or decreases
(dashed line) in the path length to get there (n = the same 10 rats, 46 sessions, 162 blocks; error bands indicate ± SEM)."Trials" here
include those where the rat had the opportunity to choose the port in question.
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paradigms, applying RL ideas involves unsupported arbitrary
assumptions (25) – e.g., choosing the set of discrete covert
states to span a time interval between a cue and reward (2).
Spatial tasks have the advantage that the brain has a well-
studied set of spatial representations that could serve as a basis
for RL states (26). However, most spatial tasks – especially
those in which DA dynamics have been investigated – are
very simple (e.g., T-mazes;(19, 27)) . This simplicity is often
useful, but can prevent critical tests that distinguish between
credit assignment algorithms.

To better elucidate MF and MB credit-assignment
processes within natural environments, we developed a
dynamic, complex spatial foraging task for rats, the Hex
Maze. In this task, animals traverse through numerous distinct
decision points in the pursuit of reward, and choices are
separated from their outcomes by multiple steps in space and
time. Furthermore, reward contingencies can be unstable, and
the available paths to reward locations can be unexpectedly
reconfigured. We show that rats readily adapt to these changes,
and incorporate both costs (current distances to reward ports)
and benefits (current reward probabilities) into their decisions.

Using fiber photometry, we observe DA RPE coding at
reward receipt and also strong DA pulses when rats discover
newly available paths. We confirm that NAc DA ramps up
with reward approach, and we show that these ramps reflect
a robust relationship between DA release at each location
and the dynamically changing value of that location. We
then take advantage of this DA place-value signal to examine
how values are updated from trial-to-trial. We report strong
evidence for both MF TD-like local propagation of values
between adjacent locations, and MB global inference of values
throughout the maze environment.

Results
Cost-benefit decision-making in the Hex Maze. The Hex
Maze (Fig. 1; Supp. Video 1) contains a reward port at each
corner, each with a distinct reward probability (17, 28–31).
The available paths to these reward ports are defined by a set
of barriers, constraining rats into making sequences of left and
right turns from each “hex” location. The task is self-paced-
the end location for each "trial" is the start for the next - and
each reward port can be approached from multiple starting
locations. Overall, rats (n=10) were more likely to choose
a port if it had a higher probability of reward (Fig. 1b), and
was closer (Fig. 1c), compared to the alternative. A mixed-
effects logistic multiple regression, incorporating any turn
biases (Methods), revealed highly significant effects of both
reward probability (mean β = 1.613 ± 0.158 SEM, p = 1.91∗
10−24) and distance cost (mean β = -6.803 ± 0.549 SEM, p
= 2.61 ∗ 10−35) on port choices. After each block of 50-70
trials (traversals between ports), either the reward probabilities
changed (Fig. 1e) or a barrier is moved to change available
paths (Fig. 1f). After a change in reward probabilities, rats
increased their choice of ports whose reward probability has
increased (Fig. 1g). Following a barrier move, rats adjusted

their port choices to favor shorter paths (Fig. 1h) and also
progressively refined their specific paths to be more efficient
(Supp. Fig. 1).

Phasic dopamine responses to rewards and novel path
opportunities. During Hex Maze performance we recorded
NAc DA dynamics using fiber photometry with the fluorescent
DA sensor, dLight1.3b (32); (n = 10 rats, 19 fiber locations,
82 behavioral sessions, 296 blocks, 16379 trials, mean of
1638 trials per rat). We first examined DA changes around
reward port entry, since receipt (and omission) of probabilistic
reward is an obvious time to look for the best-known correlate
of NAc DA, RPE signals. DA transiently increased or
decreased depending on whether reward was delivered or
omitted, respectively (Fig. 2b). The magnitude of these phasic
changes depended on port reward probability, in a direction
consistent with RPE coding (Fig. 2c, Pearson correlation,
rewarded trials mean coefficient = -0.214 +/-0.99 STDEV;
omission trials mean coefficient = -0.107 +/- 0.0.068 STDEV;
both significantly different to zero across n=10 rats, two-tailed
Wilcoxon Signed Rank tests, p = 1.95x10−3 each). To better
estimate RPE at the single-trial level, we fit a simple trial-level
RL algorithm to rats’ port choices and reward outcomes ("Q
learning"; see Methods). DA following port entry significantly
scaled with these RPE estimates (Supp. Fig. 2), although
encoding of positive RPEs was notably stronger and more
consistent across rats, compared to negative RPEs (in line
with prior studies; (3, 5, 33)).

We also observed large phasic increases in DA when rats
first encountered a newly available hex – i.e., where a barrier
had been previously located, but no longer (Fig. 2d-f, p =
1.95x10−3, two-tailed Wilcoxon Signed Rank test). This was
not simply a response to any unexpected sensory event, since
encountering a newly blocked hex resulted in a consistently
smaller or absent DA pulse (2f; available vs blocked: p =
9.76 ∗ 10−4, one-tailed paired Wilcoxon Signed Rank test;
blocked vs 0: p = 0.014, two-tailed Wilcoxon Signed Rank
test). Furthermore, the response to newly available hexes was
preferentially observed on trials in which rats chose to take
the newly open path, rather than ignoring it (Supp. Fig. 2c).

Dopamine ramps reflect expectations of upcoming
reward. We next examined whether the reward-approach
ramps previously reported for NAc DA are also present in this
more complex spatial environment. Average NAc DA indeed
ramped up within each trial, until shortly before arrival at the
reward port (Fig. 3a). This overall ramp was significantly
positive in nine of ten individual animals (16/19 individual
fibers; Supp. Fig. 3). To better understand the computations
that give rise to this ramp, subsequent analyses focused on
those nine rats. The magnitude of the DA ramp scaled with the
current reward probability of the approached port (Fig. 3b),
consistent with DA tracking the rats’ evolving expectations
of reward. We therefore assessed how DA ramping during
port-approach is affected by whether that port was rewarded
or not at the last visit (Fig. 3c). DA was generally higher
along the whole ramp when the destination port had been
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Fig. 2. Dopamine pulses at rewards and novel path opportunities. a, Example trace of dLight, isosbestic (405nm) control signal,
and running speed over three trials. Red "R"s and vertical lines indicate moments of reward delivery, and blue "O"s and vertical lines
indicate reward omissions upon port entry. Vertical scale bars indicate 2Z for fluorescence signals and 20cm/s for speed. Horizontal
scale bar indicates 2s of time. b, Left, cartoon of rat arriving at port. Right, average DA (Z-scored) aligned to port entry, pooled by the
destination port’s reward probability (“high”, 80 or 90%; medium, 50%; "low", 10% or 20%). Traces are separated into rewarded (red) or
omissions (blue) following port entry, and error bands indicate ± SEM (n=10 rats). Only the second half (trial number > 25) of each block
was included (82 sessions, 9079 trials). c, Mean change in DA as a function of port reward probability, separated by rewarded (red)
and unrewarded (blue) trials. Changes in DA measured as: peak DA within 0.5s following reward, and minimum DA within 1s following
omission, subtracting instantaneous DA at port entry. d, Example trace of dLight and running speed across three trials, including when
the rat discovered a newly available path (pink star). Scale bars indicate same values as in a. e, Left, cartoon of rat discovering the
absence (top) or presence (bottom) of a barrier. Right, mean DA on each of these trial types; error bands indicate ± SEM. DA signal is
aligned on entry into the hex adjacent to the newly changed hex (pink, newly available; black, newly blocked; each n = 10 rats, 106
events). f, Mean change in DA (peak DA within 1s following novel hex discovery – DA 1s before novel hex discovery) was significantly
higher for newly available versus newly blocked hexes. Individual rat means are plotted as dots. Bars represent means over rats. *
indicates p<0.05, ** indicates p<0.01, *** indicates p <0.001.
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Fig. 3. DA ramps reflect dynamic expectations of upcoming reward. a, Mean DA as rats approached the reward ports (n = 10 rats,
82 sessions, 15918 trials), as a function of distance. b, Mean hex-level DA during port approach, pooled by p(reward) of the destination
port. Only the second half (trial number > 25) of each block was included (n = 9 rats, 70 sessions, 7,614 trials). c, Examining the effects
of reward on DA ramping along successive runs to the same port. Dashed lines indicate the prior run to the port (t-1), and solid lines
indicate the current run to the port (t). Top, mean DA over successive runs to the same port, where reward was omitted two visits ago
(t-2), but reward was delivered the prior visit (t-1; n=9 rats, 1935 sequences). Red asterisks indicate a significant increase in hex-level DA
(p < 0.05, one-tailed Wilcoxon signed rank test). "R" and "O" denote rewards and omissions, respectively, on the t-n previous visits to the
port. Bottom, same as top but examining the effects of a reward omission on the last visit. Blue asterisks indicate significant DA decrease
(p < 0.05, one-tailed Wilcoxon signed rank test; n=9 rats, 1909 sequences). d, Top, maze cartoon illustrating the chosen, other, and
previous reward ports for an example trajectory through the maze. Bottom, multiple-regression weights for the prior reward outcome at
the chosen, other, and previous reward ports as effects on the DA signal (n = 9 rats, 13,448 trials; regressions performed independently
for each rat; plot shows mean effect over rats). Middle, fraction of rats with significant relationships (non-zero regression coefficient,
two-tailed t-test) between prior reward and DA. All error bands show ± SEM.

most recently rewarded, and lower following an omission. To
rule out non-specific effects of recent rewards on DA signals,
we performed a multiple regression analysis comparing the
impact of the most recent reward outcome at each of the three
ports (Fig. 3d). DA ramps selectively reflected expectation of
reward at the end of the specific path taken on the current trial,
rather than (for example) tracking overall recent reward rate
(34), or the rewards available across both potential destination
ports together.

A spatial map of value. These ramping dynamics suggested
that DA may signal the evolving, spatially discounted reward
expectations throughout the maze environment. We therefore
turned to estimating these reward expectations locally: at
entry into each hex, from each direction (126 distinct hex-
states). As a first pass at estimating these hex values, we
again applied a simple learning algorithm to track experienced
reward probabilities at each port (Fig. 4a), but then distributed
these values, discounted by spatial distance, throughout the
maze ("value iteration"; Fig. 4b, (1, 35); see Methods). The
resulting hex-level pattern of value closely resembled DA on
each trial (Fig. 4c), and a mixed-effects multiple regression
analysis revealed a highly significant relationship between DA

and these hex values (Fig. 4d; p = 0.000, Likelihood Ratio
Test, chi-square distribution with 77 degrees of freedom to
account for each session-optimized γ value; see Methods).
This regression analysis also included running speed, yet hex
values accounted for much more of the explained variability
in the DA signal (Fig. 4e).

Over repeated trials, DA signals propagate backwards
along taken paths. This value map provides a reasonable
first approximation to DA signals as rats run through the
Hex Maze. However, the value iteration algorithm requires
perfect knowledge of current maze structure, together with
the immediate and complete distribution of value updates to
all hex-states on every trial. Rat brains might actually use
less computationally demanding algorithms to generate place
values, and these algorithms could produce tell-tale signatures
in value coding while foraging.

In particular we looked for evidence of TD learning,
as this has been an especially prominent framework for
interpreting DA signals in simpler settings. In its most
basic form, TD(0) (also called “one-step” TD), RPEs update
only the values associated with the immediately preceding
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state (1) (Fig. 5a). Therefore, when a sequence of states
results in an unexpected reward, earlier states in the sequence
do not receive value updates right away. Instead, updates
progressively propagate backwards along the sequence, over
multiple episodes of experience. A key signature of this type
of learning rule is that values of states more distant from
reward depend on reward outcomes in the more distant past,
rather than the most recent outcomes. TD can also propagate
value more rapidly by maintaining memory traces for recently
visited locations and using these to determine eligibility for
later value updates. Such an algorithm is referred to as TD(λ)
(1, 7, 35). By altering the eligibility trace decay parameter, λ,
updates can be restricted to the single preceding state (λ = 0,
as above), or, at the other extreme, cover the entirety of the
experienced path (λ = 1).

The resulting difference in value dynamics can be clearly
illustrated by considering the impact of a single reward, among
a series of omission trials for the same path (Fig. 5b). In
simulations (see Methods), with TD(0) the reward evokes
a value bump that propagates backwards over the course
of multiple traversals (Fig. 5c). By contrast, with TD(1)
value is immediately updated across the full traversed path,
so that outcomes simply change the gain of the ramping
value function (Fig. 5d). We examined DA signals under
the corresponding maze conditions: when rats experienced a
rewarded trial among a series of omissions for traversals of
the same path. The reward appeared to cause a spatial bump
in DA, that moved further back from the reward port over
successive traversals (Fig. 5e) – i.e., the key signature of TD
learning with low λ.

To broaden this analysis to include all sequences of
reward outcomes, we turned to multiple regression. We
examined how values at each location along a path depend
upon reward outcomes on the previous five times this path was
taken. As expected, in a TD(0) simulation the information
from older reward outcomes had its strongest influence on
value farther away from the reward port (Fig. 5f), in stark
contrast to TD(1) (Fig. 5g). The same analysis applied to DA
signals resulted in a pattern resembling TD(0): older outcomes
had the largest influence on DA signals farther from the reward
location (Fig. 5h,i; two-tailed Wilcoxon Signed Rank, p =
3.90x10−3). This provides clear evidence that updates of DA
value signals incorporate TD(0)-like progressive, backward
propagation.

DA place values are also globally updated through
inference. However, other observations suggested that this
TD learning, by itself, provides an incomplete account of
value-guided decision-making in the Hex Maze. First, we
showed earlier that individual reward outcomes shift DA
ramps up or down across a broad path extent (Fig. 3c), not
just the hexes close to the port. While both state-to-state
chaining and longer-range updates separately arise as the
extreme cases of TD(λ), there is no intermediate setting of that
model’s parameters at which both of these patterns co-occur.
Consistent with this, fitting a TD(λ) hex-state RL algorithm

(see Methods) to the observed DA data could model these
broad shifts, but the resulting large λ failed to also reproduce
the progressive propagation of DA and its dependence on
reward history (Supp. Fig. 4a-e). Conversely, removing
the broad shifts (by modeling them as a linear scaling of the
average DA ramp; Methods) left a residual DA signal that
seemed to propagate backwards along the path over trials
(Supp. Fig. 4f-h). These results suggest that ramping DA
value signals are updated by at least two mechanisms – a
TD-like process responsible for backwards signal propagation,
and a second process capable of shifting the whole ramp at
once.

Second, the behavioral choices of the rats were more
sophisticated than would be expected from MF TD alone. In
the Hex Maze, each reward port can be reached from multiple
starting points (Fig. 6a). MF TD learning would only update
values along the path that was actually taken. However, we
found that reward at a given port increased the likelihood
of choosing that same port at a rat’s next opportunity, both
when the rat previously took the same path (p = 9.77x10−4,
two-tailed Wilcoxon Signed Rank test) or an alternative path
(p = 2.93x10−3, two-tailed Wilcoxon Signed Rank test) to
that port (Fig. 6b). A potential confound could arise from
correlations between the most recent reward outcome and
prior reward outcomes at the same port, for which the rat
may have taken the same path. To control for this, as well as
any turn-direction bias, we conducted a mixed-effects multiple
regression analysis and included the past five reward outcomes
as features (see Methods). We confirmed that a previous
reward at a port made current choice of that port more likely,
both when the rat had taken the same path to obtain reward
(p = 9.47x10−7) or an alternative (p = 0.0269; Fig. 6b). This
suggests the use of model-based (MB) algorithms to infer that
hexes along alternative paths to that same reward location
have also changed value.

We therefore assessed whether DA ramps similarly rely
upon MB processing and knowledge of maze structure. We
confined this analysis to the critical “path-dependent” hexes
– those that have no overlap with other paths to the same
port (Fig. 6a). We found that prior reward at a port results
in elevated DA in these path-dependent hexes, both when
the rat previously took the same path (p = 5.86x10−3, two-
tailed Wilcoxon Signed Rank test) or an alternative path (p
= 1.95x10−3, two-tailed Wilcoxon Signed Rank test) to that
port (Fig. 6c). Once again, to control for the possibility
that this result reflects experiences on even earlier trials, we
ran a regression analysis and included the prior five reward
outcomes (see Methods). DA still displayed a significant
relationship with the most recent reward outcome at the goal
port, both when the rat previously took the same path (p =
0.012) or an alternative path (p = 6.49x10−7) to the goal port.
(Fig. 6c). Thus, NAc DA signals reflect MB calculations of
inferred future reward from any location, in addition to the
MF TD-like learning from direct experience.
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Fig. 5. TD-like propagation of DA signals across space. a, Cartoon contrasting propagating versus simultaneous value-update
algorithms. Left, in TD(0) the impact on value coding of a reward on run 1 progressively moves back along the state sequence over
successive runs. Right, in TD(1) a single reward immediately updates values for all states experienced in the current trial. b, Reward
sequence illustration over successive runs to the same port, focusing on a single reward among a series of omissions. c, Value function
from a simulated TD(0) learner over the three last traversals of the sequence in b. Solid lines indicate value function during the current
run; dashed lines show value function during the previous run, to illustrate changes. d, Value function from a TD(1) learner over the
same three sequential traversals. e, Observed mean DA traces for the corresponding trial order (i.e. as shown in c; 9 rats, n = 247 trial
sets; error bands indicate ± SEM). f-h, Analyzing the distance from the terminal port in which prior rewards have their strongest impacts
(linear regression weights) on state value. f, Predictions from the TD(0) algorithm over 1000 simulated successive traversals of the
same path, with rewards delivered randomly at 50% probability. g, Same as f for the simultaneously updating TD(1) learning algorithm.
h, Results from the same analysis on DA over all successive traversals of the same path (n = 9 rats, 13,427 trials, 235,524 hexes).
Bar plot shows mean effect over rats ± SEM. i, Correlation between the distance of the peak reward effect on DA (in hexes) and the
prior traversal number (1-5 previous traversals). Bar shows mean over rats; diamonds show individual rat coefficients (p = 3.90x10−3,
two-tailed Wilcoxon Signed Rank test).
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Fig. 6. Model-based inference globally updates DA place values and guides choices. a, Cartoon of two distinct routes a rat could
have taken on the previous visit to a reward port (top of triangle). Portions of each route are distinct based on the starting location
(path-dependent hexes; solid line), while other portions overlap (dotted line). b, Left, the probability of choosing the left (counterclockwise)
port after a reward compared to an omission. Separated by trials where, the last time that port was visited, the rat took the same or
alternative path. Bars show aggregate means, points show individual rat values (n=10; 2823 rewarded trials along same path, 2439
omission trials along same path, 1799 rewarded trials along alternative path, 1433 omission trials along the alternative path). Right,
results from two separate regression analyses assessing the probability of choosing the left port as a function of the prior reward at that
port. Separated by trials where the rat took either the same (n = 10 rats, 5262 trials) or alternative path (n = 10 rats, 3232 trials) on the
last visit to the left port. Regression assumed random effects across rats and estimated a fixed overall estimate for each feature. d, Left,
DA magnitude in path-dependent hexes following a reward compared to an omission, the last time the destination port was visited from
either the same (n = 9 rats, 2500 rewarded, 1752 omission trials) or alternative path (n = 9 rats, 1790 rewarded, 1337 omission trials).
Right, results from two separate regression analyses assessing path-dependent DA as a function of the prior reward at that port, if the rat
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indicates p <0.001.

Dual processes account for NAc DA signals during
goal approach. To confirm that DA signals are best
modeled as arising through the combination of MB and MF
learning mechanisms, we applied a dual-process hex-level
RL algorithm (Fig. 7). This RL agent experienced the same
sequence of hexes and rewards as each rat, and generated
corresponding value estimates at each moment. Upon each
transition between hexes, MF TD (λ = 0) locally updated just
the value of the previous hex-state. The second, MB, process
updated the values of all hexes throughout the maze, each
time a reward port was visited. This global update reflected
the rats’ evolving experience of maze structure, maintained
as a recency-weighted average of the tendency of each hex to
be followed by a visit to each specific port (whether rewarded
or not; Fig. 7a; see Methods). Regression analysis revealed
a significant relationship between values in this dual-process
model and observed DA (mean β = 0.97 ± 0.088 SEM, p =

3.73x10−28, Wald test, z = 11.0).

We then compared the performance of the dual-process
model in explaining DA signals to two nested models (36),
each with one update process removed (by setting the learning
rate to zero). The combined model consistently outperformed
either process alone (Fig. 7b). Taken together, this series
of analyses provides strong evidence that NAc DA is jointly
updated using two classes of learning algorithm: chained
updates across sequentially traversed states, and maze-wide
updates that leverage MB inference.

Discussion
Theoretical models of reinforcement learning and

decision making have very often employed multi-step
navigation through simulated mazes to investigate the
performance of distinct algorithms (1). As RL models form
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entry, a model of the maze’s structure (the hexes that led and could have led to the goal port) is used to globally update hex-value
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comparison over all rats together. Individual fits also indicated that removing either the TD or global components provided a significantly
worse relationship to observed DA signals (global only: p = 1.00x10−14, two-tailed one-sample t-test, t-statistic = -9.951 ± 4.008; local
only: p = 1.00x10−11, two-tailed one-sample t-test, t-statistic = -8.642 ± 2.261).

the standard framework for interpreting DA signals, it is
perhaps surprising that the present study is the first - to our
knowledge - to examine real-time DA dynamics in a rich and
dynamic spatial environment.

Our observation of a DA pulse at reward receipt, scaling
with positive RPE, is consistent with standard DA ideas
(although it is noteworthy that such pulses were not observed
in a prior study using a simpler T-maze - (19)). By contrast
we did not expect to see a similarly-sized DA pulse when
rats detected a newly opened path. It is natural to interpret
this as some form of error signal, but it is not yet clear what
type. DA signals have long been associated with novelty and
salient events (37, 38), and some theories have argued that
DA can signal a range of prediction errors beyond simply
RPE (39, 40). However, a newly blocked path did not evoke
a comparably sized DA pulse, suggesting that the relevant
feature is not simply an unexpected stimulus, or the need to
update models of the environment. It appears that the DA
pulse is related to the newly discovered opportunity for action
(41), perhaps reflecting the value of discovering possible new
paths to reward through exploration (42, 43). Specifying
the underlying information processing in greater detail will
require further experiments.

A major objective of this study was to investigate the
ramps in NAc DA release that occur as unrestrained animals
approach rewards (5, 16–18). We and others have previously
interpreted this ramping DA as reflecting increasing reward
expectation (a.k.a. value). Consistent with this, here we
found that ramps track the animals’ recent reward history, for
example ramping more strongly when the destination port
was rewarded at the last visit. As rats ran through the maze,

the moment-by-moment DA levels formed a dynamic map
of values: expected rewards discounted by distance from the
reward port. This result contributes to an ongoing discussion
about whether/how DA signals reflect the costs, as well as the
benefits, of potential decisions (44). In the Hex Maze, rats
clearly treated distance as a cost, as shown by their reluctance
to choose paths leading to more distant reward ports. This
cost was incorporated into the DA signal through spatial
discounting, producing a net value signal potentially useful for
governing motivation from each point. This interpretation fits
well with observations that lesions of NAc DA shift motivation
in cost/benefit decision-making in maze tasks (45, 46) and
that boosting DA can immediately enhance motivation to
work (17). An interesting question for future studies is how
discounting future rewards over space relates to discounting
over time, which has been previously reported for DA signals
(47) and may involve distinct time scales in different striatal
subregions (48).

Alternative accounts have emerged arguing that DA
ramps reflect RPE. This is possible under various assumptions:
e.g., that values are rapidly forgotten (20), that there are
constraints on the functional form by which value decays
in space or time (49), or that animals are uncertain about their
current state (50). The present study was not specifically
designed to test those ideas. Nonetheless the strong
correspondence between DA dynamics and upcoming reward
estimates observed here make a value interpretation of ramps
the most parsimonious. This is in addition to - rather than
instead of - the prediction-error coding noted above. Evidence
that DA ramping can be mechanistically distinct from RPE
coding comes a prior study in which we compared DA cell
firing to release (5). Discrete reward cues evoked RPE-
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encoding burst firing of identified VTA DA cells, and a parallel
increase in NAc DA release. By contrast, NAc DA ramps
appeared to occur even without any increase in DA cell firing,
suggesting a separate process. A similar comparison in the
context of the Hex Maze task could be highly illuminating.

Regardless of whether DA ramping signals value in
addition to, or as a side-effect of, error signaling, our results
provide new insights into the specific algorithms by which
these signals are updated. TD learning has been central to
models of DA signals for decades (2), but evidence for the
signature progressive backward propagation of value over
trials has been sparse and mixed (7–9). Our observation of
such propagation here may have been aided by our maze
design, in which each hex can correspond to a discrete
left/right decision point, and may thus be more likely to be
treated by the brain as a distinct "state". Nonetheless, we could
not force the rats to treat hexes as states, and indeed inspection
of the propagating DA "bump" suggests that the actual spatial
resolution employed by the internal TD algorithm may be in
the range of 2-3 hexes (Fig. 5).

Although TD learning is visibly present, we also
demonstrated that rats additionally assign credit over long
distances in a single step and over paths not directly
experienced, suggesting they employ internal models of their
environment to guide their DA signals and foraging decisions.
We cannot currently say, however, exactly when they are using
such models. For simplicity we simulated MB value updates
as occurring when outcomes are revealed at reward ports. This
may be the right time: after running along trajectories through
mazes, rats often show sharp-wave ripple (SWR) events, in
which dorsal hippocampal place cells can replay recently
taken trajectories (51). This replay is especially common after
reward receipt (52, 53) and has been proposed to update values
along the encoded trajectories (51). Replay can also encode
alternative potential paths to reward (11, 54, 55), providing
a potential mechanism underlying MB inference of updated
values (56). Echoing this perspective, recent research in AI
has increasingly emphasized the use of models retrospectively
for credit assignment (57, 58).

However, MB value updates might instead, or
additionally, be occurring in a prospective manner as rats
run towards goals (similar to another family of AI algorithms
that that use models for planning; (59)). First, SWRs occur
not only following reward receipt, but also during pauses in
behavior, when place cells can encode locations predictive
of the animal’s future path (60). Such “forward” replay
toward goal locations could, in principle, accomplish MB
value updates similar to “backward” replay from them (56).
Additionally, actively running rats show "theta sequences", in
which the maze location encoded by hippocampal places cells
sweeps forward ahead of the animal within each theta cycle
(61) and can even rapidly switch between representations
of distinct possible future paths (62, 63). It may be that
theta sequences help retrieve current values of potential goal
locations to help guide decision making, although this is not

yet known. We note that such cognitively demanding planning
processes may be only activated when the brain perceives
a need to do so. If DA ramping is linked to prospective
planning, this could explain why DA ramps peak just ahead
of actually reaching the goal (Fig. 3). Within the last 3
hexes of the path the reward port is directly visible, so no
internal calculations are required for navigation. This account
is also consistent with prior reports that ramps disappear
entirely as rat behavior becomes increasingly routine (22),
and can reappear immediately if task contingencies change
(18). There is analogous evidence that nonlocal activity in
hippocampus declines over repeated experience, including
both SWRs (53) and cycling between multiple paths during
theta sequences (64). Furthermore, there is substantial
behavioral and pharmacological evidence that NAc DA is
specifically required when animals need to flexibly calculate
trajectories to reward (e.g. from a variable start location)
rather than performing a stereotyped sequence of actions
(65, 66). For future reports, we aim to combine measurements
of DA ramps with high-density hippocampal recordings, to
gain greater access to the internal calculations driving DA
dynamics during active foraging.
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Methods
Animals. All animal procedures were approved by University of California San Francisco Institutional Committees on Use
and Care of Animals. Male (300–650 g) and female (250-400g) wild-type Long-Evans rats were maintained on a reverse 12:12
light:dark cycle and tested during the dark phase. Rats were mildly water deprived, receiving 30 minutes of free water access
daily in addition to fluid rewards earned during task performance. No sample size precalculation was performed.

Behavioral Task. The Hex Maze consists of a 1.30m-per-side equilateral triangular platform with liquid reward ports at each
vertex. Solenoid valves control delivery of sucrose solution (10% sucrose, 0.1% NaCl) in 15µL droplets. Infrared photobeam
sensors detect entry into the reward ports. To prevent uncertainty over reward delivery, a brief (70ms) 3.0KHz tone was played
through a speaker below the center of the maze immediately before solenoid valve opening. Equally spaced columnar barriers
divide the maze into 49 hexagonal units (“hexes”). Additional barriers can be placed in any combination of the 49 hexes to create
unique maze configurations. The apparatus was controlled by an Arduino Mega, while the Open Ephys software, Bonsai, was
used for behavioral and video data acquisition.

Prior to implantation, rats were mildly water deprived and trained in the maze for approximately three weeks. Pre-training
consisted of learning to poke into reward ports to receive reward, at 100% delivery probability with no additional barriers. Rats
were pretrained until they completed an average of at least one trial per minute in a 60-minute session (1-2 sessions to reach
criterion on average). To discourage a sit-and-wait strategy, after each visit to a port that port was not rewarded again until
another port is visited (this rule is present throughout training and testing). Rats were then trained on the task until reaching
criterion (>= one trial per minute in a 90 to 120-minute session). Before each session, barriers (8 or 9) are added to the maze
to create a configuration that is novel to the rat. To prevent clearly visible paths between ports, we ensured that at least one
barrier obstructed each direct path. We also configured at least one path to be longer or shorter than another path, to create
distinct distance costs associated with different paths. In the probability-change variant, the maze configuration stays consistent
throughout a session, but reward probabilities are changed following each block (50-70 trials). Probabilities are reassigned
pseudo-randomly, according to the rule that the most rewarding port and the least rewarding port are not the same for two
consecutive blocks. In the barrier-change variant of the task, reward probabilities remain fixed throughout the session, while one
barrier is moved at each transition between blocks. Upon a block change, barriers are moved strategically to simultaneously
alter the lengths of multiple paths: a path that was relatively longer in one block will become relatively shorter in the next, and
a path that was relatively shorter in one block will become relatively longer in the next. Barriers were physically moved by
the experimenter, who entered the task area after the rat poked into a reward port on the last trial of a block. To prevent the
development of associations between experimenter entry and configuration changes, the experimenter randomly entered the
task area to briefly raise and lower a barrier – without changing the maze configuration – at least once during each training
session. Each daily test session used either the probability-change or barrier-change variant, and we only included behavioral
sessions with 100 or more trials for further analysis. Individual rats were also excluded from analysis altogether if logistic
multiple regression revealed a non-significant effect of either reward probability or distance cost on their port choices (n=1 rat
without significant reward effect, and n=1 rat without significant distance effect from a total initial dataset of n = 12 rats). All
rats experienced sessions with port-reward probabilities drawn from a set of [0.9, 0.5, 0.1], but four rats also had probabilities
drawn from [0,8, 0.5, 0.2] on a subset of sessions.

Rats’ implant caps were labeled and tracked using Deeplabcut (67). Custom code was used to segment the maze into
hexes and classify hex occupancy. For time points with missing position information (i.e., when rat’s heads were momentarily
obstructed by barriers), we used the maze’s hex adjacency matrices to interpolate between hexes.

Fiber photometry. The nucleus accumbens was bilaterally targeted using the following coordinates in relation to bregma:
+/-1.7mm medial, 1.7mm anterior, and 6.2mm below brain surface. Virus – 1µL of AAVDJ-CAG-dLight1.3b (Vigene) at a titer
of 2x1012 – was delivered using a stereotaxic injection pump (Nanoject III). Virus was injected 200µm ventral to the target
coordinates, as described in (5). During the same surgery, 200µm optical cannulae were subsequently implanted and cemented in
place. A subset of rats (n = 4; IM-1322, IM-1398, IM-1434, IM-1478), were also implanted with a custom electrophysiology
probe in the dorsal hippocampus.

Rats were removed from water deprivation at least 24 hours prior to surgery. One week after surgery, rats began mild water
deprivation and were retrained on the task, while waiting for expression of dLight. Rats began photometry recordings in the
maze at least two full weeks following surgery. Only one implanted fiber was recorded in a given photometry session.

Photometry data acquisition methods have been described previously (5). Baseline correction was performed using
the adaptive iteratively reweighed Penalized Least Squares (airPLS) algorithm (68). Baseline-subtracted 470nm and 405nm
(isosbestic control) signals were then each standardized (z-scored) using a session-wide median and standard deviation. The
standardized reference signal was fitted to the 470nm using non-negative robust linear regression, and the normalized fluorescence
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signal was computed by subtracting the fitted reference signal from the standardized dLight signal. To reduce the frequency
and severity of optical artifacts, we used a pigtailed optical commutator (Doric Lenses), oriented horizontally, and manually
controlled its movement using a custom stepper-motor interface. Recording locations were histologically verified using
immunohistochemistry (5). Recording sessions were excluded if a recording failure occurred at any point during the session,
such as an optical fiber becoming broken or unplugged.

For all time-based analyses, the dLight signal was downsampled to 250 Hz and smoothed with a rectangular 100ms rolling
mean. For hex-level photometry analyses, we calculated the mean dopamine within each traversed hex on a given run. For
comparison with RL model variables, we computed mean dopamine within each traversed hex from each possible direction of
entry. This included repeat entries into hexes traversed multiple times within a trial (e.g., after leaving a hex, entering a dead end,
and running back to through that same hex). To avoid analyzing subsets of data where rats mistakenly returned to the previous
(now unavailable) port, only data between the final poke at one port and the first poke in at the subsequent port was included.
For event-aligned plots, traces were first averaged over sessions within each rat before taking the average over each rat, unless
otherwise specified. Unless otherwise specified, we treated individual rats as the unit of analysis, rather than e.g. fiber recording
locations.

Reinforcement Learning Models.

Q(port) learning. To estimate the rats’ expected value at each port on each trial, we used a simple, trial-based Q learning algorithm.
The model learns values associated with each port using the following update rule:

Q(portt)← (1−α)Q(portt)+αRt (1)

where α is the learning rate, t denotes the current trial, and R denotes reward received at the end of the trial. Choice was modeled
as a probabilistic decision between the two available destination ports, left ("L") and right ("R"), denoted by their position
clockwise or counterclockwise from the animal, on each trial using a softmax distribution:

P (ct = c∈L,R)∝ exp(βQ(c)+βccwIsLeft(c)+βdist(dist(c)) (2)

The inverse temperature parameter, β, controlled the degree to which the value of the destination port, Q(port) influenced
port choice. The “βccw” term was added to control for leftward (counterclockwise) turn biases, and a distance-sensitivity
(“βdist”) term was added to control for effort cost scaling with the distance dist(c) to the port. “IsLeft” encodes whether the
choice, "c", was leftward from the current port. Parameters were optimized to maximize fit to rats’ observed port choices.

Value iteration. We sought to generate spatially discounted chosen value estimates for each hex at the individual-trial level,
in a manner faithful to the maze configuration on each trial. We first specified ground truth hex-state transition matrices for
each unique maze configuration. We then used a value-iteration (1, 35) algorithm to dynamically estimate state value over each
hex-state. Here, hex-states were defined by hex ID (1-49) paired with the direction of hex entry, which resulted in a 126-hex-state
state space (each hex has between one and three possible directions of entry). For each trial, the reward function was set to zero
at all states other than the chosen port, which was set to the goal port’s Q value on that trial. Hex values were initialized at zero,
and value was iteratively learned by taking the maximum of the available discounted next-state values, over all hexes, until
convergence. The update rule took the following form:

V (state)← max
a∈(L,R)

(γV (nextstate(state,a)) for all states (3)

where “a” is a left or right action exit from the current hex-state, and nextstate(state,a) hex-state’ is determined by taking action
“a” one step through the transition matrixis the state obtained (through the transition matrix) by exiting state with action a. The
discount factor, γ, was optimized for each behavioral session to maximize the fit to DA (minimizing negative log likelihood of
the observed DA, given the estimated value function (36)).

TD(λ) toy-path value learner. To test distinct predictions about reward propagation over space, we created a simple TD model
with an adjustable eligibility-trace parameter (TD(λ) with replacing traces; (Sutton and Barto 2018). Each traversed state was
associated with an update eligibility that decayed exponentially – by a factor of λ – with each timestep. To model locally chained
value propagation, we implemented a one-step TD model by setting λ equal to zero (TD(0)). To model updating over the entire
traversed path, we set λ equal to one. Due to the absence of RPE over successive traversals of the same path under TD(1), value
updates only occur at the terminal state, and for the entirety traversed path. Under these conditions, TD(1) is equivalent to a
Monte-Carlo learning process (1). Eligibility traces e were initialized at zero, and the update rules were as follows, at each step t:

e(state)← λγe(state) for all states (4)
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At non-port states: e(state)← 1 (5)

δt = Rt +γV (statet+1)−V (statet) (6)

V (state)← V (state)+αe(state)δt (7)

Upon reaching port: e(state)← 0 for all states (8)

where V is the value function, γ is the discount factor, and α is the learning rate. For clear visualization of model predictions, α
was set to 0.8 and γ was set to 0.8. To recreate a ramp similar to the DA signal, each learner started with a baseline value function
peaking at 0.4 and discounted by a factor of 0.8. The toy environment was implemented as a six-state sequential path to a reward
port, and the reward function equaled zero at all states except the terminal port. Port rewards could be set by the experimenter
in order to visualize value functions over specific reward outcome sequences. Alternatively, rewards could be drawn from a
random distribution, also defined by the experimenter. For the regression analysis in Figure 5, assessing the relationship between
prior reward outcomes and model value estimates at each state, we simulated 1000 trials with random rewards delivered at 50%
probability.

Dual-component hex-value learner. To compare contributions of spatially local TD and maze-wide inference-based learning
processes, we developed a value learning algorithm over hexstates (location and direction, defined as before), with two separate
value-update components: local TD(0) value learning, and a maze-wide model-based update.

A one-step TD(0) update occurred at every hex entry according to the following update rule:

Learning rule at each hex transition: V (statet)← V (statet)+αT D(γVMF (statet+1)−V (statet) (9)

Learning rule upon port entry: V (statet)← V (statet)+αT D(Rt−V (statet)) (10)

where αT D is the TD learning rate, and γVMF is the spatial discount factor. The reward function, R, was zero for all non-port
hexes. Hex-state values were initialized at 0.2, to convey a small uniform expectation of future reward from all locations. Upon
reaching a reward port, model-based updates were also performed over the entire map upon reaching a reward port according to
the following rule:

V (state)← V (state)+αMBT (portt,state)(Rt−V (state)) for all states, (11)

where αMB is the model-based update learning rate, and T(port,state) weights the update by the discounted on-policy distance
from each state to the current port. This map the tendency matrix, T, is a recency weighted representation of all paths that have
previously led to the goal port. The tendency matrix is learned online by recency-weighted averaging over states encountered on
paths into the port. In particular upon each port arrival, it is updated according to:

T (portt,state)← (1−αT )T (portt,state)+αT m(state) for all states, (12)

using learning rate αT and a where the memory trace vector, m, of the most recent path into the port, reflecting each hex
traversed on the current trial, discounted by the experienced distance from the port.is a vector of the hexes traversed on the
current trial, and αT is a learning rate. The update weight of each hex is further discounted as a function of timesteps within an
experienced path to the goal port. The memory trace m is itself initialized to zeros at the start of each trial, then learned over the
trial by discounting and accumulation at each timestep. It learns this representation of distance from the reward port through the
following discount and accumulation rules at each timestep:

m(state)← γVMBm(state) for all states (13)

m(statet)← 1 (14)

In this way, T reflects a model-based expected eligibility trace for possible paths to the port, comprising both experiential
eligibility from the just-completed path into the port (analogous to TD(1)), and counterfactual eligibility arising from a
recency-weighted average over previous port entries (57, 69).
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Hex-state value TD(λ) learner. We also considered an alternative model for learning hex-state values, based on TD(λ). This
algorithm maintained an eligibility trace of recently visited hex-states to propagate updates backwards at each timestep. By
optimizing the trace decay parameter, λ, to fit the observed DA at each timestep, we could estimate the spatial extent of value
updates, on average. Value learning was implemented according to the following rules:

e(state)← λγe(state) for all states (15)

At non port hexes: e(statet)← 1 (16)

Learning rule at each hex transition: V (state)← V (state)+αe(state)δt for all states (17)

with: δt = γV (statet+1)−V (statet) (18)

Learning rule at port entry: V (state)← V (state)+αe(state)δt for all states (19)

with: δt = Rt−V (statet) (20)

Upon reaching port: e(state)← 0 for all states (21)

Dopamine regression. We combined each learning model with a linear regression observation function to model the dopamine
timeseries, i.e. DAt = β0 +βV V (statet)+ϵt, with noise ϵt ∼Normal(0,σ2). Here, the parameter βV captures any covariation
between modeled value and the measured dopamine timeseries.

Model fitting. We optimized the free parameters of the learning algorithms by embedding each of them within a hierarchical
model to allow parameters to vary from session-to-session. Session-level parameters were themselves modeled as arising from a
population-level Gaussian distribution over sessions, across rats. We estimated the model, to obtain best fitting session- and
population-level parameters to minimize the negative log likelihood of the data using an expectation-maximization algorithm with
a Laplace approximation to the session-level marginal likelihoods in the M step (70). For hypothesis testing on population-level
parameters (βV ), we computed an estimate of the information matrix over the population-level parameters, taking account of
the so-called “missing information” due to optimization in the E-step (71), itself approximated using the Hessian of a single
Newton-Raphson step.

For the value-iteration algorithm, which only sought to estimate the discount factor, γ, we used a simpler function-
minimization protocol. On a session-by-session basis, we found the minimum of the negative log likelihood function of the DA
data, given γ. As this was a simple scalar function, we used the minimize_scalar function from the SciPy package in Python.
Parameter search was unbounded using Brent’s algorithm, but γ values were rescaled between 0 and 1.

Model comparison. To isolate the contributions of each independent learning component, we created two nested models: one
with αT D and γMF both set to 0 (MB update only), and another with αM B, αT , and γMB all set to 0 (TD update only), and
we compared each of these to the full model. In order to compare models with different numbers of free parameters, correcting
for any bias due to overfitting, we computed a cross-validated approximation to the negative log marginal likelihood for each
session (36). Specifically, we used leave-one-session-out cross validation for the population-level prior parameters and a Laplace
approximation for the per-session parameters: for each session, we refit the population-level model omitting that session, then
conditional on that prior, we computed a Laplace approximation to that session’s log marginal likelihood. We aggregated these
per-session scores to obtain a total score for each rat and model. Finally, we use paired tests on these scores across rats, between
models, to formally test whether any model fit consistently better over the population of rats. We depict relative fit subtracting
out the dual-component model fit scores, so that positive values indicate superior dual-component model fit.

Data Analyses.
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Port-choice analyses. The frequencies of port visits and path choices were calculated using a five-trial rolling mean. To compute
changes in visit frequency, we subtracted the mean frequency from the five trials prior to a block change from the frequencies
after a block change. Note that paths here, and in most analyses, are defined by port visits (e.g., running from port A to port B),
rather than specific sequences of hexes. “Better” and “Worse” ports were defined as those where the reward probability increased
or decreased, respectively, compared to the prior block. This included changes from 10% reward probability to 50% reward
probability, so the “Better” port was not necessarily the highest reward probability port in the maze. Similarly, “Longer” and
“Shorter” paths were defined relative to the previous block, and paths whose length did not change were not included in this
analysis.

All mixed-effects regression analyses were performed in R using the package lme4. Random effects were estimated over
the levels of rat and session-within-rat. To identify any significant contributions of reward probability and path length on choice,
we used a logistic mixed-effects regression of the following form:

log P (choose left)
1−P (choose left) = β0 +β1(P(reward)left−P(reward)right)+β2(distanceleft−distanceright), (22)

where the intercept captured any variation due to turn-direction bias. “Left” was defined on a trial-by-trial basis as the left of the
two available ports, when oriented away from the previously visited port. For example, if the top port had just been visited, the
bottom right port would be left, and the bottom left would be right. To avoid periods when rats are learning the probabilities of
reward, we only included data from the second halves (trial number > 25) of each block. Both probability differences and length
differences were scaled between zero and one to compare effects in common units.

To isolate any effects of inference on port choice, we ran a similar logistic mixed-effects regression of port choice:

log P (choose left)
1−P (choose left) = β0 +β1Rt−1 +β2Rt−2 +β3Rt−3 +β4Rt−4 +β5Rt−5. (23)

where "t-n" denotes prior trials where the left port was visited, and R denotes the reward outcome on that trial. Critically, we ran
this regression for two subsets of data: trials where the rat took the same path to the goal port the last time it was visited, and
trials where the rat last took an alternative path to the goal port. Paths, here, were defined based on the start and end ports, not
the specific sequence of individual hexes traversed.

In addition, we sought to avoid possible confounds that arise due to decaying reward representations over time. For example,
for a port that has not been visited in 10 trials, memory of the last outcome may have decayed, or uncertainty may have increased,
compared to a port visited one trial ago (i.e., when a rat has been running back and forth between two ports and ignoring the
other). To control for variations in the trial-lag length between traversals to the port of interest (the left option), we only included
trials where the left available port was visited exactly two trials prior. This way, we are not comparing results from recent
same-path reward to older alternative-path rewards, or vice versa.

Ramp analyses. Ramp slopes were estimated by fitting a linear regression model to the hex-level DA along the last 15 hexes
traversed before port entry, in each session. To test for significance, average ramp slopes were first computed for each session,
and then a two-tailed Wilcoxon Signed Rank test assessed whether a rat’s session-average slopes were significantly different
from zero. If a rat did not show significant positive ramping (n=1) they were not included in remaining analyses of DA ramping
and value coding.

To scale and remove average ramps from individual-trial DA traces, we first calculated the average ramp over the last 10
hexes traversed for each rat. Because we were interested in scaling the entire ramp as a function of estimated gain, we needed to
remove any negative values. To do this, we first rescaled each rat’s average ramp between 0.1 and 0.9 (we refer to this as the
control ramp, for clarity). For each path traversal of interest, we then fit a linear regression of the observed DA data to that rat’s
control ramp. An intercept captured remaining broad directional differences in the ramp (e.g., when the initial portion of the
observed DA ramp was negative). We then scaled the control ramp by the estimated regression coefficient, added the intercept to
the scaled control ramp, and subtracted this result from the DA trace. We were left with residual DA values, which we used for
visualization in Supp. Fig. 4g-h.

Barrier-change dopamine analyses. To analyze discovery of a barrier change (either newly available or newly blocked) we
aligned signals on first-detected entry into a hex immediately adjacent to the changed hex. At these hex transitions, the changed
hex is readily visible. Initial new-hex exposures where the rat subsequently entered the new path were defined as those where the
rat entered the newly available hex directly following its discovery.
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DA regression analyses. We needed to isolate the hexes where values will differ depending on experience-based versus inference-
based updates. To this end, we excluded all overlapping hexes between the same and alternative paths to the goal port. In other
words, we only included the hexes prior to the first choice point on each trial where the rat has the opportunity to choose between
the two available ports (see Fig. 6).

To assess whether DA reflected the last reward outcome at the goal port following a traversal of the same path-dependent
hexes and/or an alternative sequence of hexes, we ran a mixed-effects regression of the following form:

Path-dependent DA = β0 +β1Rt−1 +β2Rt−2 +β3Rt−3 +β4Rt−4 +β5Rt−5. (24)

where "t-n" denotes prior trials where the goal port was visited, and R denotes the reward outcome on that trial. Similar to the
port-choice analysis, we ran this regression for two subsets of data: trials where the rat previously took the same path to the goal
port, and trials where the rat took an alternative path to the goal port. Again, to control for biases that can arise due to differences
in the number of trials since the port was last visited, we exclusively analyzed trials where the goal port was visited two trials ago.
The inclusion of the prior five outcomes at the goal port controlled for DA scaling effects due to earlier rewards at the same port.
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Supplementary Figure 1. Navigational adaptations to Hex Maze configuration changes. a, Position data from the first, second,
and third group of ten trials following a barrier change. Green arrows highlight the progressive reduction in the distance traveled into a
novel dead-end path. Barrier change is from the same block as Fig. 1d. b, Deviation from the optimal (shortest) path lengths over the
course of the initial blocks of all sessions (left), blocks following a barrier change (middle), and blocks following a p(reward) change
(right). Deviation is measured as the number of extra hexes traversed beyond the shortest possible path length. Dots show median
values in ten-trial bins, error bars show 95% confidence intervals.
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Supplementary Figure 2. Extended analysis of DA pulses. a, Port-entry aligned DA in the second half (trial number > 25) of each
block (n = 10 rats, 82 sessions, 9,079 trials), pooled by terciles of the RL model Q value for the chosen port. b, Bottom, regression
weights for Q-value-derived RPE (see Methods) on DA following port entry (100ms bins over the first 2s). Separate regression weights
are shown for RPE following reward (red) and omission (blue). Regressions were performed independently for each rat. Top, fraction
of rats with a significant relationship (non-zero regression coefficient, two-tailed t-test) between RPE and DA in the time bin. c, Left,
cartoon of rat choosing to enter (light blue) or ignore (violet) the newly available path. Right, DA aligned on entry into the hex adjacent to
a newly available hex, broken down by whether the rat subsequently entered (n = 9 rats, 77 events) or ignored (n = 7 rats, 25 events) the
novel path. Four rats either never chose to enter the ignored path option, or entered on fewer than three instances in total, so they were
excluded from analysis. All error bands indicate ± SEM.
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Supplementary Figure 3. Individual-animal recording locations and DA goal-approach ramps. a, Histologically identified fiber
locations for each animal, paired with the average ramp ± SEM for the corresponding implanted fiber. Orange denotes right hemisphere
and blue left. Blue asterisk signifies the inferred fiber location of an implant with missing histology (IM-1273 left hemisphere). b, Average
ramp slope for each recording location (bar plot), with individual sessions marked as "x" for left and "o" for right hemisphere. c, Discount
factors (γ) for each recording location with a significant ramp, fit to the observed DA data in the value-iteration algorithm. Bars show rat
means, and dots show session values.
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Supplementary Figure 4. Further comparison of TD algorithms to DA signals. a, Schematic of the TD(λ) update algorithm showing
the traversed hex-states’ eligibility at the end of a trial. b, Estimated parameter values after fitting TD(λ) to each rat’s hex-level DA signal
(bars show mean values across rats, dots signify individual-rat estimates, error shows ± SEM). c, Predicted DA value traces based on
parameter values from the fitted TD(λ) hex-value learning algorithm. Predicted value function in response to reward and omission, over
the same trial sequence as in Fig. 3c. "R" and "O" denote rewards and omissions, respectively, on the t-n previous visits to the port. d,
Predicted value function after a single reward in a series of omissions, over successive runs of the same path, as in Fig. 5b. e, Analyzing
the distance from the terminal port in which prior rewards have their strongest impacts (linear regression weights) on state value, as in
Fig. 3f-h. Predictions from 1000 simulations of a TD(λ) algorithm, based on parameter values from the fitted TD(λ) hex-value learning
algorithm. f, Schematic of the traversal sequence from Fig. 5b. g, Predicted value function for a linear combination of TD(0) and TD(1)
value updates. h, Path-wide-update extraction and residual analysis. Top, illustration of an individual-trial DA trace, the fitted average
ramp for subtraction, and the remaining DA residuals for analysis. Bottom, observed mean DA residuals over the three traversals in h.
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Supplementary Figure 5. Examining the effects of reward on DA ramping along successive runs to the same port, separated by
prior path type. a, Schematic illustrating the rat’s current path to the destination port. b, Left, schematic illustrating trials where the
rat previously took the same path to the destination port. Middle, mean DA over successive path traversals to the same port, where
reward was omitted two visits ago (t-2), but reward was delivered the prior visit (t-1; n=9 rats, 1087 sequences where rat previously
took the same path to the destination port). Red asterisks indicate a significant increase in hex-level DA (p < 0.05, one-tailed Wilcoxon
signed rank test). "R" and "O" denote rewards and omissions, respectively, on the t-n previous visits to the port. Right, same as left
but examining the effects of a reward omission on the last visit. Blue asterisks indicate significant DA decrease (p < 0.05, one-tailed
Wilcoxon signed rank test; n=9 rats, 1079 sequences where rat previously took the same path to the destination port). c, Left, schematic
illustrating trials where the rat previously took an alternative path to the destination port. Middle, same as b middle, but where the rat
previously took the alternative path to the destination port (n=9 rats, 592 sequences). Right, same as b right, but where the rat previously
took the alternative path to the destination port (n=9 rats, 583 sequences).
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