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ABSTRACT

Conformational heterogeneity is a defining hallmark of intrinsically disordered proteins and
protein regions (IDRs). The functions of IDRs and the emergent cellular phenotypes they control
are associated with sequence-specific conformational ensembles. Simulations of conformational
ensembles that are based on atomistic and coarse-grained models are routinely used to
uncover the sequence-specific interactions that may contribute to IDR functions. These
simulations are performed either independently or in conjunction with data from experiments.
Functionally relevant features of IDRs can span a range of length scales. Extracting these
features requires analysis routines that quantify a range of properties. Here, we describe a new
analysis suite SOURSOP, an object-oriented and open-source toolkit designed for the analysis
of simulated conformational ensembles of IDRs. SOURSOP implements several analysis
routines motivated by principles in polymer physics, offering a unique collection of simple-to-use
functions to characterize IDR ensembles. As an extendable framework, SOURSOP supports the
development and implementation of new analysis routines that can be easily packaged and
shared.
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1. INTRODUCTION

Natively unfolded proteins or intrinsically disordered proteins and regions (collectively referred to
as IDRs,) are a ubiquitous class of proteins and domains that regulate a variety of molecular
functions and cellular phenotypes1–4. Unlike folded domains, which are well-described by a small
number of structurally similar microstates, IDRs are defined by their conformational
heterogeneity 4,5. As a result, the accurate description of IDRs in the solution states necessitates
a statistical description of the underlying conformational ensembles6. These ensembles, which
are affected by changes to solution conditions and the types of components present in the
solvent, are distributions of energetically accessible protein configurations that capture the
sequence-encoded conformational biases associated with a given IDR 4,7,8. Several studies
have established direct connections between sequence-ensemble relationships of IDRs and the
molecular functions of these conformationally heterogeneous regions 8–10. Accordingly, there is a
need for facile, ready-to-use methods to uncover the molecular grammar that underlies
sequence-ensemble-function relationships of IDRs. 9.

Measurements of IDR ensembles in solution allow for quantitative mapping of
sequence-ensemble relationships. Techniques that obtain statistical information on molecular
configuration without assuming a single dominant state are well-equipped to characterize IDR
ensembles. These techniques include static and dynamic light scattering (SLS and DLS,
respectively), small-angle X-ray scattering (SAXS), circular dichroism (CD), nuclear magnetic
resonance (NMR) spectroscopy, multiparameter fluorescence spectroscopies, and other
single-molecule techniques 7,11–16. While these experimental techniques offer a window into
conformational behavior, they typically probe a single class of molecular configuration (e.g.,
global ensemble average dimensions, distances between specific positions along the chain,
etc.). Alongside these experimental approaches, all-atom and coarse-grained molecular
simulations are routinely deployed to make predictions or interpret data obtained from
experimental measurements. This coupling of experimental and computational methods allows
for the integration of multiple conformational inputs, enabling a holistic assessment of
sequence-ensemble mapping 17–23.
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Simulations of all stripes, but specifically all-atom simulations based on explicit or implicit
representations of solvent are especially useful for describing sequence-specific conformational
ensembles of IDRs24,25. If a simulation can fully explore the conformational landscape and the
forcefield being used is accurate enough, then all-atom molecular simulations enable the direct
prediction of ensembles from sequence. These computationally derived ensembles can be
compared directly or indirectly with experiments or used in isolation to understand functional
and evolutionary constraints on IDRs 19,20,25. Consequently, there has been substantial interest in
developing and applying Molecular Dynamics (MD) and Monte Carlo (MC) simulations to study
IDRs 26–33.

As all-atom simulations have become increasingly routine, various software packages have
emerged to perform and analyze molecular simulations. Major packages for performing all-atom
simulations (so-called simulation engines) include, but are not limited to, Amber, CAMPARI,
CHARMM, Desmond, GROMACS, LAMMPS, OpenMM, and NAMD 30,34–40. Alongside the
development of simulation engines, there has also been an emergence of stand-alone
packages for simulation analysis. Although most simulation engines contain their analysis
routines, stand-alone analysis packages provide an alternative that, in principle, can be
relatively lightweight, customizable, and unburdened by coding practices or conventions of the
inevitably larger simulation engines. General-purpose analysis packages include Bio3D,
CPPTRAJ, ENSPARA, LOOS, MDAnalysis, MDTraj, ST-Analyzer, VMD, and others41–43 (see
Supplemental Table 1 for a more extensive list). While some packages are general-purpose
libraries for analyzing simulation trajectories, others are developed with a specific goal in mind
44–46. The ability to decouple analysis from performing simulations allows for ease of use,
installation, and portability to be prioritized in analysis packages, while performance can be
prioritized in simulation engines. It also enables familiarity with a single analysis framework that
can be applied across different simulation engines.

All-atom simulations of IDRs are becoming increasingly common 17,19,47. Despite this, there is a
lack of stand-alone analysis packages that specifically cater to the analysis of IDR
conformational ensembles. Given their inherently heterogeneous ensembles and the lack of a
relevant single reference structure, many of the structure-centric analyses commonly employed
in the context of folded may be poorly-suited for characterizing IDR ensembles. In contrast,
concepts and principles from polymer physics have been taken and applied to interpret and
understand disordered and unfolded proteins to great effect 6,11,19,48–51.
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Here we introduce SOURSOP (Simulation analysis Of Unfolded RegionS Of Proteins), a
Python-based software package for the analysis of all-atom simulations of disordered and
unfolded proteins. SOURSOP combines both analysis routines commonly found for folded
proteins with a range of IDR-centric analyses that have been used to great effect across many
publications over the last half-decade. In the remainder of this article, we lay out the software
architecture of SOURSOP, provide several examples of analysis that can be performed, and
offer a discussion of practical and conceptual features associated with the software.

2. METHODS

SOURSOP is written in Python 3.7+ and is built on top of the general-purpose simulation
analysis package MDTraj41. SOURSOP uses MDTraj as a backend for parsing simulation
trajectories and can accept trajectories in a wide variety of file formats. Although trajectory files
are parsed into SOURSOP-specific objects, the underlying mdtraj.topology and
mdtraj.trajectory objects remain user-facing and accessible. In this way, any analysis
written to work with MDTraj is directly applicable to SOURSOP objects.

SOURSOP reads a simulation trajectory into a SSTraj object. The SSTraj object
automatically extracts individual protein chains into their SSProtein objects. SSProtein

objects are the base object upon which single-chain analysis routines are applied as object
functions. In addition, peripheral modules that include ssnmr and sspre, provide modular,
protein-independent analyses that work in conjunction with an SSProtein object. In this way,
SOURSOP abides by the software principle of loose coupling, facilitating maintainability and
future extension. The overall architecture of SOURSOP is shown in Fig. 1A.
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Figure 1: Architecture and example code for SOURSOP. (A) Trajectory files are read into an
SSTrajectory object, which automatically parses each polypeptide chain into SSProtein objects. Each
SSProtein object has a set of object-based analyses associated with them. Each trajectory must have
between 1 and n protein chains in it. In addition, various stateless method-specific analysis modules exist
for certain types of analysis. Additional stateless methods can be extended to allow new analysis routines
to be incorporated in a way that does not alter the SSProtein or SSTrajectory code. (B) Example code
illustrating how the apparent scaling exponent can be calculated from an ensemble.

Where possible and appropriate, SOURSOP engages in memoization, a dynamic programming
approach where expensive calculations are saved after being executed once52. This offers a
general strategy that avoids repeated recalculation of (for example) the same sets of distances.
In addition to intramolecular analysis codified in the SSProtein object, intermolecular and
multi-chain analysis routines are included in the SSTraj object. In this way, a simple and
standardized interface for working with protein ensemble data is provided. Ensembles to be
analyzed could be generated through standard all-atom simulations, but PDB ensembles from
NMR or ensemble selection procedures are also directly analyzable.

A major goal in developing SOURSOP is to make simulation analysis easy and intuitive, both for
the user and developers. As an example, Fig. 1B offers a simple example of computing the
apparent scaling exponent (νapp) for a protein in a simulation trajectory. While a straightforward
user experience is an obvious goal for any software package, providing a consistent,
well-defined, and accessible software architecture is essential for long-term maintenance and
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extendibility. Well-structured software is also necessary to enable productive and sustainable
open-source contributions.

The current working version can be found at https://github.com/holehouse-lab/soursop, with
documentation at https://soursop.readthedocs.io/. SOURSOP uses PyTest
(https://docs.pytest.org/en/stable/) for unit testing, Sphinx
(https://www.sphinx-doc.org/en/master/), and readthedocs (https://readthedocs.org/) for
documentation, and Git (https://git-scm.com/) and GitHub (https://github.com/) for version
control. The original repository structure was generated using cookiecutter
(https://github.com/cookiecutter/cookiecutter). Explicit dependencies include MDTraj41, SciPy53,
NumPy54, Pandas55, and Cython56. In addition to the analyses shown here, we provide a
collection of Jupyter notebooks along with the full trajectories (where possible) that offer
examples of more general IDR-centric analysis that can be performed on the ensembles studied
here (https://github.com/holehouse-lab/supportingdata/tree/master/2023/lalmansingh_2023).
The SOURSOP code is consistent and heavily commented. The documentation also provides
specific guidance for the development and integration of new analysis routines into SOURSOP.

3. RESULTS

To demonstrate the analyses available in SOURSOP, we have analyzed a collection of
ensembles generated by various methods. The trajectories analyzed were generated using
CAMPARI (an all-atom Monte Carlo simulation engine) or Desmond (an all-atom MD simulation
engine)26,57,58. The analyses performed here are offered as convenient examples of the types of
analyses and insight enabled by SOURSOP.

3.1 IDR global dimensions show extensive sequence-dependent conformational biases

A challenge in the study of IDRs is the absence of an obvious reference state. While folded
proteins are typically associated with a native conformation which can serve as a reference
point for further analysis, the structural heterogeneity of an IDR means that no single state
serves this purpose. Conveniently, polymer physics offers analytical tools that can serve as
reference states for disordered and unfolded protein ensembles 30,48,59–63. As a result,
dimensionless polymeric parameters can be computed, which allows the conformational
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behavior of very different proteins to be quantitatively and directly compared. SOURSOP
implements the calculation of many of these parameters, facilitating ensemble analysis.

We re-analyzed a series of conformational ensembles using two such dimensionless reference
parameters. Specifically, we computed instantaneous asphericity (δ*), which measures the
shape of a given conformation, and t, a dimensionless parameter that quantifies global
dimensions effectively via a normalized radius of gyration as originally defined by Vitalis and
Pappu as

(1)𝑡 = 𝑓
1
(𝑓

2
(𝑅

𝑔
/𝐿

𝑐
)) 𝑓3

/𝑁0.33

where N is the number of residues in the sequence, Lc is the contour length of the polypeptide in
Angstroms (3.6×N), and f1, f2, and f3, are parameters used to ensure t remains in the interval of 0
to 1 and are defined as 2.5, 1.75 and 4.0. By generating 2D density plots that report on the
simultaneous evaluation of δ* and t for each conformation, a quantitative and length-normalized
representation of IDR global conformational preferences can be easily visualized in a
normalized manner. Both t and δ* are transformations of the eigenvalues from the gyration
tensor T. They represent global order parameters to describe the size and shape of a given
conformation. An alternative normalization approach is using standard polymer models as
reference states. To illustrate these two ideas, we use both approaches in this study.

We analyzed large conformational ensembles with over 3×104 distinct conformers obtained from
previously published simulations that have been directly benchmarked against experiments to
compare how ensemble size and shape vary across different IDRs (Fig. 2A, Table S1)
26,57,58,64–67. This analysis revealed a wide array of global conformational behavior, with IDRs
ranging from heterogeneous compact ensembles to highly expanded self-avoiding random
chains commensurate with polypeptides under strongly denaturing conditions. To contextualize
these global dimensions, we also calculated normalized radii of gyration using the dimensions of
a sequence-matched chain under conditions in which chain-chain and chain-solvent interaction
are counterbalanced, with similar results (Fig. 2B).
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Figure 2: Global conformational analysis of 10 disordered protein ensembles analyzed with SOURSOP.
(A) The two-dimensional density plots for instantaneous asphericity (δ*) and normalized dimensions (t)
reveal a broad range of conformational landscapes. Ash158, p5368, p2767, NTL966, Notch64, and A1-LCD57

are ensembles generated by Monte Carlo ensembles with the ABSINTH implicit solvent model60. ACTR,
drkN, NTail, and Asn are ensembles generated by molecular dynamics simulations with Amber99-disp
forcefield26. Note that NTL9 is not an IDP, but the ensemble reported here represents an unfolded-state
ensemble obtained under native conditions66. (B) Normalized chain dimensions were calculated by
normalizing the instantaneous radius of gyration from ensembles by the expected radius of gyration from
a sequence-matched chain in the theta state, whereby chain-chain and chain-solvent interactions are
counterbalanced 6,62,68.

The diversity in global IDR properties (size and shape), as illustrated in Fig. 2A, is often masked
by ensemble average properties. As a result, two IDRs may appear, on average, to be highly
similar. The simulation analysis uncovers differences using the full distribution of conformations,
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which is evident even for relatively simple order parameters such as δ* and t, in agreement with
prior work that has shown ensemble-average properties can mask complexities in the
underlying conformational ensemble 69–71.

Aromatic and charged residues play an outsized role in dictating the conformational
behavior of disordered proteins

Next, we applied SOURSOP to assess the sequence determinants of the attractive and
repulsive intramolecular interactions that determine global and local conformational biases in
IDR ensembles. To evaluate local chain interactions, we computed the radius of gyration over a
sliding window of 14 residues to generate a linear profile of local density, normalizing for steric
effects via an atomistic excluded volume (EV) model (Fig. 3, see Supplemental Information).
To assess long-range interactions, we computed scaling maps (Fig. 4). Scaling maps are
inter-residue distances normalized by the expected distances from some reference polymer
model, in this case, the EV model. The use of scaling maps accounts for the intrinsic
contribution that chain connectivity has to inter-residue distances. Across the set of ensembles
examined, charged and aromatic residues emerge as key determinants of IDR local and global
interactions irrespective of the forcefield or simulations approach being used (Fig. 3, Fig. 4).
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Figure 3: Local chain compaction with residue chemistry superimposed over the local radius of gyration
(Rg). (A-J) Individual plots showing analysis for each protein ensemble as introduced in Figure 2. Local Rg

is calculated using a 14-residue sliding window. Colored circles on each plot represent different amino
acid chemistry groups, highlighted in the legend below panel I. (K) Pearson’s correlation coefficient
between local Rg and the amino acid chemistry within the window in question. The fraction of charged
residues (FCR) is the strongest positive determinant of expansion and is stronger in these sequences
than the net charge per residue (NCPR). While polar residues, in principle, correlate as negative
determinants of expansion, the negative correlation is driven by subregions deficient in charged residues
and enriched in only polar residues.
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Figure 4: Preferential attraction and repulsion quantified via scaling maps that report the normalized
distance between every pair of residues in the protein. (A-J) Individual plots of analysis for each protein
ensemble as introduced in Figure 2. Normalized distances are calculated by dividing ensemble-average
inter-residue distance by the distance obtained for the EV model. Attractive interactions emerge as darker
colors, while repulsive interactions are lighter. Along the diagonal, subsets of residues are colored using
the same color scheme used in Fig. 3.

While our analysis is necessarily retrospective and correlative, it is in line with prior experimental
work57,72–75. To explore this observation further, we performed all-atom simulations using the
ABSINTH implicit solvent model of the p531-91 with three phosphomimetic mutations (S15E,
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T18E, S20E) and compared the result to previous simulations of the wildtype sequence (Fig.
5A)65. While glutamic acid is an imperfect analog for the larger phosphate group, the results
revealed that relatively modest changes in linear charge density can cause local and long-range
changes in the conformational ensemble. Despite substantial local conformational
rearrangement, this leads only to a modest change of 0.5 Å in the mean radius of gyration (Fig.
5B). Charge effects leading to seemingly minor changes in global dimensions while altering
local networks of intramolecular interactions mirrors prior work on the multi-phosphorylated
proteins Ash1, Sic1, and a region of the RNA polymerase CTD 58,76–78. Taken together, these
results suggest that while local changes in charge density can induce local conformational
changes in ensemble behavior, compensatory changes in attractive (and repulsive) interactions
that act on different or overlapping length scales can mask the effects of large-scale changes
when global chain dimensions are examined.

Figure 5: Comparison of changes in local and global dimensions for wildtype vs. phosphomimetic
versions of p53. (A) Scaling maps where inter-residue distances for the phosphomimetic version of p53
N-terminal domain (p531-91) are normalized by distances for the wild-type protein. Despite differing by only
three residues in the N-terminal quarter of the protein, the phosphomimetic version of p53 shows
substantial differences in long-range and local dimensions, as shown by the emergence of both attractive
(blue) and repulsive (red) interactions. (B) Despite these rearrangements, a relatively small change in
overall global dimensions is observed. While the wildtype ensemble-average Rg is 29.4 Å, the
phosphomimetic variant is 29.1 Å, a difference below the statistical detection limits for most experimental
techniques.
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Molecular accessibility is context dependent in IDRs

It is often convenient to imagine IDRs as uniformly accessible unfolded polypeptides. Under this
model, each residue is equivalently solvent-accessible, and IDRs can be thought of as flexible
scaffolds where the relative position along the chain has no real impact on molecular
accessibility. While this is an appealingly simple model, given the complex conformational
behavior observed in our analyses here and elsewhere, it may not be a given that every residue
is equally accessible58,70,79–82. To examine this idea further, we computed local accessibility
across eight-residue windows for each IDR using a 10 Å spherical probe (Fig. 6). This analysis
allows us to assess how accessibility varies as a function of local sequence position.

Figure 6: Normalized local solvent-accessible surface area (SASA) using an eight-residue sliding window
and a 10 Å probe size. Normalization is done using excluded volume (EV) reference simulations to
account for side-chain-dependent differences in solvent accessibility. Amino acid residues are colored as
in Fig 3. Distinct patterns of accessibility are observed across different proteins, indicating long- and
short-range intramolecular interactions can influence the accessibility of local binding sites.
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Our analysis reveals substantial variation in molecular accessibility, suggesting that two
residues of the same type may be differentially accessible depending on their broader sequence
context (Fig. 6). Under this interpretation, the local sequence environment offers a putative
mechanism to control the effective concentration of a local binding motif. The importance of
local sequence context on molecular interactions can be further expanded if sequence-encoded
chemistry provides partner-specific attractive and repulsive interactions. Taken together, despite
the lack of a fixed 3D structure, it seems reasonable to speculate that the binding of motifs from
IDRs should be considered both in terms of molecular sterics and shape complementarity (as is
the conventional view for rigid-body molecular recognition) but also in terms of if and how the
local chain context influences their accessibility and chemical context 83,84.

4. DISCUSSION

Here we introduce SOURSOP, an integrative Python-based software package for the analysis of
all-atom ensembles extracted from simulations of intrinsically disordered proteins. SOURSOP is
easy to install and use and is accompanied by extensive documentation and unit tests. Here we
have shown how SOURSOP can be applied to analyze all-atom ensembles extracted from two
types of simulations (Monte Carlo simulations and molecular dynamic simulations) of different
IDRs. SOURSOP contains a range of additional routines not explored in this work but have
been applied to various systems under a range of contexts, including local residual structure,
intra-residue contacts, and the interaction between folded and disordered regions (Fig. S1)
57,58,85–87.

SOURSOP as a stand-alone package
SOURSOP was developed as a stand-alone analysis package built on the existing
general-purpose simulation analysis package MDTraj41. The decision to develop SOURSOP as
an independent package, as opposed to expanding the functionality of MDTraj, was motivated
by several factors.

First, many of the analysis routines built into SOURSOP are of limited value for the analysis of
well-folded proteins. At this juncture, MDTraj is a stable and mature software package that
functions as the backend to a range of tools associated with molecular simulations 44,88–92. To
add additional features into MDTraj would unavoidably lead to additional technical debt - more
features to keep track of, manage, and test for. Technical debt adds viscosity, risks the
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introduction of new bugs, and can hamper future development if several coding styles are
combined93. Accordingly, the drawbacks of integrating the analysis routines into MDTraj were
judged to be substantially greater than the possible benefits.

Second, our goal is for SOURSOP to provide a general platform where novel analysis routines
appropriate for disordered proteins can be implemented by the burgeoning community of labs
performing simulations of disordered proteins. This requires our ability to maintain control over a
consistent programmatic interface, which can be achieved via an interface layer between
MDTraj and SOURSOP, but becomes challenging if analysis routines are implemented directly
inside of MDTraj. For this reason, providing SOURSOP as a loosely-coupled software
component that works with MDTraj, as opposed to within MDTraj, enables the best of both
worlds.

Finally, applying principles from polymer physics to analyze disordered proteins is not new.
Several of the analysis routines provided by SOURSOP are also available in extant software,
notably in the simulation engine CAMPARI (http://campari.sourceforge.net/) 6,30,60,61,94.
SOURSOP provides a lightweight toolkit that is simple to install, simple to use, and
interoperable with MDTraj and the collection of existing analysis tools therein. Therefore, while
some overlap exists, we do not see SOURSOP as replacing the analysis routines in MDTraj or
CAMPARI. Instead, SOURSOP is a complement to extant routines and packages. Furthermore,
it makes it relatively straightforward for groups to publish scripts or Jupyter notebooks that
enable full reproduction of their analysis workflow.

SOURSOP in the broader ecosystem of simulation software

Over the last three decades, considerable effort has been placed into the development of Monte
Carlo (MC) and Molecular Dynamics (MD) methods for the accurate modeling of proteins and
related systems in silico26–33. As advancements in computational resources emerged, they
enabled the increasingly detailed estimations and characterizations of biophysical properties
that would ordinarily be inaccessible through traditional experimental methods via the
development of new modeling techniques and simulation paradigms.

As the simulation tools matured, new representational paradigms that enabled the simulation of
systems at longer timescales also emerged beyond all-atom methods. Of note are two methods
that provide fast results with reasonable accuracy: united-atom modeling and coarse-graining.
United-atom modeling represents groups of molecular atoms as a particle. Coarse-grained

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.16.528879doi: bioRxiv preprint 

http://campari.sourceforge.net/
https://doi.org/10.1101/2023.02.16.528879


representations allow groups of atoms, individual residues, or collections of residues to be
represented as a particle. Similar to representational encoding, specific toolkits were developed
for modeling specific system types and sizes, including lipids, membrane proteins, etc.
Consequently, molecular modeling has become an important approach for understanding
protein-protein interactions, protein folding, drug design, ligand-binding affinities, and much
more.

However, as the timescale of such simulations increases with improvements in hardware,
elucidating biological insights from the resultant trajectories becomes more difficult due to the
requirement of more computational resources and time. These limiting factors resulted in the
emergence of numerous analysis tools and frameworks to efficiently extract various attributes of
interest based on the system type and size. Properties include the radius of gyration, Principal
Component Analysis (PCA) of structural properties, cluster analysis, Root Mean Square
Distance (RMSD) calculations, Root Mean Square Fluctuations (RMSF), Radial Distribution
Function calculations, and many more. An extended discussion of the current ecosystem of
simulation analysis packages is provided in the Supplemental Information.

SOURSOP is an extendable platform for novel analysis routines
Analyzing IDR ensembles to reveal clear and interpretable conclusions remains challenging.
Absent a native reference state, it can be difficult to generate informative and visually coherent
representations that fully capture the inherent high dimensionality of an IDR ensemble. While
various ‘standard’ analyses have emerged for folded proteins (e.g., contact maps, per-residue
RMSF, the fraction of native contacts), there is less consensus on what the standard analyses
should be when assessing IDR ensembles.

Rather than a problem, this raises an opportunity for innovation, whereby novel analysis and
visualization approaches are needed. With this in mind, we hope new analysis routines can be
integrated into SOURSOP, facilitating distribution and packaging. Considering this objective,
SOURSOP includes a well-defined style guide for new analysis routines and a collection of
utility functions that provide automatic sanity checking and defensive programming for input
data. We also provide documentation on how best to introduce a new routine and how to
integrate it into the main codebase. These features, combined with the broad reach of the
Python programming language, will lower the barrier to open-source and community-driven
scientific development.
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5. CONCLUSION

SOURSOP is an open-source Python toolkit for the general analysis of ensembles of disordered
proteins. In addition to analyzing disordered protein ensembles, SOURSOP can also be used to
analyze folded protein trajectories or individual PDB files. As such, SOURSOP offers a general
interface for calculating molecular properties, polymeric parameters, and the development of
new IDR-centric analysis routines.
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