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Abstract: Recently, utilization of machine learning (ML) based methods has led to astonishing 

progress in protein design and, thus, the design of new biological functionality. However, emergent 

functions that require higher-order molecular interactions, such as the ability to self-organize, are 

still extremely challenging to implement. Here, we describe a comprehensive in silico, in vitro, 

and in vitro screening pipeline (i3-screening) to develop and validate ML-designed artificial 

homologs of a bacterial protein that confers its role in cell division through the emergent function 

of spatiotemporal pattern formation. Moreover, we present complete substitution of a wildtype 

gene by an ML-designed artificial homolog in Escherichia coli. These results raise great hopes for 

the next level of synthetic biology, where ML-designed synthetic proteins will be used to engineer 

cellular functions. 

 

Main 

The design of novel proteins to perform specific desired functions is one of the ultimate goals 

of synthetic biology, with the potential to tackle some of the biggest challenges of mankind, 

including disease, climate change, food, or energy production (1–3). In the last two years, the 

introduction of Machine Learning (ML) based generative models, inspired by revolutionary deep 

generative models like ChatGPT, Stable Diffusion or DallE2 (4–6), has yielded major 

breakthroughs in protein design and engineering (2, 3, 7–13). These methods have led to great 

advances in the engineering of new proteins with individual functionality, such as catalytic activity 

(8–11), small molecule binding (8, 9), or spike protein capping (8). However, the design of proteins 

with emergent functions of core relevance to life, such as spatiotemporal self-organization upon 

energy dissipation, is still in its infancy. Such complex biological functions only arise from finely 

tuned interactions with the cellular environment, such as other proteins and lipid membranes, and 
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the ability to switch between different conformational states, which is not yet possible to design 

de novo by ML-based design (14). 

There are two major challenges for this next step of protein engineering. First, there is no 

comprehensive classification of emergent protein functionalities, quantitatively describing 

complex protein-protein, -lipid, and -nucleotide interactions within the cellular environment. Thus, 

there are no good datasets to train generative models on towards de novo design of proteins with 

emergent behavior. Second, there is a lack of screening pipelines, as required for protein design 

(2), to test for emergent functions of de novo designed proteins, both computational and 

experimental. Computational models to predict emergent functions, or the generic biological role 

of a protein, from sequence or structure, still perform poorly compared to pre-defined molecular 

functions (15–17), which is also an effect of the lack of a quantitative classification of protein 

functionalities. Simultaneously, there exists no high-throughput screening system for emergent 

protein functions in vitro, putting an extra layer of difficulty to find promising candidates to 

eventually test in in vivo environments. 

Here, we tackle these problems by combining ML-based distant homolog generation and 

subsequent functional screening of novel proteins for one of the best-studied model systems of 

biological self-organization, the bacterial Min system (18–20). The two proteins MinD and MinE 

evoke intracellular reaction-diffusion patterns resulting in ATP-dependent oscillations of the 

proteins between the cell poles in Escherichia coli, placing the division machinery at mid-cell and 

thus determining the division site (fig. S1). Remarkably, these spatiotemporal patterns, called Min 

waves, can be reconstituted in vitro (21), what has allowed the extensive biophysical 

characterization of the molecular dynamics of Min proteins, such as protein-protein and protein-

lipid interactions that give rise to the emergent behavior. In particular, MinE has been dissected to 

a core set of molecular functions that are essential for spatiotemporal self-organization (22, 23), 

putting into reach the possibility to computationally predict these three molecular functions and 

hence to indirectly predict the emergent functionality. Thus, the emergent function of the MinDE 

system can be screened by combined in silico, in vitro, and in vivo (i³) setups (Fig. 1). In the 

following, we show that such an i3-screening pipeline can find novel, ML-generated homologs of 

MinE that can fully substitute the wildtype gene in a living organism, opening the door to targeted 

engineering of cellular functions by protein design. 

 

Generation of artificial distant MinE homologs 

To generate MinE-like proteins that we could subsequently screen for emergent function, we 

generated novel distant variants of wildtype MinE using a Multiple Sequence Alignment based 

Variational Autoencoder (MSA-VAE) as introduced by ref. 24 (Fig. 2A). We chose this 

architecture as it is one of the few methods that is experimentally validated and was shown to have 
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a high success rate (24). Furthermore, there are relatively few naturally occurring MinE sequences 

to train the model on, compared to other studies where novel homologs were generated (~6,000 

sequences in our dataset, compared to ~17,000 sequences used to train ProteinGAN, (25)), so we 

preferred the MSA-VAE over a GAN as it needs fewer parameters because information is already 

encoded in the MSA (ProteinGAN has ~60,000,000 trainable parameters while our model has 

~1,000,000 (25)). We trained the MSA-VAE with a modified ELBO loss function similar to ref. 

24 with a range of different hyperparameters (see Methods) and evaluated performance by single 

and pairwise amino acid frequency distributions as in the original paper (fig. S2). A high 

correlation in this metric indicates that evolutionary constraints are considered when generating 

sequences, rather than simply introducing random noise (24). With the selected set of 

hyperparameters, we generated 4000 novel variants. As can be seen in Fig. 2B, sequence 

conservation among the generated variants is highly similar to sequence conservation in naturally 

occurring variants, indicating that the model had generated reasonable sequences instead of just 

introducing random mutations. Dimensionality reduction on the latent space by Principal 

Component Analysis (fig. S3) further showed clustering by phylogenetic groups, confirming that 

the latent space conserved information about sequence relationships. However, some overlaps in 

the clusters can be observed and the correlation between pairwise amino acid frequencies of natural 

and generated sequences is not perfect, indicating that the generative model might still introduce 

some mutations that could impair the function of the protein. Thus, we had generated a set of 

artificial homologs where different grades of functional performance were expected, which we 

could then subsequently screen for emergent function, first in silico and then in vitro. 

In silico scoring of emergent function 

To reduce the number of proteins to be evaluated from 4000 to a more feasible number for 

subsequent screenings, and to ensure heterogeneity among the proteins, we initially screened 

proteins based on sequence identity. First, we filtered out all proteins with more than 60% sequence 

identity to the wildtype MinE in E. coli, as we eventually wanted to test the function in this 

organism. Second, we clustered the remaining generated variants by 60% sequence identity. Third, 

we randomly selected one sequence per cluster for further analysis. As a result, we got 167 

remaining sequences to evaluate in our in silico pipeline. 

The higher-order function of the MinE protein, volume oscillations through spatiotemporal 

self-organization with MinD, is known to be based on three properties (20, 22, 23): (i) membrane 

binding, (ii) formation of the MinDE complex that stimulates MinD’s ATPase activity, and (iii) 

homo-dimerization (Fig. 2C upper panel). To evaluate the expected functionality of the generated 

variants, we first predicted the structures of the variants using AlphaFold2 Multimer (26), and then 

developed a pipeline to estimate the three properties from the structure. Thus, we used a full 

sequence-structure-function pipeline (Fig. 2A). Interaction to MinD and dimerization was 
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evaluated based on the Predicted Align Error (PAE) of the AlphaFold2 Multimer (26) output, 

similar to other protein design studies (7, 8). The membrane binding capability was estimated by 

calculating the hydrophobicity of the N-terminal region using ProteinSol Patches (27), since the 

hydrophobic interaction between the N or C-terminal region of proteins and lipid molecules is a 

determinant factor of the membrane binding (28–30) (see Methods and fig. S4A-C). As we 

eventually wanted to test the proteins in E. coli cells, we also predicted solubility of the proteins 

in E. coli using ProteinSol (31) as fourth score (fig. S4D). All four scores were normalized and 

summed up, resulting in a roughly normally distributed final “Function Score” (Fig. 2A lower 

panel). We then sorted the 167 heterogeneous variants by this score and validated the ranking 

visually. As can be seen representatively in Fig. 2C, proteins with low scores tend to be predicted 

to miss a proper interaction interface with MinD and to have a disordered and either very long or 

very short N-terminal region, suggesting impaired MinD’s ATPase stimulation and membrane 

binding. Proteins with high scores tend to resemble the wildtype closely. Interestingly, it is known 

that a conformational change is needed to swap from MinE-MinE homodimer to MinE-MinD 

heterodimer, and among the low-scoring variants such a change was often not predicted (fig. S5). 

As this could either be a truly missing property of the protein, in which the score would be correctly 

low, but also a misprediction of AlphaFold2 Multimer, in which case the score might be falsely 

low, we subsequently chose the best-scoring and worst-scoring 24 sequences for experimental 

screening (Fig. 2A lower panel, fig. S6, 7, and data file S1) and double-blinded them to be able to 

validate our in silico scoring approach. 

In vitro screening for emergent function using a cell-free system 

Although the in silico screening effectively reduced the synMinE variants to test, it was not 

our intention to purify all 48 proteins at the same time, accompanied by many difficulties in 

experimental optimization due to protein solubility, cell toxicity, etc. Instead, to accelerate the 

screening pipeline, we utilized an in vitro cell-free protein synthesis system (32–34), where target 

proteins can typically be expressed within 1 h of incubation of a mixture of transcription-

translational factors and DNA templates encoding the target proteins. Cell-free expression systems 

have been crucial in bottom-up synthetic biology, and have an enormous potential to be further 

utilized in various experimental setups by proper choice and optimization of the configuration, 

such as cell types and cell lysate or purified components-based systems. In this study, we chose 

the E. coli-based cell-free synthesis platform called PURE system (35), because it has been 

demonstrated that the PURE system can synthesize Min proteins, and that such cell-free expressed 

MinD and MinE proteins can self-organize into dynamic wave patterns in vitro in cell-mimicking 

environments such as lipid containers (36, 37). 

We performed in vitro screening of the 48 novel MinE variants, named synMinEv1-48, by 

validating whether cell-free expressed synMinE variants could form Min waves in an established 
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in vitro reconstitution setup. All 48 synMinE variants were synthesized with the PURE system 

(fig. S8), and subsequently, each variant was encapsulated within lipid droplets with purified MinD 

and ATP as cofactors. After checking for Min waves by laser scanning microscopy, we found in 

total 14 positive variants that give rise to spatiotemporal patterns on the lipid membrane with 

typical Min wave patterns (traveling wave and pole-to-pole oscillation), as well as typical 

oscillation periods (1-2 min) in lipid droplets as previously reported (Fig. 3A, B, fig. S9, and movie 

S1) (36). The other 34 variants did not show any heterogeneous localization over the usual time 

scale of Min oscillations (fig. S9, and movie S2). Intriguingly, but not surprisingly, after 

unblinding the variants, we found that 10 of these positive variants are from the high in silico 

scoring candidates and 4 variants are from the low in silico scoring candidates, suggesting that in 

silico screening for emergent function is possible by screening for the necessary molecular 

functions. This could be extended to a broad range of other emergent functions and should also be 

possible with entirely de novo designed proteins. 

In vivo substitution finds a fully functional complement of the wildtype gene 

To further investigate whether these bottom-up constructed in vitro systems can truly screen 

for physiological function in vivo, we then assessed whether those 14 positive variants could also 

give rise to Min oscillations in E. coli cells. The 14 positive synMinE variants were introduced in 

an E. coli strain (HL1) lacking minDE genes by transforming plasmids encoding the respective 

synMinE variant and GFP-tagged MinD, as shown in previous studies (23, 38). With this setup, 

there are three possible phenotypes (18) (Fig. 3C, fig. S10, and S11): (i) the normal phenotype, (ii) 

the minicell phenotype, resulting from a lack or dysfunction of both MinD and MinE, where a 

certain number of cells (29% of the population in ∆minDE control vs 2.1% in the normal phenotype 

(i) ) become non-chromosome miniature-sized spherical cells, due to the lack of the Min oscillation 

to place the division ring at mid-cell, and (iii) the filamentous phenotype, where MinE is lacking 

or dysfunctional but MinD is present and functional. This leads to homogeneous MinD binding to 

the cell membrane and thus, radical inhibition of the division ring assembly at any position. Indeed, 

in control setups of (ii: ∆minDE cells) and (iii: MinD expression in ∆minDE cells) without any 

transformed synMinE genes, Min oscillation can never be observed in cells (Fig. 3C). 

Strikingly, we found that 7 out of 10 high-scoring synMinE variants evoked Min oscillations 

inside the cells, while only one of the low-scoring variants showed oscillations (Fig. 3A, C, fig. 

S10, S11, and movie S3-6). This suggests that the essential requirements for Min wave oscillation 

might be stricter in vivo than in vitro, potentially because proteins are constricted in smaller 

microscopic spaces and other cellular molecules, such as proteins, DNA, and RNA, could 

potentially induce non-specific interactions with the Min proteins. Furthermore, analysis of cell 

morphology revealed that the majority of wave-inducing synMinE variants, and especially all low-

scoring variants, induce the minicell or filamentous phenotype, as a result of dysfunction in 
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division ring assembly or placement (Fig. 3A, C, fig. S10, and S11). This suggests further complex 

molecular dynamics of Min proteins, as interaction of MinD with other proteins competing with 

MinE, such as the third Min protein, MinC (20, 39, 40), are essential to position the division 

machinery at the proper region. Finally, we found that one variant, synMinEv25, fully restores the 

normal cell phenotype together with Min oscillations (Fig. 3A, C, Fig. 4, movie S3, and S4), 

representing, to our knowledge, the first functional substitution of a natural gene by an artificial 

homolog generated by a generative model in a living organism. Additionally, these results also 

confirm that our in silico scoring could reasonably estimate the emergent protein function, and 

that, together with the in vitro screening, our pipeline considerably enhances the efficiency of the 

experimental validation for emergent functions. 

Functional analysis of synMinEv25 reveals its impeccable capability 

To further understand the function of synMinEv25, we conducted in vivo and in vitro 

characterization of synMinE variants. First, we analyzed cell growth with all high-scoring 

synMinE variants. In contrast to the control (-MinE) condition, the introduction of synMinEv25 

successfully restored growth rates to the wildtype-level (Fig. 4A). Also, 6 of the 10 positive high-

scoring variants restored cell growth as well (fig. S12), suggesting that even without proper 

positioning of the division machinery inducing abnormal phenotypes, synMinE variants can 

induce cell division and growth. We then measured the cell size distribution of normal and minicell 

phenotype mutants to assess the accuracy of cell division led by Min oscillation. We found that 

synMinEv25 has a similar minicell population (2.1% (wt) vs 2.3% (v25)), median cell size (3.5 

µm (wt) vs 3.4 µm (v25)), and even narrower size distribution than wildtype (2.4 µm (wt) vs 1.4 

µm (v25) in variance), suggesting synMinEv25 allows proper cell division by placing the division 

ring in a correct location within comparable time- and geometrical-scales, and especially 

suppresses the production of elongated cells to confer better functionality in cell division (Fig. 

4B). The other variants induced much higher minicell populations (7.2% ~ 35%) and wider size 

distributions (fig. S13), meaning they were inefficient in positioning the cell division machinery. 

The Min oscillations induced by synMinEv25 indicated a similar tendency of periods against cell 

length as the wildtype, with slightly slower oscillations (Fig. 4C, fig. S14, movie S3, and S7). 

Taken together, synMinEv25 can substitute the wildtype in all intrinsic functions of the Min 

system - cell growth, morphology, and biological pattern formation. 

Moreover, we set out to purify the promising synMinE variants and were able to obtain 6 out 

of the 10 high-scoring variants including synMinEv25 in a standard affinity purification protocol 

(fig. S15). This only 60% success rate further shows the great potential of cell-free expression for 

functional screenings. We characterized those purified proteins by three functional assays in vitro 

with regard to (i) membrane binding, (ii) catalyzing MinD’s ATPase activity, and (iii) 

oligomerization, where all three features are essential MinE functions and were estimated during 
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the in silico scoring. Strikingly, a bubble plot (Fig. 4D, fig. S16, and S17) indicates that 

synMinEv25 has almost the same scores in all three parameters compared to the wildtype, showing 

that our screening and in vivo characterization are plausible. Moreover, we found an interesting 

relationship between scores and cell phenotype. Variants with higher ATPase induction activity 

than the wildtype but relatively similar oligomerization scores seem to induce the filamentous 

phenotype, while variants with ATPase induction comparable to the wildtype but bigger oligomer 

sizes seem to induce the minicell phenotype. This suggests that a delicate balance of those two 

parameters is particularly important for proper cell division, where the strength of membrane 

binding seems not to be a determining factor. 

Finally, sequence comparison validated that the sequence identity of wildtype MinE and 

synMinEv25 is less than 50%, and sequence similarity is less than 70% (Fig. 4E), and, as can be 

seen in data file S1, sequence identity with its closest natural homolog is 78.7%. This shows that 

our generative model designed not just a mutant, but truly a distant homolog that can substitute a 

complex emergent function in a living organism.  

Taken together, we have shown that our i3-screening system, including well-informed in silico 

scoring and cell-mimicking in vitro systems, can successfully screen for complex intracellular 

emergent functions. This marks a huge step forward towards customizable protein functions and 

the engineering of cellular functionality. Furthermore, we provided an example of a fully 

functional in vivo substitution of a gene found in nature by an ML-generated homolog, opening 

the door to the engineering of whole living organisms from the bottom-up. 
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Fig. 1. Overview of machine-learning assisted protein design and i3-screening pipeline for 

novel artificial homologs. The combined pipeline of this study: (1) Variational Auto Encoder-

based sequence generation, (2) in silico scoring of synMinE structures as predicted by 

AlphaFold2, (3) in vitro self-organization assay for synMinE variants via cell-free expression, 

and (4) in vivo substitution of synMinE genes in ∆minDE E. coli cells. This pipeline finds an 

artificial, fully functional, distant homolog of the wildtype protein. 
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Fig. 2. Generation of distant MinE homologs and in silico screening for expected function. 

(A) Pipeline overview. Sequences are generated using a Variational Autoencoder and clustered 

by 60% identity to ensure heterogeneity. The structures of the remaining 167 sequences are 

predicted using AlphaFold2 for homo- and heterodimers. A function score is calculated based on 

solubility and the three properties known to allow MinE to oscillate in E. coli: N-terminal 

membrane binding, interaction with MinD, and dimerization. The results are ranked, and the best 

and worst 24 candidates are selected for in vitro analysis. (B) Sequence conservation in naturally 
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occurring and newly generated MinE homologs are highly similar. (C) Visual validation of 

ranked structures. With better ranking, structures show better MinD-interaction sites and 

membrane targeting regions. 
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Fig. 3. In vitro and in vivo screening for emergent functions of synMinE variants. (A) 

Summary of the i3-screening results for functional synMinE variants. The colors of each variant 

name indicate whether they are scored high (blue) or low (orange) by in silico screening. (B) In 

vitro screening of synMinE variants. Proteins were synthesized in the PURE cell-free expression 

system from a gene library of synMinE variants and then encapsulated in lipid droplets with 

EGFP-MinD (shown in green) and ATP. Emerging Min oscillation patterns as visualized in the 

kymograph on the bottom-right panel were observed with 14 variants from 48 candidates and 

further tested in vivo. Scale bars: 20 µm. (C) In vivo screening of synMinE variants. The 

remaining 14 variants were introduced in ∆minDE E. coli cells with GFP-tagged MinD. 

Subsequently, cell morphology and Min oscillation were validated to identify the functional 

synMinE variants. synMinEv25 fully substituted the wildtype (+MinDE condition). Differential 

interference contrast and fluorescence images are separately indicated for wildtype (+MinDE) 

and synMinEv25 (v25), or merged for the other conditions shown in the figure. Kymographs 

show Min oscillations inside the cells with wildtype or synMinEv25, while MinD did not induce 

oscillations without MinE (-MinE). Yellow arrows indicate the minicells in -MinDE and v5 

conditions. Scale bars: 2 µm (+MinDE, -MinDE, v25, and v5) or 20 µm (-MinE and v31). 
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Fig. 4. Characterization of synMinEv25 confirms the functional substitution of the 

wildtype. (A) Growth curves of E. coli cells show that the introduction of synMinEv25 in 

∆minDE cells together with MinD recovers cell growth at the same level as wtMinE (n.s. 

indicates p > 0.05 between wildtype (wt) and synMinEv25 (v25) in Welch’s t-test at 300 min). 

(B) Violin plots of cell-size distributions of E. coli cells confirm that both wtMinE and 

synMinEv25 confer proper size distribution while ∆minDE (-MinDE) cells produce a high 

population of minicells (< 1 µm in cell length). Box plots inside the violin distribution indicate 

maximum and minimum in 1.5xIQR, 25th and 75th percentile, median (bar), and mean (cross 

symbol) values. n.s. indicates p > 0.05 in Mann-Whitney U test. (C) Scatter plots of Min 

oscillations induced by wtMinE or synMinEv25 exhibit similar period and size dependency, 

confirming that synMinEv25 can functionally substitute the wildtype. The dotted lines and 

shades indicate linear trends with 95% confidence intervals. Distributions of plots are also shown 

as external density plots. (D) Bubble plot of in vitro characterization of synMinE variants. 

synMinEv25 has the closest scores to the wildtype among other variants, showing a fine match 

with the screening results. (E) Comparison between wtMinE and synMinEv25 structures and 

sequences confirms that synMinEv25 is a proper distant homolog while keeping similar 

structures to the wildtype. 
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