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Abstract 

Artificial neural networks (ANNs) are a powerful class of computational models for 

unravelling neural mechanisms of brain function. However, for neural control of movement, 

they currently must be integrated with software simulating biomechanical effectors, leading 

to limiting impracticalities: (1) researchers must rely on two different platforms and (2) 

biomechanical effectors are not generally differentiable, constraining researchers to 

reinforcement learning algorithms despite the existence and potential biological relevance 

of faster training methods. To address these limitations, we developed MotorNet, an open-

source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically 

realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is 

designed to meet several goals: ease of installation, ease of use, a high-level user-friendly 

API, and a modular architecture to allow for flexibility in model building. MotorNet requires 

no dependencies outside Python, making it easy to get started with. For instance, it allows 

training ANNs on typically used motor control models such as a two joint, six muscle, planar 

arm within minutes on a typical desktop computer. MotorNet is built on TensorFlow and 

therefore can implement any network architecture that is possible using the TensorFlow 

framework. Consequently, it will immediately benefit from advances in artificial intelligence 

through TensorFlow updates. Finally, it is open source, enabling users to create and share 

their own improvements, such as new effector and network architectures or custom task 

designs. MotorNet’s focus on higher order model and task design will alleviate overhead 

cost to initiate computational projects for new researchers by providing a standalone, 

ready-to-go framework, and speed up efforts of established computational teams by 

enabling a focus on concepts and ideas over implementation. 
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1. Introduction 

Research on the neural control of movement has a long and fruitful history of 

complementing empirical studies with theoretical work (Lindsay, 2021). Consequently, a 

wide variety of computational model classes have been proposed to explain empirical 

observations, such as equilibrium point control (Feldman & Levin, 1995; Flanagan et al., 

1993; Gribble & Ostry, 2000; Won & Hogan, 1995), optimal control (Shadmehr & Krakauer, 

2008; Todorov, 2004), and parallel distributed processing models (Fetz, 1993; Gomi & 

Kawato, 1993; Jordan & Rumelhart, 1992; Lillicrap & Scott, 2013), commonly known as 

artificial neural networks (ANNs). Although ANNs were formalized many decades ago, they 

gained in popularity only recently following their rise to prominence in machine learning 

(ML; LeCun et al., 2015), as their greater explanatory power and biological realism provide 

significant advantages against alternative model classes (Gershman & Ölveczky, 2020; 

Lillicrap et al., 2019; Richards et al., 2019; Saxe et al., 2021). 

For neural control of movement, production of theoretical work using ANN models may be 

viewed as a two-step effort: (1) building a realistic simulation environment that mimics the 

behaviour of bodily effectors – often called the “physical plant” – and (2) implement the 

ANN controllers themselves to train on the environment. Many open-source platforms 

achieve each of these steps individually, such as MuJoCo (Todorov et al., 2012) or OpenSim 

(Delp et al., 2007; Seth et al., 2018) for building effectors, and JAX, PyTorch or TensorFlow 

for building and training controller ANNs. However, approaches using these platforms lead 

to two important impracticalities.  

First, the user must rely on two different software platforms, one for the effector and one 

for the controller. Communication between platforms is not built-in, requiring users to 

produce custom code to link the ANN controller software with the software implementing 

the simulation of the physical plant. This forces significant overhead cost to initiate 

computational projects and creates barriers to research teams who lack the technical 

background to build those custom pipelines. A current remedy to this issue is gym 

(Brockman et al., 2016), a Python toolbox that provides an interface between controllers 

and environments. 

However, gym constrains the user to reinforcement learning algorithms (Fujimoto et al., 

2018; Lillicrap et al., 2019; Mnih et al., 2015) despite the existence and potential biological 

relevance of faster training methods such as backpropagation (Lillicrap et al., 2020; 

Whittington & Bogacz, 2017). The inability to use backpropagation to train controllers 

represents the second impracticality. To date, this has been circumvented by training 

separate ANNs such as multi-layer perceptrons or recurrent neural networks (RNNs) as 

“forward models” approximating the behaviour of effectors that are normally implemented 

in a separate software package (e.g., Lillicrap & Scott, 2013; Willett et al., 2021). This 

approach does not address the need for custom pipelines, and remains a slow, cumbersome 

process when iterating over many different controllers and effectors, because new 

approximator ANNs must be trained each time. 
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Solving the issues described above requires both the controller and effector to rely on the 

same software (no-dependency requirement), and for the effector to allow for 

backpropagation through itself (differentiability requirement) so that typical gradient-based 

algorithms may be employed. Ideally, the solution would also be open source, modular for 

flexibility of coding and focus on ideas, and have reasonable training speeds on 

commercially available computers. 

We developed MotorNet with these principles in mind. MotorNet is a freely available open-

source Python toolbox (https://github.com/OlivierCodol/MotorNet) that allows for the 

training of ANNs to control arbitrarily complex and biomechanically realistic effectors to 

perform user-defined motor tasks. The toolbox requires no dependency besides standard 

Python toolboxes available on pip or Anaconda libraries. This greatly facilitates its use on 

remote computing servers as no third-party software needs to be installed. The effectors 

are fully differentiable, enabling fast and efficient training of ANNs using standard gradient-

based methods. It is designed with ease of installation and ease of use in mind, with a high-

level, documented, and user-friendly application programming interface (API). Its 

programming architecture is modular to allow for flexibility in model building and task 

design. Finally, MotorNet is built on TensorFlow, which makes innovation in machine 

learning readily available for use by MotorNet as they are implemented and released by 

TensorFlow. 

 

2. Results 

2.1. Training an ANN to perform a centre-out reaching task against a curl field. 

A canonical experimental paradigm in the study of neural control of movement is the 

centre-out reaching task with a “curl field” applied at the arm’s end point by a robot arm 

(Conditt et al., 1997; Shadmehr & Mussa-Ivaldi, 1994). In this paradigm, visual targets are 

placed around a central starting position in a horizontal plane. Participants must move the 

handle of a robot arm from the starting position to the target that appears on a given trial. 

During the reaching movement, the robot applies forces at the handle that scale linearly 

with the velocity of the hand and push in a lateral direction. This leads the central nervous 

system to adapt by modifying neural control signals to muscles to apply opposite forces to 

counter-act and nullify the lateral forces produced by the robot. Finally, removal of the curl 

field leaves an opposite after-effect (Shadmehr & Mussa-Ivaldi, 1994). This paradigm is well 

suited to assess the functionality of MotorNet because it is well understood and extensively 

documented, and highlights physical, biomechanical, and control properties of human 

behaviour. 

We specified a one-layer RNN composed of 50 gated recurrent units (GRUs; Cho et al., 2014) 

to control a two degrees of freedom, six muscle planar arm model (arm26; Figure 1a; 

Kistemaker et al., 2006, 2010). The muscles were rigid-tendon, Hill-type muscle models, with 

“shoulder” mono-articular flexors/extensors, “elbow” mono-articular flexors/extensors, and 

a bi-articular pair of muscles producing flexion or extension at both joints (see Methods 

section 4.1.1 and 4.2.1.). 
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Training the model above took about 13 minutes on a 2022 Mac Studio with an M1 Max 

central processing unit (Apple Inc., Cupertino CA, USA). Because the arm26 effector and the 

centre-out reaching task are particularly common in the motor control literature, they are 

included in the toolbox as pre-built objects. Consequently, one can recreate the effector 

instance and task instance in one line of code for each. Note however that users can easily 

declare their own custom-made effector and task objects if desired by subclassing the base 

Plant and Task class, respectively (see below for more details on base classes and 

subclassing). 

Including the implementation of the controller RNN and training routine, the above example 

can be reproduced in 10 lines of code, illustrating the ease of use of MotorNet’s API. Once 

the model is trained, it can produce validation results via a forward pass (Figure 1b-c), which 

can then be saved and analysed afterwards. The results the model produces include joint 

and cartesian states (positions, velocities), muscle states (lengths, velocities, activations, 

contributing forces), musculo-tendon states (lengths, velocities), efferent motor commands 

(time-varying muscle stimulation) and afferent feedback responses (proprioceptive, visual), 

as well as any activity states from the network if applicable (Figure 1c). Note that motor 

commands are different from muscle activations, in that they are input signals to the 

Ordinary Differential Equation that produces muscle activation (see Methods; Millard et al., 

2013; Thelen, 2003). 

 

Figure 1: Controlling an arm-like effector in a centre-out reaching task with a curl field. (a) 

Schematic of the effector and controller. (b) Endpoint trajectories of centre-out reaching movements 

in a null and curl field, for an RNN controller that is untrained (naive) and then trained to reach in 
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that curl field. The effector was as defined in Kistemaker et al. (2010) (c) Different variables over time 

during a rightward reaching movement. 

 

2.2. Structure of MotorNet 

Functionally, a MotorNet model can be viewed as an ANN acting as a controller, that sends 

motor commands to an effector (the plant), which is actuated accordingly and in turn sends 

feedback information back to the ANN (Figure 2). This closed-loop cycle repeats for each 

timestep. By default, “visual” feedback consists of a vector indicating endpoint cartesian 

coordinates, while “proprioceptive” feedback consists of a 2𝑚-elements vector of muscle 

length and velocity, with 𝑚 the number of muscles of the effector. Noise may be added in 

various parts of the model, such as on network activity, on descending motor commands, or 

on feedback signals. Finally, time delays may be added to feedback signals before they reach 

the controller ANN. 

 

Figure 2: Conceptual organization of a MotorNet model. An ANN receives arbitrary input as well as 

recurrent connections from itself, and sends motor command outputs to an effector, which in turn 

sends sensory feedback information. Typically, this feedback will be visual and proprioceptive, and 

can contain feedback-specific time delays Δp and Δv. Gaussian noise can be added to the recurrent 

connection, motor commands, and proprioceptive and visual feedback, with specific standard 

deviation σh, σ u, σ p, and σ v. 

 

2.2.1. Running flow 

At runtime, a more detailed representation of the information flow best describes how a 

MotorNet model behaves (Figure 3a). Models are based on five object classes: Skeleton, 

Muscle, Plant, Network, and Task objects (Table 1). Each object has its own base class, from 

which the user can create a custom subclass if desired. MotorNet comes with a set of pre-

built subclasses for each, which implement commonly used computational model 

formalizations (table 1). 
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 Subclass Description 
Sk

el
e

to
n

 PointMass A skeleton with one bone of null length evolving in a plane. 

TwoJointArm 
A planar, two-segments skeleton with one hinge joint 
between the segments and the remaining end of one 
segment anchored to the world space. 

M
u

sc
le

 

ReluMuscle 
An actuator that produces forces according to a linear 
piece-wise function of activation. The lower bound of force 
production is 0. 

RigidTendonHillMuscle 
A Hill-type muscle according to the formalization in 
Kistemaker et al. (2010), adjusted for rigid-tendon 
dynamics. 

RidigTendonHillMuscleThelen 
A Hill-type muscle according to the formalization in Thelen 
(2003), adjusted for rigid-tendon dynamics. 

CompliantTendonHillMuscle 
A Hill-type muscle according to the formalization in 
Kistemaker et al. (2010). 

P
la

n
t 

ReluPointMass24 A planar (2D) PointMass with 4 ReluMuscle actuators. 

RigidTendonArm26 A TwoJointArm with 6 RigidTendonHillMuscle actuators. 

CompliantTendonArm26 A TwoJointArm with 6 CompliantTendonArm26 actuators. 

N
e

tw
o

rk
 

GRUNetwork 
An RNN network comprising a user-defined number of 
layers containing a user-defined number of GRUs. 

Ta
sk

 

CentreOutReach A centre-out reaching task. 

DelayedReach 
A reaching task where movement initiation is signified by 
the appearance of a “go” cue. 

DelayedMultiReach 
A reaching task where movement initiation is signified by 
the appearance of a “go” cue, and several targets appear in 
sequence for each trial. 

Table 1: Overview of Python base classes and their respective pre-built subclasses in MotorNet. GRU: 

Gated Recurrent Unit. 

 

Network objects are the entry point of the model (Figure 3a). They take arbitrary initial 

inputs, which may then be recomputed at each timestep to adjust for dynamic information 

via crosstalk with the Task object. This step is optional, and can be used for changes that 

occur online, such as a cursor or a target jump, or a new target appearing in a sequential 
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task. The (potentially recomputed) inputs are then passed to the ANN to perform a forward 

pass, producing motor commands that are sent down to the Plant object. 

Plant objects are essentially wrapper objects that hold the Muscle and Skeleton objects and 

handle coordination of information flow between them (Figure 3a-b), as well as 

concomitant numerical integration to ensure numerical stability. They pass the motor 

commands to the Muscle object, which produces forces in return. The Plant will adjust those 

forces using geometry-dependent moment arms (see section 2.3 for details) and send the 

resulting generalized forces to the Skeleton object. These generalized forces will actualize 

the Skeleton’s joint state, which the Skeleton will return to the Plant object alongside the 

equivalent cartesian state. Finally, the Plant object will return proprioceptive and visual 

feedback signals to the Network. 

 

 

Figure 3: Implementation of MotorNet. (a) Information flow of a MotorNet model during runtime. 

(b) Declarative structure of a MotorNet object. Each object instance is held in memory as an attribute 

of another according to this hierarchical representation, except for the Muscle, and Skeleton 

instances. 

 

2.2.2. Object structure 

The classes presented above rely on each other to function correctly. Consequently, they 

must be declared in a sensible order, so that each object instance retains as attribute the 

object instances on which they rely. This leads to a hierarchical class structure, where each 

instance lives in the computer memory in a nested fashion with other instances, as laid out 

in Figure 3b. Note that this does not mean that each class is a subclass of the class that 

contains it, but that each contained class is saved as an attribute of the container class. The 

outermost class is a MotorNetModel, which itself is a subclass of TensorFlow’s Model class. 
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2.3. Biomechanical properties of the plant 

The modular structure detailed above allows MotorNet to flexibly compute detailed 

biomechanical properties of Plant objects, such as arbitrary muscle paths (Nijhof & 

Kouwenhoven, 2000), geometry-dependent moment arms (Murray et al., 1995; Sherman et 

al., 2013), non-linear muscle activations and passive force production from muscle stretch 

(Cheng & Scott, 2000; Millard et al., 2013; Thelen, 2003). This enables training ANNs on 

motor tasks whose dynamics are highly non-linear and close to biological reality. In this 

section we outline some examples of biomechanical properties displayed by MotorNet 

effectors. 

 

 
Figure 4: Geometrical properties of a Plant object. (a) Schematic of a point-mass in two positional 

configurations within a square workspace. The point-mass Skeleton was linked to four muscles in a 

“X” configuration. (b) Moment arm values for each of the positional configurations represented in 

(a), with respect to x and y. (c) Complete moment arm function over the position space for each 

muscle (columns) and with respect to each DoF. The upper and lower row indicate the moment arm 

with respect to the x and y position, respectively. (d) Moment arms of a mono-articular extensor 

muscle on an arm26. (e) Moment arms of a bi-articular flexor muscle on an arm26. (f) Passive drift in 

endpoint position of an arm26 similar to Figure 1c due to passive force developed by overstretch Hill-

type muscles. 

 

 

2.3.1. Assessing moment arms with a simple point-mass plant 

 

The geometrical path – fixation body(s) and fixation point(s) on that body – of each Muscle 

object can be declared by the user, allowing for arbitrary linkage between muscles and 
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bones (see Methods section 4.3, Nijhof & Kouwenhoven, 2000). Using geometric first 

principles (Sherman et al., 2013), the Plant object can then calculate the moment arm of 

forces produced, which is defined for each muscle as the change in value of the degrees of 

freedom (DoF) of the skeleton for a given change in the muscle’s length (Murray et al., 1995; 

Sherman et al., 2013). In lay terms, this is the capacity of a muscle to produce a torque on a 

joint based on the muscle’s pulling angle on the bones forming that joint. The relationship 

between pull angle and torque can intuitively be understood using a door as an example: it 

is easier to push a door when pushing with an angle orthogonal to that door than in a near-

parallel angle to that door. 

 

Moment arms generally vary depending on the positional configuration of the Plant. To 

illustrate this, let us consider a simple case of a point-mass skeleton (one fixation body) with 

four muscles attached to it in a “X” configuration (Figure 4a). When the point-mass is 

positioned in the centre of the workspace space (red position in Figure 4a-b), any muscle 

pulling will change the position of the point-mass equally in the 𝑥 dimension and in the 𝑦 

dimension. Note that 𝑥 and 𝑦 are the DoFs of the point-mass skeleton since they do not 

have hinge joints. In contrast, if the point-mass is positioned below the central position (𝑥 =

0, 𝑦 = −0.9; black position in Figure 4a), a pull from e.g., the lower left muscle will produce 

a greater change in the 𝑥 dimension than in the 𝑦 dimension because of the different 

muscle alignment (Figure 4b). 

 

The moment arm can then be calculated for all possible positions in the workspace, as 

represented by the solid black square in Figure 4a. This can be done for each of the four 

muscles, and each of the two DoFs, resulting in 8 moment arms (Figure 4c). We can see that 

each moment arm forms a slightly bent hyperplane. Importantly, for each hyperplane the 

diagonal with constant moment arm lines up with the path formed by the muscle when the 

point mass is at the centre of the workspace. For instance, the moment arm of the upper 

right muscle is identical when the point-mass is in position (𝑥 = 1, 𝑦 = 1) and in position 

(−1, −1). This is true both with respect to the 𝑥 DoF (Figure 4c, upper row, leftmost axis) 

and with respect to the 𝑦 DoF (Figure 4c, lower row, leftmost axis). Note also that muscles 

whose shortening leads to an increase in the DoF considered – or inversely whose 

lengthening leads to a decrease in the DoF – express negative moment arms. For instance, a 

shortening of the lower right muscle would lead to an increase in the 𝑥 DoF and a decrease 

in the 𝑦 DoF. Or more plainly, a pull from the lower right muscle would bring the point-mass 

closer to the lower right corner of the workspace. This leads to the negative moment arm of 

that muscle with respect to 𝑥 (Figure 4c, upper row) and positive moment arm with respect 

to 𝑦 (lower row). 

 

2.3.2. Moment arms with a two-joint arm 

 

To consider a more complex plant, we assessed the moment arm of two muscles wrapping 

around a two-joint arm skeleton. We first assessed a mono-articular muscle, that is, a 

muscle that spans only one joint – here, the elbow. As expected, the moment arm of that 

muscle with respect to the shoulder joint is always null (black arrows, Figure 4d) regardless 
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of the joint configuration since the muscle does not span that joint. In contrast, the moment 

arm with respect to the elbow joint varies as the elbow joint angle changes. Finally, as 

expected from an extensor muscle, the moment arm is positive, indicating that the elbow 

angle would decrease as the muscle shortens. 

 

In comparison, a bi-articular muscle’s moment arm is non-zero with respect to both joints 

(Figure 4e). This also leads the moment arms with respect to each joint to show a small 

interaction as the other joint’s angle changes, as indicated by a slight “bend” in the 

hyperplane (black arrows, Figure 4e). Finally, as expected for a bi-articular flexor muscle, the 

moment arms are negative with respect to both joints, indicating that muscle shortening 

would result in an increase in joint angle. 

 

2.3.3. Passive drift with Hill-type muscles 

 

Finally, we assessed the positional drift induced by passive forces of Hill-type muscle models 

(Millard et al., 2013; Thelen, 2003) in an arm26 plant model. We initialized the model’s 

starting position at fixed intervals across the range of possible joint angles, resulting in a grid 

of 21-by-21 possible starts. We then simulated the plant with null inputs for 200 ms and 

plotted the drift in the arm’s endpoint position from its original position. Because the model 

received no input, all forces produced are due to the passive component of the Hill-type 

muscles, which occurs when the muscle is stretched beyond its slack length (Cheng & Scott, 

2000; Millard et al., 2013; Thelen, 2003). We can see that drift is negligible at the centre of 

the joint space but starts to increase toward the edge (Figure 4f), indicating that the 

associated joint configurations lead to overstretched muscle lengths and resulting in passive 

force production. Note that since this phenomenon is dependent on the slack length value 

of each muscle, which is user-defined, the presence of passive drift is dependent on the 

user’s modelling choices. 

 

2.4. Training ANNs to produce naturalistic behaviour 

 

Now that we can implement biomechanically complex plants, we next assessed whether a 

controller ANN can learn a control policy to move those plants using backpropagation 

(Jordan & Rumelhart, 1992; Rumelhart et al., 1986). A typical way to ensure the 

computation learnt by an ANN is functionally meaningful is to test its out-of-distribution 

generalization. To assess this, we trained a 1-layer RNN with 𝑛 = 110 GRUs controlling an 

arm26 model to perform reaching movements in 0.8 sec simulations using the following 

paradigm. Starting positions and targets were randomly drawn from a uniform distribution 

across the full joint space. Movements were to be delayed until the occurrence of a visual 

“go” cue randomly drawn from a uniform distribution spanning the full simulation window. 

The appearance of the go cue reached the RNN as input after a delay corresponding to the 

visual feedback delay, which was set at 𝛥𝑣 = 50 ms (Figure 2; Dimitriou et al., 2013; 

Pruszynski et al., 2010). In half of trials, no go cue was provided (catch trial), in which case 

the task effectively reduced to a postural control task. A 100 ms endpoint mechanical 

perturbation, whose orientation, magnitude, and time were also randomly drawn occurred 
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in half of trials, independently of whether the trial was a catch trial or not. Importantly, the 

perturbation magnitude was drawn from a uniform distribution ranging between 0 and 4 N. 

If the perturbation occurred during a catch trial, the distribution ranged between 0 and 8 N. 

 

 

Figure 5: A MotorNet model can learn a control policy that generalizes to out-of-distribution 

perturbations. (a) Behavioural outputs to a training set input sample after training. (b) Loss function 

over training iterations, with a batch size of 1024. (c) Trajectories in a centre-out reaching task with 

mechanical perturbations applied at the arm’s endpoint 120 ms after the “go” cue. The perturbations 

were orthogonal to the reaching axis passing from the starting position to the target. o.o.d.: out of 

distribution. (d) Same as (c) for a postural control task. In this task, the network was not provided 

with a target and therefore only had to remain in the starting position against the perturbations. 

Mechanical perturbations were in the vertical (left) or horizontal (right) axis. (e) Muscle activation 

over time for two trajectories in (c) (black and blue lines) and a trajectory in (g) (green line). BE: bi-

articular extensor. BF: bi-articular flexor. EE: elbow extensor. EF: elbow flexor. SE: shoulder extensor. 

SF: shoulder flexor. (f) Reaching task as in (c) for a network never exposed to mechanical 

perturbations during training. (g) Postural task as in (d) for the same network as in (f). Perturbations 

were in the vertical (top) or horizontal (bottom) axis. 
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The network was trained using the following loss: 
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(eq. 1) 

 

 

 

 

 

With 𝐿 the global loss including a kernel regularization term with penalty coefficient 𝜆 =

10𝑒−6, and 𝑾 the kernel weight matrix of the RNN’s hidden layer. The operators ‖ · ‖1 and 

‖ · ‖2 indicate the L1 and L2 vector norm, respectively. 𝐿𝑡 is the instantaneous loss at time 𝑡, 

with coefficients 𝛼 = 2, 𝛽 = 5, 𝛾 = 0.1. 𝐿𝑡
𝑝 is the positional penalty at time 𝑡, with 𝒙𝑡, 𝒙𝑡

∗ the 

position and desired position (target) vector, respectively, and 𝑟 = 0.01 the target radius. 

𝐿𝑡
𝑚 is the muscle activation penalty at time 𝑡, with 𝒖𝑡, 𝒇 two vectors representing muscle 

activations at time 𝑡 and maximum isometric force, respectively. Finally, 𝐿𝑡
ℎ is the network 

hidden activity penalty at time 𝑡, with 𝒉𝑡 the 𝑛-elements vector of GRU hidden activity, 𝒉�̇� 

its time derivative, and κ = 0.05. While superficially this loss appears complex, a direct 

relationship to biology can be drawn for all terms. Essentially, this loss enforces the control 

policy to be learned using a simple, straightforward rule (“get to the target”), while 

promoting low metabolic cost from network input connectivity (cost on kernel norm), from 

the muscles (cost on activation, scaled by muscle strength), and from network activity (cost 

on hidden activity and its derivative to discourage oscillatory regimes). 

 

Behavioural performance on a training set can be seen in Figure 5a, with trials with a large 

perturbation (> 3 𝑁) highlighted in blue. This illustrates the rich variability of the training 

set, encouraging the RNN to learn computationally potent and generalizable solutions to the 

control problem given the sensorimotor feedback provided (Figure 2). Despite this 

variability, the loss value decreased smoothly (Figure 5b). 

 

We tested the model’s behavioural output in 0.8 sec simulations with a centre-out reaching 

task. Eight targets were positioned in 45 degrees increments and 10 cm away from a 

starting position corresponding to a shoulder and elbow angle of 45 and 90 degrees, 

respectively (Figure 5c). The RNN reached to each of these targets following a visual go cue 

at 100 ms. 70 ms after the “go” cue was “perceived” (i.e., 70 ms plus the visual feedback 

delay), a mechanical perturbation was applied at the arm’s endpoint and orthogonally to 

the reaching direction. This perturbation could be either within-distribution (±3 N) or out-of-

distribution (±6 N) or null (no perturbation). In all cases, the RNN could correct for the 

mechanical perturbation, reach to the target, and stabilize (Figure 5c). 
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Next, we tested the RNN in a postural control task, where it had to bring the arm’s endpoint 

back to the target following a mechanical perturbation (Pruszynski et al., 2014). No go cue 

was provided. We applied perturbations in either of the four cardinal directions (0°, 90°, 

180°, 270°) at 170 ms plus visual delay after the trial started. Again, the set of perturbations 

for testing outputs included within-distribution magnitudes (±6 N) and out-of-distribution 

magnitudes (±12 N). In all cases, the RNN could integrate the sensorimotor information to 

bring the arm’s endpoint back into the target (Figure 5d). Interestingly, in some cases this 

led to an oscillatory trajectory (e.g., for a rightward +12 N perturbation, Figure 5d), 

indicating that perturbations beyond a given magnitude remain increasingly challenging to 

control for. 

 

Finally, we compared muscle activations for an upward reach with no perturbation to that 

of an identical reach with a -6 N perturbation (Figure 5e). We can see that muscle 

activations are similar before the occurrence of the perturbation, and remain similar 

immediately after, indicating a time delay in the response. The fastest responses occurred 

for the bi-articular muscles and the shoulder extensor muscle. Other muscles, particularly 

the shoulder flexor, showed very delayed or non-existent changes in muscle activation. This 

illustrates that the RNN’s response to a perturbation is not a mere stimulus-driven reactive 

response, but an integrated response that can delay or withhold the production of 

counteracting forces if necessary. Note that for the non-perturbed movement (black line in 

Figure 5e), we can observe the canonical tri-phasic muscle activation pattern reported in 

empirical studies (Wierzbicka et al., 1986). 

 

To assess how the existence of sensorimotor feedback impacted the control policy acquired 

by the controller network, we trained a second, identical network to perform the same task 

but with no mechanical perturbation during training (perturbation-free). Interestingly, 

following the same amount of training, the model with a perturbation-free network can 

handle perturbations during reaching relatively well, even up to ±6 N (Figure 5f). We can 

compare muscle activations for an upward reach with a -6 N perturbation to that of the 

same movement in the network trained with perturbations (Figure 5f, green versus blue 

lines). Even though kinematics appeared superficially similar (Figure 5c, f), this comparison 

shows that muscle activations tend to differ in response to a perturbation (Figure 5e), 

suggesting that the perturbation-free network might learn a slightly different control policy. 

Testing the perturbation-free network on the postural task shown in Figure 5d emphasizes 

this difference (Figure 5g). The perturbation-free network is much less capable of stabilizing 

against the forces than its perturbation-trained counterpart. 

 

Therefore, even though the mere existence of a sensorimotor feedback input can help 

handle simple perturbations (Figure 5f), exposing the model to perturbations during training 

does provide the network with additional information to learn a more robust control policy. 

Overall, these simulations show that MotorNet can train ANNs to reliably find a control 

policy for the plant. Importantly, the resulting networks learn generalizable control policies 

that integrate sensorimotor feedback into its computation. This also illustrates the 
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importance of the training procedure to which the network is exposed to produce these 

control policies (Driscoll et al., 2022). 

 

 

2.5. Plant Geometry Defines Preference Distribution of Firing Rates: A 

Replication Study 

Finally, to assess MotorNet’s capacity to replicate established results in the literature, we 

sought to reproduce key observations from Lillicrap and Scott (2013). In that study, the 

authors show that training an RNN to perform a simple centre-out reaching task using an 

arm model similar to the arm26 in Figure 1a results in the RNN neurons displaying a 

preferential movement direction (PMD) where they are more likely to fire. The distribution 

of PMDs was asymmetrical, with a greater proportion of neurons firing for reaches around 

135 degrees and 325 degrees, matching empirical observations from non-human primate 

electrophysiological recordings in the primary motor cortex (Scott et al., 2001). Next, they 

showed that this asymmetrical representation of PMDs during reaching movements did not 

occur when RNNs were trained to control a plant that lacked the geometrical properties of 

an arm. Specifically, they compared the PMD distribution of RNN neurons controlling a 

point-mass (no geometry) against that of an arm26 (geometry present). 

 

 

Figure 6: The distribution of preferential movement direction tuning is sensitive to the geometry of 

the plant. (a) Schematic of the two models compared. The RNNs and their architecture were 

identical, but the plant differed, with one RNN controlling a two-joint arm26 (left) and the other 

controlling a point-mass (right). (b) Centre-out reaching trajectories to 24 targets for the arm26 (left) 
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and point-mass (right) model. (c) Distribution of preferential movement directions (PMDs) for the 

arm26 (left) and point-mass (right) model. The PMDs were determined by regression of each GRU’s 

hidden activity averaged over time against reach angle (see Methods for details). (d) Normalized 

muscle activations across reaching angles and for the 300 ms following the “go” cue for the arm26 

model. (e) Normalized β coefficients of the regression models used for (c). The GRUs were ordered 

according to the angle of their maximum β value. Note that the “ridge” of maximum β yields roughly 

a straight line for the point-mass model, while it yields a crooked line for the arm26, indicative of a 

representation bias. (f) Hidden activity over time and across reaching angles for a random sample of 

GRUs in the arm26 model. 

 

 

We sought to reproduce the two results outlined above. First, we trained an RNN composed 

of 90 GRUs in a single layer to control for an arm26 (Figure 6a see Methods section 4.5.). 

Because our RNN employs GRUs instead of a multi-layer perceptron, 90 units were sufficient 

to efficiently train the network to perform the task, as opposed to up to 1000 perceptron 

nodes in the original study. We also increased the number of targets from 8 to 24 to obtain 

a finer resolution over movement direction in our analyses (Figure 6b). 

Following training, we first ensured that muscle activation patterns in the arm26 plant were 

like those reported in the original study (Figure 6d). Regarding network activity, we 

observed a great variety of activation patterns over movement direction (Figure 6f). Some 

GRUs showed a preference for timing (e.g., neuron A4, C5), while others showed a strong 

preference for reaching direction that was sustained over time (neuron C3, A2). Finally, 

most neurons showed a mixed preference for encoding time and reaching direction (neuron 

C8, A8). This heterogeneous set of responses matches empirical observations in non-human 

primate primary motor cortex recordings (Churchland & Shenoy, 2007; Michaels et al., 

2016). 

We then assessed each GRU’s PMD using linear regression (see methods) and sorted them 

based on their PMD before plotting the tuning curve of each neuron. The resulting colormap 

(Figure 6e, left panel) yields a “ridge” of maximal activity whose peak varies across reach 

angle, forming a crooked line, illustrating a representational bias. This crooked ridge line 

was not observed in an RNN trained to control for a point-mass plant instead using an 

identical training procedure and analysis (Figure 6e, right panel). We replicated this 

procedure with 7 more RNNs for each model, resulting in a total of 8 RNNs trained on an 

arm26 and 8 RNNs trained on a point-mass. We determined each GRU’s PMD and averaged 

the resulting polar histogram across each RNN (Figure 6c). The same bias was reproduced 

invariably for the RNNs controlling an arm26 plant, while it failed to arise for those 

controlling a point-mass. Therefore, these results mimic the observations made in the 

original study (Lillicrap & Scott, 2013), specifically, that RNNs controlling a plant with no 

arm-like geometrical properties will not result in the biased PMD representation during 

reaching movements commonly observed in non-human primate electrophysiological 

studies (Scott & Kalaska, 1997). 
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3. Discussion 
 

3.1. Iterating quickly through the model development cycle 

In the field of machine learning, an established best practice is to iterate quickly around a 

cycle of (1) formulating an idea, (2) implementing that idea in functionally efficient code, 

and (3) testing the idea through running the simulations. The results of the simulations can 

then be leveraged to adjust the idea, thus closing the loop, and enabling iterative 

refinement of a model. This [idea → code → test → idea] cycle is reminiscent of the 

[hypothesis → design task → test → hypothesis] cycle in empirical work, also known as the 

hypothetico-deductive method. An important practice in ML is to ensure that one iteration 

of that cycle is quick enough, because producing an efficient model may require many such 

iterations. Based on this framework, a way to view MotorNet is as a means to improve 

iteration speed through this cycle. The modular architecture of MotorNet enables users to 

alter aspects of the plant model while keeping everything else identical, and TensorFlow’s 

ability to do the same at the controller level is preserved. Therefore, user capacity to 

proceed through the “implementation” step is enhanced. 

 

3.2. Advantages 

3.2.1. Expandability 

MotorNet naturally allows users to create and tune objects to fit individual requirements. 

This makes the toolbox easily expandable to add novel models that are not pre-built in the 

original distribution. This flexibility will likely vary depending on the goal (Figure 7). Some 

extensions only require adjusting parameter values of existing object classes, such as editing 

the Arm26 Skeleton class to match the arm of a non-human primate. Other extensions will 

require subclassing, such as creating a Plant for an eyeball, which might require special 

geometric properties building on the point-mass Skeleton object (Table 1). Conversely, 

Plants that stray away from typical vertebrate effectors will likely prove more challenging, 

such as an octopus arm, because they do not rely on bones. Importantly, while all these 

extensions vary in the difficulty of their implementation, each has the capacity to fit and 

work harmoniously within the framework of the MotorNet architecture. 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.17.528969doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528969
http://creativecommons.org/licenses/by/4.0/


 

Figure 7: MotorNet is expandable. MotorNet allows for new features to be implemented through 

subclassing. 

 

3.2.2. Open source 

Typically, when motor control researchers want to create canonical models, they must 

implement their own version of said model based on methodological descriptions of 

previously published scientific articles. However, because MotorNet is open source, 

individual contributions can easily be shared online for the benefit of others. For instance, if 

a researcher creates a muscle class with a parametrizable pennation angle (Millard et al., 

2013; Thelen, 2003), future researchers and team will not have to re-create their own 

implementation of the same object anymore. This also allows more dynamical peer-

checking, avoiding dissemination of errors and improving consistency of model 

implementations. In other words, MotorNet will be able to benefit from community driven 

incremental work through open-source practices. 

3.2.3. Innovation scalability 

For the past several years, ML has been standing out as one of the most dynamic research 

fields, achieving breakthroughs and successfully scaling innovative work toward solving 

everyday problems. It would be challenging for MotorNet to keep up with the pace of ML 

innovation to provide users with implementations of the latest architectures and 

algorithms. Rather, we rely on Google’s TensorFlow to build our own controllers. This 

ensures that any innovation in model design quickly finds its way to a viable MotorNet 

implementation, because TensorFlow capabilities allow for fast adaptation aligned with 

progress in ML. Generally, MotorNet is built with the following logic in mind: anything 

TensorFlow can build, MotorNet should be able to use as a controller. 

 

3.3. Limitations 

3.3.1. Collision physics 

Typical biomechanical software distributions implement some form of collision physics in 

their physics engine (Delp et al., 2007; Seth et al., 2018; Todorov et al., 2012). This is not the 

case for MotorNet. 
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3.3.2. Complex biomechanical features 

Some biomechanical software distributions such as OpenSim propose a large array of joint 

types such as hinge joints or rotational joints, and complex muscle paths such as wrap 

points that trigger only when the muscle collides with them (Delp et al., 2007; Seth et al., 

2010, 2018). While these features increase the realism of a biomechanical model, MotorNet 

does not yet implement these types of features. In practice, this constrains what types of 

Plants MotorNet can realistically implement and adding some of these features is under 

consideration. 

 

3.4. Future considerations 

As an open-source, freely available Python toolbox, MotorNet is subject to change over 

time. Some of the limitations outlined above are considered as future routes for 

improvement. Additionally, we hope that individual contributions will help refine and 

extend the capabilities of the toolbox as well. In this section we outline prospective 

improvements for implementation and release in the main distribution. 

3.4.1. Spinal Compartment 

It is becoming increasingly evident that spinal contribution plays a prominent role in motor 

control beyond the typically considered spinal reflex (Reschechtko & Pruszynski, 2020; 

Weiler et al., 2019). To an extent, one may consider that supraspinal control integrates the 

spinal contribution to define a motor control policy (Loeb, 2021). Within MotorNet, this 

suggests that a controller’s dynamics will be significantly impacted by the presence of a 

spinal compartment acting as an interface with the Plant. Consequently, it may be 

worthwhile to implement one such spinal compartment to explore the consequences of 

such biological design (Cisek, 2019). 

3.4.2. Modular controllers 

A deeply established idea in neuroscience is that distinct regions will perform different 

computations, and thus that a complex system may not be considered as a uniform, fully 

connected network (Abbott & Svoboda, 2020; Keeley et al., 2020; Pesaran et al., 2021; 

Semedo et al., 2020). This is also true for the motor control system, where using a modular 

network architecture with controlled communication between each module has been 

shown to have more explanatory power than a non-modular system (Michaels et al., 2020). 

Therefore, a potential development for MotorNet is to include a model class with a modular 

architecture to study how cross-regions networks work to enable neural control of the body. 

3.4.3. Muscle models 

Most published work in motor control relies either on Hill-type muscle models (Bhushan & 

Shadmehr, 1999; Kistemaker et al., 2006, 2010; Nijhof & Kouwenhoven, 2000) or direct 

torque actuators (Lillicrap & Scott, 2013) similar to the ReLu muscle that MotorNet provides. 

However, despite its popularity, even the more-detailed Hill-type muscle remains a 
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phenomenological model of real muscle behaviour, which can easily show its limits when 

trying to understand how the brain controls movement (Blum et al., 2020). Alternative 

muscle model formalizations exist, such as the Distribution-Moment muscle model (Zahalak, 

1981), which may be worth implementing within MotorNet as well. 

 

4. Methods 

4.1. General modelling design 

This section describes modelling elements that were used for several models in this study. 

For all models, the timestep size was 0.01 sec, and a proprioceptive delay of 𝛥𝑝 = 20 ms 

and visual delay of 𝛥𝑣 = 50 ms were used (Figure 2). Plants were actuated using numerical 

integration with the Euler method. 

4.1.1. Arm26 model 

The arm26 model used in this study is available online on the open-source toolbox code 

under the RigidTendonArm26 plant class. It is briefly described below for convenience. 

The skeleton of the arm26 models are according to the formalization proposed in Gomi & 

Kawato (1997), equations 1, 3, 5-7. Parameter values are as in table 2. 

 

Parameter Upper arm Forearm 

Mass (kg) 1.82 1.43 

Centre of gravity (m) 0.135 0.165 

Inertia (kg.m2) 0.051 0.057 

Length (m) 0.309 0.333 
Table 2: skeleton parameters for the arm26 model, taken from Nijhof & Kouwenhoven (2000). 

The skeleton was actuated by six rigid-tendon versions of Hill-type muscle actuators: a 

shoulder flexor, a shoulder extensor, an elbow flexor, an elbow extensor, a bi-articular 

flexor, and a bi-articular extensor. Their parameter values are defined in table 3. 

 

Muscle 
Maximum isometric 

force (N) 
Tendon length (m) 

Optimal muscle 
length (m) 

Shoulder Flexor 838 0.039 0.134 

Shoulder Extensor 1207 0.066 0.140 

Elbow Flexor 1422 0.0172 0.092 

Elbow Extensor 1549 0.187 0.093 

Bi-articular Flexor 414 0.204 0.137 

Bi-articular Extensor 603 0.217 0.127 
Table 3: parameters for the Hill-type muscle actuators used in the arm26, taken from Kistemaker et 

al. (2010). 
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The full formalization of the Hill-type muscles can be found in Thelen (2003) equations 1-7, 

and with the parameter values used in that study. When different parameters were 

provided for young and old subjects, the values for young subjects were used (Thelen, 2003, 

table 1) 

While in custom-made Plant objects the moment arms of each muscle are computed based 

on geometric first principles (Figure 4d-f; Sherman et al., 2013), in the RigidTendonArm26 

class the moment arms are approximated as described in Kistemaker et al. (2010), equations 

A10-A12, with parameters for this study defined in table 4. 

 

Muscle 𝒂𝟎 𝒂𝟏𝒆 𝒂𝟏𝒔 𝒂𝟐𝒆 

Shoulder Flexor 0.151 0 -0.03 0 

Shoulder Extensor 0.2322 0 0.03 0 

Elbow Flexor 0.2859 -0.014 0 -4.0e-3 

Elbow Extensor 0.2355 0.025 0 -2.2e-3 

Bi-articular Flexor 0.3329 -0.016 -0.3 -5.7e-3 

Bi-articular Extensor 0.2989 0.03 0.03 -3.2e-3 

Table 4: parameters used to compute moment arms in the arm26 models with moment arm 

approximation, taken from Kistemaker et al. (2010). 

 

4.1.2. Point-mass model 

The point-mass model used in this study is available online on the open-source toolbox code 

under the ReluPointMass24 plant class. It is briefly described below for convenience. 

The point-mass had a mass of 𝑚 = 1 kg. Its actuation followed an ordinary differential 

equation such that �̈� = 𝒇 𝑚⁄  with �̈�, 𝒇 the 2-elements cartesian acceleration vector at time 

𝑡 and the 2-elements force vector applied at time 𝑡, respectively. 

The forces were produced by four linear muscle actuators, whose formalization is available 

online on the open-source toolbox code under the ReluMuscle muscle class. Each muscle’s 

force production 𝑓 is a linear piecewise function of its activation 𝑎, scaled by its maximum 

isometric force 𝑓𝑚𝑎𝑥 = 500 N: 

𝑓(𝑎) = {

0,
𝑓𝑚𝑎𝑥 . 𝑎,

𝑓𝑚𝑎𝑥,
 

𝑎 ≤ 0
0 < 𝑎 < 1

𝑎 ≥ 1
 

The activation function was the same as for the Hill-type muscles used in the arm26 model, 

and can be found in Thelen (2003), equations 1-2. 

The four muscles were fixed to the point-mass in a “X” configuration (Figures 4a, 6a) with 

the first fixation point for the upper right, lower right, lower left, and upper left muscle 

being respectively (𝑥 = 2, 𝑦 = 2), (2, −2), (−2, −2), (−2, 2). The second fixation point of 

each muscle was on the point-mass, therefore moving in general coordinates alongside the 

point-mass (Figure 4a). 
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4.1.3. Network architecture 

All network controllers used in this study consisted of one layer of GRUs with a sigmoid 

recurrent activation function and a 𝑡𝑎𝑛ℎ activation function. Kernel and recurrent weights 

were initialized using Glorot initialization (Glorot & Bengio, 2010) and orthogonal 

initialization (Hu et al., 2020), respectively. Biases were initialized at 0. 

The GRU layer was fully connected to an output layer of perceptron nodes with a sigmoid 

activation function. The output layer contains one node per descending motor command, or 

equivalently one node per muscle in the plant. The output layer’s kernel weights were 

initialized using a random normal distribution with a standard deviation of 0.003, and its 

bias was initialized at a constant value of -5. Because the output activation function is a 

sigmoid, this initial bias forces the output of the controller to be close to 0 at the start of 

initialization, ensuring a stable initialization state. 

For all networks used in this study, a 2-elements vector of (𝑥, 𝑦) cartesian coordinates for 

the start position and target position were provided as input, alongside a go-cue, resulting in 

a 5-element input vector. The go-cue was a “step” signal whose value changed from 1 to 0 

when the movement should be initiated. 

4.1.4. General training design 

During training, the models reached from a starting position drawn from a random uniform 

distribution across the full joint space to a target position drawn from a random uniform 

distribution as well. The occurrence time of the go-cue was drawn from a random uniform 

distribution across the full simulation duration. In 50% of simulations, no go-cue was 

provided (i.e., a catch trial) to ensure the network learnt to wait for the go-cue and avoided 

any anticipatory activity. The desired position 𝒙∗ was set to be the start position until the go 

cue was provided, at which point 𝒙∗ was defined as the target position. Note that the go-cue 

was treated as a visual signal. Therefore, while the desired position 𝒙∗ was updated 

immediately as the go-cue was provided (with no time delay), the network was informed of 

the go-cue occurrence via a change in the target position input and go-cue input only 

following the visual feedback delay 𝛥𝑣. Depending on the models, additional training 

manipulations were also applied, as described in the sections below. 

 

 

4.2. Centre-out reaches task against a curl field 

4.2.1. Model 

The plant used to learn to reach against a curl field was an arm26 model as described in 

section 4.1.1. The controller was as described in section 4.1.3., with the GRU layer 

containing 𝑛 = 50 units.  

4.2.2. Training 

The model was trained according to the procedure in section 4.1.4. with the loss described 

in eq. 1, using a kernel regularization 𝜆 = 10𝑒−6, coefficients 𝛼 = 2, 𝛽 = 5, 𝛾 = 0.1, κ =

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.17.528969doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528969
http://creativecommons.org/licenses/by/4.0/


0.05, and target radius 𝑟 = 0.01 m. The model was trained on 7680 batches with a batch 

size of 64, on simulations of 1 sec. 

The model was trained according to section 4.1.4., except that the go-cue time was fixed at 

100 ms from the start of the simulation. Following initial training, the model was then tested 

as described in the next section to produce the “naïve” behaviour shown in Figure 1b-c. 

Following testing, training was then resumed, but employing the curl-field, fixed starting 

position, and set of 8 targets used in testing. 50% simulations were still catch trials, as in the 

initial training session. This second training session lasted 768 batches with a batch size of 

64. Finally, following this second training session, the model was tested again, to produce 

the “adapted” behaviour of Figure 1b. 

4.2.3. Testing 

The model was tested in 1 sec simulations against a null field, and against external forces 

applied at the arm’s endpoint that produced a counter-clockwise curl field: 

𝒇𝑡 = 𝑏 [
0 −1
1 0

] �̇�𝑡 (eq. 2) 

With �̇�𝑡 the 2-elements cartesian velocity vector at time 𝑡, and 𝑏 = 8 a scalar defining the 

strength of the curl field. In the null field, we have 𝑏 = 0. 

The testing procedure consisted of 8 centre-out reaches from a fixed starting position at a 

shoulder and elbow angle of 45° and 90°, respectively, to 8 target positions 10 cm away and 

distributed in increments of 45° around the starting position (Figure 1b). This set of 

simulations were repeated against a null field and against the curl field in eq. 2, resulting in 

a total of 16 reaches. For all testing simulations, the go-cue time was fixed at 100 ms from 

the start of the simulation and no catch trials were employed. 

 

4.3. Biomechanical properties of the plant 

The point-mass model used was as described in section 4.1.2. The arm26 model used was as 

described in section 4.1.1., except that the moment arms were not approximated based on 

the parameters of table 4, but computed based on the geometry of the muscle paths (Nijhof 

& Kouwenhoven, 2000; Seth et al., 2010; Sherman et al., 2013). Accordingly, the muscle 

paths were manually declared by defining how many fixation points each muscle has, and 

on which bone and where on each bone each point fixes. 

MotorNet handles declaration of these paths using a relative reference frame for each 

fixation point (Seth et al., 2010). Specifically, a fixation point on a bone will have two 

coordinates. The first coordinate defines how far along the bone the point is, from the 

bone’s origin, e.g., the shoulder for the upper arm (Figure 8). The second coordinate defines 

how far the point deviates from the bone orthogonally. If the fixation point is an anchor 

point, that is, it is not fixed on a bone but on the world space, then general coordinates 

(𝑥, 𝑦) are used (color-coded in green in Figure 8). These anchor points are important to 

ensure that the plant can be actuated with respect to the environment. The full set of 
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coordinates defining the model’s muscle paths are indicated in table 5 and are derived from 

Nijhof & Kouwenhoven (2000). 

 

 

Figure 8: Coordinate frames for declaring muscle paths in MotorNet. (a) MotorNet handle muscle 

paths using coordinate frames relative to the bone on which a fixation point is. The world space is 

indexed as the fixation body “0” and its coordinate frame is the general coordinate system. (b) 

Schematic illustration of the muscle paths used for the arm26 arm26 model with no moment arm 

approximation described in section 4.3 and table 5, for a shoulder and elbow angle of 45° and 90°, 

respectively. 

 

 

Muscle 
Fixation 

point 
Fixation body 

First coordinate 𝒙 
(m) 

Second coordinate 
𝒚 (m) 

SF 
1 0 (world) -0.15 0.03 

2 1 (upper arm) 0.094 0.017 

SE 

1 0 (world) -0.013 -0.07 

2 0 (world) 0.05 0 

3 1 (upper arm) 0.153 0 

EF 
1 1 (upper arm) 0.23 0.001 

2 2 (forearm) 0.231 0.01 

EE 

1 1 (upper arm) 0.03 0 

2 1 (upper arm) 0.138 -0.019 

3 2 (forearm) -0.04 -0.017 

BF 
1 0 (world) -0.052 0.033 

2 2 (forearm) 0.044 0.001 

BE 
1 0 (world) 0.02 -0.028 

2 2 (forearm) -0.04 -0.017 
Table 5: Muscle paths for the arm26 model with no moment arm approximation. 
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4.4. Training ANNs to produce naturalistic behaviour 

 

4.4.1. Model 

The two models used to produce Figure 5 were arm26 models as described in section 4.1.1. 

For both models, the controller was as described in section 4.1.3., with the GRU layer 

containing 𝑛 = 110 units. In addition, excitation and GRU hidden activity noise were added, 

with values 𝜎𝑢 = 10𝑒−3, 𝜎ℎ = 10𝑒−4, respectively. 

4.4.2. Training 

The models were trained with the loss described in eq. 1, using a kernel regularization 𝜆 =

10𝑒−6, coefficients 𝛼 = 2, 𝛽 = 5, 𝛾 = 0.1, κ = 0.05, and target radius 𝑟 = 0.01 cm. The 

model was trained on 27,000 batches of size 1024, on simulations of 800 ms. 

In one of the two models, which we refer to as the “perturbation-free” model, the training 

procedure was as described in section 4.1.4. In the second model, which we refer to as the 

“perturbation-trained” model, a 100 ms endpoint mechanical perturbation was added to 

the training procedure. The perturbation occurred in 50% of trials, independently of 

whether the trial was a catch trial or not, and its orientation and time were randomly drawn 

as well. The magnitude of the perturbation was drawn from a uniform distribution ranging 

between 0 and 4 N. If the perturbation occurred during a catch trial, the distribution ranged 

between 0 and 8 N.  

4.4.3. Testing 

Both the perturbation-trained and perturbation-free models were tested in 800 ms 

simulations in two distinct tasks, a centre-out reaching task and a postural task. 

 

In the centre-out reaching task, 8 targets were positioned in 45 degrees increments and 10 

cm away from a starting position corresponding to a shoulder and elbow angle of 45° and 

90°, respectively (Figure 5c, g). The visual go cue was provided at 100 ms following the 

simulation start. 70 ms after the go-cue was “perceived” (i.e., 70 ms plus the visual feedback 

delay 𝛥𝑣), a mechanical perturbation was applied at the arm’s endpoint and orthogonally to 

the reaching direction. This perturbation could be either within-distribution (±3 N) or out-of-

distribution (±6 N) or null (no perturbation). 

 

In the postural control task, no go cue was provided, and the arm’s endpoint was pushed 

away from the start position by the mechanical perturbation at 170 ms plus visual delay 𝛥𝑣 

after the simulation started. We applied perturbations in either of the four cardinal 

directions (0°, 90°, 180°, 270°). Again, the set of perturbations for testing outputs included 

within-distribution magnitudes (±6 N) and out-of-distribution magnitudes (±12 N). 
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4.5. Plant Geometry Defines Preference Distribution of Firing Rates: A 

Replication Study 

 

4.5.1. Models 

All arm26 and point-mass plants used to produce Figure 5 were as described in section 

4.1.1. and 4.1.2., respectively. For all models, the controller was as described in section 

4.1.3., with the GRU layer containing 𝑛 = 90 units. 

4.5.2. Training 

All models were trained with the loss described in eq. 1, using a kernel regularization 𝜆 =

10𝑒−6, coefficients 𝛼 = 2, 𝛽 = 5, 𝛾 = 0.1, κ = 0.05, and target radius 𝑟 = 0. The models 

were trained on 38,400 batches of size 64, on simulations of 800 ms. The training procedure 

was as described in section 4.1.4. 

4.5.3. Testing 

The testing procedure consisted of 8 centre-out reaches in 800 ms simulations. Simulations 

started from a fixed position at a shoulder and elbow angle of 45° and 90° for the arm26 

models, and at an (𝑥 = 0, 𝑦 = 0) cartesian position for the point-mass models. Reaches 

were to 24 target positions 10 cm away and distributed in increments of 15° around the 

starting position (Figure 6b). For all testing simulations, the go-cue time was fixed at 100 ms 

into the simulation and no catch trials were employed. 

4.5.4. Analysis 

To obtain the preferential movement direction of each GRU, we averaged each unit’s 

hidden activity in a 150 ms time window starting when the go cue was input to the network 

(i.e., following visual feedback delay 𝛥𝑣) for each reaching direction independently, and 

regressed that average to a diagonal design matrix encoding the reach direction. The 

absolute value of the resulting regression coefficients was then normalized between 0 and 

1, and neurons were sorted according to these normalized coefficients to produce Figure 6e.  

As mentioned in the results section, we trained 8 networks to control an arm26 and 8 

networks to control a point-mass. For each network, we took the count of GRUs whose 

normalized regression coefficient is maximal for each target considered and averaged that 

count across all 8 networks to produce Figure 6c. 
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