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 2 

Abstract 25 

Local adaptation commonly involves alleles of large effect, which experience fitness advantages 26 

when in positive linkage disequilibrium (LD). Because segregating inversions suppress 27 

recombination and facilitate the maintenance of LD between locally adapted loci, they are also 28 

commonly found to be associated with adaptive divergence. However, it is unclear what fraction 29 

of an adaptive response can be attributed to inversions and alleles of large effect, and whether the 30 

loci within an inversion could still drive adaptation in the absence of its recombination-31 

suppressing effect. Here, we use genome-wide association studies to explore patterns of local 32 

adaptation in three species of sunflower: Helianthus annuus, H. argophyllus, and H. petiolaris, 33 

which each harbour a large number of species-specific inversions. We find evidence of 34 

significant genome-wide repeatability in signatures of association to phenotypes and 35 

environments, which are particularly enriched within regions of the genome harbouring an 36 

inversion in one species. This shows that while inversions may facilitate local adaptation, at least 37 

some of the loci involved can still make substantial contributions without the benefit of 38 

recombination suppression. While a large number of genomic regions show evidence of repeated 39 

adaptation, most of the strongest signatures of association still tend to be species-specific, 40 

indicating substantial genotypic redundancy for local adaptation in these species.    41 

 42 

Introduction 43 

The genetic basis of local adaptation is sometimes highly repeatable, with examples of large 44 

effect genes driving responses in multiple species, such as FT affecting flowering time in 45 

numerous plants (Izawa 2007; Auge et al. 2019) or Mc1r driving colour polymorphisms in 46 

vertebrates(Manceau et al. 2010; Rosenblum et al. 2014). Local adaptation can also be repeated 47 

for polygenic traits, with significant patterns of similar association found across many loci for 48 

comparisons of conifers (Yeaman et al. 2016), maize and its wild relative teosinte (Tittes et al. 49 

2021; Wang et al. 2021), and Brassicaceae (Bohutínská et al. 2021), to name a few. While we 50 

have a growing number of examples of repeatability in the basis of adaptation, it is also 51 

interesting to know if species use different genes to adapt to the same selection pressure. 52 

Genotypic redundancy – the potential for many genotypes to yield a given phenotype -- is one 53 

critical factor affecting the repeatability of adaptation, as high redundancy would be expected to 54 

result in lower repeatability (Yeaman et al. 2018). Another critical factor affecting repeatability 55 
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is shared standing variation, whether present due to introgression or incomplete lineage sorting. 56 

In either case, variants shared among lineages are much more likely to contribute to a repeated 57 

response than new mutations (MacPherson and Nuismer 2018; Ralph and Coop 2015). 58 

Consistent with this, Bohutínská and colleagues (2021) found that repeatability was negatively 59 

related to phylogenetic distance. While we are now accumulating more studies about the 60 

repeatability of adaptation, we still have very few examples and much remains unknown about 61 

the relative importance of these factors (Yeaman 2022).  62 

  63 

Inversions have been implicated in local adaptation in many species (Wellenreuther and 64 

Bernatchez 2018), likely due to their effect to suppress recombination between any causal loci 65 

within their bounds (Rieseberg 2001; Noor et al. 2001; Kirkpatrick and Barton 2006). Despite 66 

mounting evidence of their importance in adaptation, it is unclear how inversions may covary 67 

with repeatability of adaptation among species. If most alleles have small effects relative to 68 

migration rate and can only contribute to local adaptation via the benefit of the recombination-69 

suppressing effect of an inversion, then we would expect little repeatability at the site of an 70 

inversion – other species lacking the inversion would not tend to use that same region for 71 

adaptation. On the other hand, if some loci are particularly important for local adaptation and 72 

regularly yield mutations of large effect, with these patterns being conserved among species, 73 

repeatability within regions harbouring inversions may be substantial.  74 

 75 

Here, we explore the repeatability of local adaptation in three species of sunflowers, Helianthus 76 

annuus, Helianthus argophyllus and Helianthus petiolaris (Figure 1), which harbour large 77 

regions of suppressed recombination (“haploblocks”), most of which are likely inversions, and 78 

are often associated with adaptive traits (Todesco et al. 2020). Helianthus annuus, the common 79 

sunflower, is the closest wild relative of cultivated sunflower, which was domesticated from it 80 

around 4,000 years ago (Blackman et al. 2011). Populations of H. annuus are distributed 81 

throughout the central and western USA and generally found on mesic soils, but can grow in a 82 

variety of disturbed or extreme habitats, such as semi-desertic or frequently flooded areas, as 83 

well as salt marshes. Helianthus petiolaris, the prairie sunflower, prefers sandier soils, and 84 

ecotypes of this species are adapted to sand sheets and sand dunes (Ostevik et al. 2016). Here we 85 

include samples from two subspecies: H. petiolaris ssp. petiolaris, which is commonly found in 86 
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the southern Great Plains, and H. petiolaris ssp. fallax, which is limited to more arid regions in 87 

Colorado, Utah, New Mexico and Arizona (Heiser et al. 1969). Helianthus petiolaris and H. 88 

annuus have broad and overlapping distributions throughout the central and western United 89 

States and appear to have adapted to similar changes in temperature, moisture and photoperiod 90 

regimes. There is also evidence indicating H. annuus and H. petiolaris have likely been 91 

exchanging genes during much of their history of divergence (Strasburg and Rieseberg 2008), 92 

although partially isolated by strong pre- and post-zygotic barriers (Sambatti et al. 2012). The 93 

third species, Helianthus argophyllus, the silverleaf sunflower, is found exclusively in the 94 

southeast coast of Texas and includes both an early flowering ecotype on the coastal barrier 95 

islands and a late flowering ecotype inland (Moyers and Rieseberg 2016; Todesco et al. 2020). 96 

H. argophyllus is thought to have undergone cycles of sympatry and allopatry with H. 97 

annuus and H. petiolaris over time, but currently only overlaps with H. annuus, which is likely 98 

recent (Heiser, 1951).  99 

 100 

Using broad sampling across the ranges of these species (Figure 1), we study the genomic 101 

basis of local adaptation by conducting genome-wide scans for associations with climatic and 102 

soil environmental variables and phenotypes measured in a common garden. An inherent 103 

problem in studying the basis of local adaptation is accounting for the covariance between 104 

genome-wide population genetic structure and environment. When the selection pressure driving 105 

local adaptation tends to parallel a main axis of demographic expansion or isolation by distance, 106 

neutral alleles will have spatial patterns resembling those of causal alleles. Methods that do not 107 

correct for population structure have large numbers of false positives because allele frequencies 108 

at neutral loci tend to correlate with the environment more than expected by chance (Lotterhos 109 

and Whitlock 2014). By contrast, methods that use structure correction tend to suffer from false 110 

negatives because the causal loci have similar patterns of allele frequency variation as the 111 

genomic background, and so their statistical signatures are decreased (DeRaad et al. 2021). 112 

When a non-corrected approach is applied to multiple species, the false positive problem can be 113 

mitigated when testing for loci that contribute to repeated adaptation, as the same gene should 114 

not tend to be a false positive in multiple species more often than expected by chance (Yeaman 115 

et al. 2016). Here we use a conventional GWAS approach with structure correction to study the 116 

basis of phenotypes, which vary both within and among populations, and use an uncorrected 117 
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approach to test association to environment, which only varies among populations. For the 118 

environmental association portions of the study, we also explore the effect of structure correction 119 

in some analyses, to contrast the false negative vs. false positive problem inherent in each 120 

approach. We apply these approaches individually to H. annuus, H. argophyllus, and the two H. 121 

petiolaris subspecies, and make pairwise and higher-order comparisons among combinations of 122 

these four lineages to study repeatability. 123 

 124 

Our overall aim is to characterize the extent of repeatability of local adaptation for different traits 125 

and environments, and explore the importance of various factors that may drive differences in 126 

repeatability. We begin by using the strength of phenotype-environment correlations to identify 127 

which environmental variables are most important in driving local adaptation within each 128 

species, and use an index to quantify the relative similarity in these patterns among pairs of 129 

species. We then use methods similar to Yeaman et al. (2016) to identify regions of the genome 130 

that exhibit greater similarity in signatures of association among pairs of lineages than expected 131 

by chance, and explore how the number and total size of these regions covaries with the index of 132 

similarity in environmental importance. We also explore whether these regions of repeated 133 

adaptation tend to covary with patterns of shared standing variation and test if they are enriched 134 

within previously identified haploblocks, to explore the role of inversions in adaptation. We then 135 

identify candidate genes that show particularly strong signatures of repeated adaptation across 136 

multiple lineages and test whether they tend to share common Gene Ontology terms indicating 137 

similar function. Finally, based on the number of signatures of adaptation that are shared vs. non-138 

shared among lineages, we estimate the number of regions genome-wide that could potentially 139 

contribute to local adaptation for each variable and phenotype, which is related to the genotypic 140 

redundancy. Taken together, our results show that local adaptation in sunflowers tends to involve 141 

both strong repeatability at a small number of genes, often associated with inversions, coupled 142 

with high redundancy and non-repeated responses across a much larger number of loci. 143 

 144 

 145 
 146 
 147 
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 148 
Figure 1. Sampling sites and phylogenetic relationship among surveyed species. 149 
(a), sampling locations of wild sunflower populations studied in the present study. (b) 150 
phylogenetic relationship of the four (sub-)species. Numbered brackets represent the six pairwise 151 
comparisons performed in this study. 152 
 153 

 154 

 155 

Results  156 

Local adaptation at the phenotypic level. The four taxa vary considerably in the breadth of 157 

environmental variation spanned by their respective ranges, with H. annuus spanning the widest 158 

niche and H. argophyllus spanning the narrowest (Figure 2A). Local adaptation is quite 159 

pronounced, as exhibited by strong correlations for many combinations of phenotypes and 160 

environmental variables (Figure S1). To quantify the similarity in patterns of local adaptation 161 

among pairs of species, for each environmental variable we calculate an index we refer to as the 162 

Similarity in Phenotype-Environment Correlation (SIPEC), which is maximized when both 163 

species have strong correlations with the environmental variable across many phenotypes (see 164 
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Methods). To prevent heavily weighting the contribution of multiple highly correlated 165 

phenotypes, we fit a principal components analysis to the phenotypes and used the resulting axes 166 

to calculate SIPEC. We find the largest values of SIPEC for temperature variables and the 167 

smallest values for soil types, and generally find higher values for comparisons between the 168 

petiolaris subspecies (Figure S2).  169 

 170 

 171 

 172 
 173 
 174 
Figure 2. The range of environmental and phenotypic overlaps among studied species. 175 
Principle component analysis (PCA) indicating how different species span the range of 176 
environmental and phenotypic space, respectively (a, b). Violin plots show two examples of 177 
variation in environment (Hargreaves reference evapotranspiration index; Eref) and phenotype 178 
(Days to Flower; DTF) within and among the taxa (c,d). 179 

 180 

 181 

Genome-wide analysis of repeated local adaptation. To search for regions of the genome with 182 

signatures of repeated adaptation in multiple taxa, we first identified windows of the genome 183 

within each species that showed strong signatures of association to either phenotype (GWAS) or 184 
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 8 

environment (GEA), referred to as “top candidate” windows. To identify Windows of Repeated 185 

Association (WRAs) between pairs of species, we then assessed whether top candidate windows 186 

identified in one focal taxon also tended to be enriched for strong signatures of association to the 187 

same environment or phenotype in each of the other taxa (using the null-W test, which tends to 188 

be more sensitive than just finding the overlap between the top candidate windows; See 189 

Methods). As recombination rate can affect the sensitivity of these kinds of window-based 190 

genome scans (Booker et al. 2020), the identification of WRAs was conducted after binning 191 

windows by recombination rate, although in many cases we did not observe substantial 192 

differences in the null distributions among these bins (e.g., Figure S3). This analysis revealed 193 

many windows with signatures of repeated association, with the strongest repeated signature 194 

found for Number of Frost-Free Days (NFFD; Figure 3A; S4), but also showed that many of the 195 

windows with the strongest association in one species did not have strong signatures in other 196 

species (Figure 3B).  197 

 198 

 199 
Figure 3. Signatures of association for Number of Frost-Free Days (NFFD) in the four taxa on 200 

chromosome 15 (A) and genome-wide (B). Panel A shows Windows of Repeated Association 201 

(WRAs; coloured bars) for comparisons between the focal speces, H. annuus, and each of the 202 

other 3 taxa, with the haploblocks in H. annuus shaded in violet and the regions with significant 203 
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 9 

PicMin hits as vertical orange lines. Panel B shows the value of the top candidate index for each 204 

of the 1000 windows with the strongest signatures of association in at least one species, ordered 205 

by clustering to group windows with similar patterns across multiple species. 206 

 207 

Under the null hypothesis that all regions of the genome evolve neutrally due to drift and 208 

independently in each species, ~5% of the top candidate windows identified in one species 209 

would be expected to fall into the tail of the null distribution of another species (i.e. be classified 210 

as WRAs). While we find significantly more WRAs than the 5% expected by chance, ranging 211 

from 6.3% to 44.1% (mean = 14.5%; Figure S4), multiple factors can violate the assumptions of 212 

this test and increase the proportion of windows classified as WRAs. Most importantly, 213 

similarity in signatures of association can be driven by shared ancestral variation or ongoing 214 

introgression, and this must always be considered as an alternative explanation. It is clear that 215 

most regions of the genome harbour some shared standing variation between all 6 pairwise 216 

comparisons of the taxa, whether due to segregating ancestral variation or introgression, based 217 

on an index quantifying the proportion of shared to non-shared SNPs in each window (Figure 218 

S5). However, we do not find consistent differences in the amount of shared standing variation 219 

within windows when comparing WRAs with the rest of the genome (Figure S5). Thus, while 220 

introgression may make subtle contributions to WRAs, a lack of increased shared standing 221 

variation in the significant windows suggests that it is not a primary driver of these patterns. 222 

A second source of inflation in the number of WRAs is due to hitchhiking: if a given 223 

locus is a true positive driving adaptation, LD with other windows in tight physical linkage will 224 

result in spurious correlations causing them to also be classified as WRAs increasing the 225 

genome-wide proportion above 5%, and this effect will be particularly exaggerated in 226 

haploblocks. To control for this, we binned neighbouring WRAs together that exhibited high LD 227 

(>95th percentile) over short spans of the genome (<1 cM) in either species, yielding regions we 228 

refer to as Clusters of Repeated Association (CRAs). While this clustering method should 229 

provide a partial control for the effect of hitchhiking, we note that the number of CRAs cannot be 230 

taken as a reliable estimate of the number of independent targets of natural selection. Instead, we 231 

treat the number and size of these CRAs as proxies for the relative genome-wide similarity in 232 

association between each pair of species, and conduct downstream analyses to test hypotheses 233 

about the factors driving local adaptation. 234 
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CRAs varied in number and size across the 6 pairwise-species comparisons, with 235 

particularly large CRAs identified at the sites of known haploblocks (Todesco et al. 2020). For 236 

CRAs identified for phenotypic associations, their extent ranged from 168 clusters spanning 237 

48,524,903 bp (covering only 1.6% of the genome) in H.argophyllus-H.pet.petiolaris to a 238 

maximum of 1,667 clusters spanning 426,409,647 bp (14.2 % of the genome) in H. pet. 239 

petiolaris-H. pet. fallax (Figure S6). CRAs identified for environmental variables tended to be 240 

more numerous and cover a larger region of the genome, varying from 1154 clusters comprising 241 

15% of the total genome for H. argophyllus-H. pet. fallax up to 2,260 distinct clusters covering 242 

29% of the genome between H. petiolaris subspecies (Figure S7). When we use an approach that 243 

corrects for population structure in the genotype-environment association tests (Baypass), we 244 

find substantially reduced numbers of CRAs (Figure S8), likely due to reduced power to detect 245 

true positive causal loci when population structure covaries with environment (as true positives 246 

do not “stand out” relative to the genomic background).  247 

 248 

Repeated association in the genome reflects patterns at the phenotypic level. If natural 249 

selection is driving repeated patterns of local adaptation in the genomes of two species, we 250 

should see greater similarity for associations with environmental variables that are also strongly 251 

associated with phenotypic variation in both species. Consistent with this prediction, we found 252 

that environmental variables with a high SIPEC index (i.e. high correlation with phenotypes; 253 

Figure S2) also tended to have a larger number of CRAs in all comparisons (Figure 4), with 254 

higher repeatability at both the phenotype and genome level for temperature-related variables 255 

and much lower repeatability for soil-related variables. Unfortunately, given the non-256 

independence of environmental variables it is not possible to conduct a formal significance test 257 

of these patterns. In all cases, the number of CRAs exhibited a weak negative relationship with 258 

the index of standing variation, with environmental variables that had the greatest number of 259 

CRAs having the lowest relative amounts of shared standing variation (Figure S9). This suggests 260 

that the observed similarity in patterns of association among species is not being strongly driven 261 

by incomplete lineage sorting or introgression, as we would expect a positive relationship 262 

between the index of shared standing variation and the number of CRAs. We found similar but 263 

weaker patterns in the association between SIPEC and size of CRAs (Figure S10), which may 264 

reflect comparatively greater contribution of haploblocks driving patterns with size rather than 265 
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number (i.e. if a particularly large haploblock is a CRA, then that variable will have a 266 

particularly large value relative to its actual importance for local adaptation). 267 

 268 

 269 
 270 
Figure 4. Relationship between mean Similarity in Phenotype-Environment Correlation (SIPEC) 271 
and number of Clusters of Repeated Association (CRAs). Each panel includes both a linear 272 
model fit to the data within the panel (coloured lines), and a linear model fit to all data 273 
simultaneously (black lines) for comparison. 274 
 275 

 276 
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Overlap of signatures of repeated association with low recombination haploblocks. 277 

Inversions can facilitate local adaptation by suppressing recombination between locally adapted 278 

alleles within the inverted vs. ancestral haplotypes (Kirkpatrick and Barton 2006). If a given 279 

species exhibits a signature of association to environment at a segregating inversion, it is 280 

interesting to test whether similar signatures of association are found in other species at the same 281 

region of the genome that lack a segregating inversion. This would suggest that particularly 282 

strong selection is acting on this region, as signatures of association can still evolve even without 283 

the recombination suppressing effect of the inversion. While not all of the low-recombination 284 

haploblocks identified by Todesco et al. (2020) have been validated as inversions, for simplicity 285 

we treat each haploblock as representative of a segregating inversion. The majority of these 286 

haploblocks are present as segregating variation in only one of the three species, but when they 287 

occur in H. petiolaris, they tend to be found as segregating variation within both subspecies. 288 

Thus, if we find significant enrichment of the regions of repeated association (WRAs and CRAs) 289 

within haploblocks, this suggests that both the species with a segregating inversion and the 290 

species lacking an inversion are using this region of the genome to drive local adaptation. As a 291 

first test of this relationship, we assessed two-way contingency tables for whether top candidate 292 

windows within a species were also significant windows of repeated association (WRA/non-293 

WRA) and whether they fell within haploblocks (yes/no). This approach controls for the 294 

potential enrichment of top candidate windows within haploblocks relative to the rest of the 295 

genome and asks if the rate of WRAs within haploblocks is higher. For most phenotypes and 296 

environments, we found that the proportion of WRAs in haploblocks was much higher than for 297 

non-WRAs (Figure 5). Across all species comparisons and environmental/phenotypic variables, 298 

a total of 310 contrasts showed significant enrichment for WRAs in haploblocks, compared to 299 

only 23 contrasts showing a significantly higher proportion of non-WRAs in haploblocks. In H. 300 

argophyllus, while non-WRA top candidates tended to fall within haploblocks less commonly 301 

than in the other taxa, WRAs tended to be very strongly enriched within haploblocks (Figure 302 

5B). As a follow-up, we also tested whether CRAs were enriched within haploblocks (without 303 

controlling for whether top candidate windows also tended to be enriched), also finding strongly 304 

significant enrichment of CRAs within haploblocks for many traits and environments (Figure 305 

S6C & D). Broad patterns revealed by these analyses are similar, as both show that regions with 306 

haploblocks tend to be enriched for signatures of association to environment in species lacking 307 
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the haploblock. It is noteworthy that few significant signatures of enrichment in haploblocks 308 

were found for H. petiolaris petiolaris vs. H. petiolaris fallax (Figure S6C & D), perhaps 309 

because extensive introgression across non-locally adapted regions of the genome obscures true 310 

signal. 311 

 312 

 313 
 314 
Figure 5. Enrichment of signatures of repeated association within genomic regions harbouring a 315 
haploblock in one of the two compared lineages. Each panel shows the proportion of top 316 
candidate genes that fall within haploblocks for windows with significant signatures of repeated 317 
association by the null-W test (WRAs) vs. those with non-significant signatures (non-WRAs). 318 
Comparisons of H. petiolaris petiolaris vs. H. petiolaris fallax are omitted as they share 319 
segregating haploblocks. Each point corresponds to the results for a single phenotype or 320 
environment, with dark shading used for cases where the deviation from random for the 321 
contingency table is significant by a permutation test (p < 0.05), and lighter shading indicating a 322 
non-significant result. 323 
 324 
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Multi-species signatures of repeated association. As a complement to the pair-wise analyses 326 

described above, we also conducted an analysis using PicMin, which simultaneously considers 327 

any number of lineages to identify genes with particularly strong and repeated signatures of 328 

association (Booker et al. 2022). After clustering together windows < 1 Mbp apart, we found a 329 

total of 145 regions that were significant for at least one variable or phenotype (at FDR < 0.1 330 

applied within each variable). The largest number of significant regions for environment was 331 

found with the Number of Frost-Free Days variable (20 with FDR < 0.1; 44 with FDR < 0.2) and 332 

for phenotypes with Total Leaf Number (9 with FDR < 0.1; 19 with FDR < 0.2). Considering the 333 

720 individual 5000 bp windows with FDR < 0.2 for at least one variable, 387 are within 500 bp 334 

of a genic region, representing a 2.3x enrichment relative to the rate for windows that were not 335 

significant hits using PicMin (23.3% of other windows fall within 500 bp of a genic region; C2 336 

test p < 10-15).  337 

 338 

 339 

 340 

Estimating the number of potentially adaptive loci. Even for the environment with the highest 341 

repeatability (Number of frost-free days; NFFD), most of the strongest signals of association are 342 

found in only one lineage (Figure 3B). This implies that there is considerable genotypic 343 

redundancy, with many different ways for these species to adaptively respond to variation in the 344 

same environment. To estimate the number of windows that could potentially contribute to local 345 

adaptation for each variable (Leff), we modified the method of Yeaman et al. (2018) to partially 346 

account for the effect of linkage among nearby windows (see methods). This method assumes 347 

that the windows with signatures of adaptation in each species are a random draw from a larger 348 

number of potentially contributing windows (Leff), which can be inferred based on the ratio of 349 

shared vs. non-shared windows with strong association signatures (see Methods). We find that 350 

estimates of Leff tend to be large, always well over 1000 windows regardless of the trait or 351 

environment (Figure S13A). There are numerous sources of error that affect the estimation of 352 

Leff, which will tend to be overestimated due to linkage (Figure S13A) or when many signatures 353 

of adaptation are false positives (see supplementary results), and will be underestimated when 354 

some repeatability is due to shared standing variation (Yeaman et al. 2018). Even after controls 355 
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for linkage and assuming a high false positive rate of 80%, estimates of Leff remain in the 356 

hundreds even for the variable with the lowest value of Leff (Eref; Figure S13C, D). 357 

 358 

Discussion 359 

Despite its critical importance in shaping the architecture of adaptation, little is known about the 360 

extent of genotypic redundancy underlying different traits (Barghi et al. 2020; Láruson et al. 361 

2020; Yeaman 2022). Here, we have shown evidence of significant repeatability in the basis of 362 

local adaptation (Figure 4, 5), but also an abundance of species-specific, non-repeated signatures 363 

(Figure 3; S13). In particular, we find that regions of the genome that harbour inversions in one 364 

species also tend to be strongly enriched for signatures of adaptation in other species lacking the 365 

inversion (Figure 5). Taken together, this suggests that local adaptation in these species is highly 366 

flexible -- different species apparently use quite different sets of loci to adapt to the same 367 

environment -- yet still involves some component that has minimal redundancy, with inversions 368 

playing a particularly important role. Some of the "usual suspects" show up in the set of 369 

significantly repeated loci identified by PicMin: in addition to the homologs of the FT 370 

(FLOWERING LOCUS T) gene reported by (Todesco et al. 2020), we also found hits for several 371 

other genes involved in circadian regulation and flowering time, including PRR3 (Para et al. 372 

2007)), TOE1 (Aukerman and Sakai 2003), and PHYC (Takano et al. 2005; Chen et al. 2014), 373 

which is known to regulate photoperiodic responses in Arabidopsis accessions (Balasubramanian 374 

et al. 2006). Other top hits included genes involved in plant development and auxin transport 375 

(PIN3; (Keuskamp et al. 2010), ARF4 (Pekker et al. 2005), and MN; (Bhatia et al. 2016)), and 376 

plant immunity (CRK13 (Acharya et al. 2007) and PRR2 (Cheval et al. 2017)) 377 

The increased repeatability found in regions of the genome that harbour inversions in only 378 

one species is particularly interesting. Inversions are commonly associated with local adaptation 379 

(Wellenreuther and Bernatchez 2018), likely because they reduce the rate that recombination 380 

breaks up combinations of co-selected alleles (Kirkpatrick and Barton 2006), which perhaps 381 

facilitates contributions by alleles that would be individually too weakly selected to overcome 382 

swamping by migration (Bürger and Akerman 2011; Yeaman and Whitlock 2011; Schaal et al. 383 

2022). Evidence here suggests these regions still tend to contribute to adaptation in the species 384 

lacking the recombination-suppressing effect of an inversion, consistent with a strong effect of 385 
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selection relative to migration on at least one locus in the region. Given that under this model, 386 

inversions will be mostly likely to persist if they capture multiple locally adapted alleles, the 387 

observation of enrichment of signatures of repeated adaptation within inversions could also 388 

explain their long-term persistance. If there is variation across the genome in the density of loci 389 

with the potential to be involved in local adaptation, then the evolution and maintenance of 390 

locally adaptive inversions would be biased towards co-occuring with the loci most likely to be 391 

involved in local adaptation. If the potential for local adaptation is conserved amongst species, 392 

then these same regions are more likely to have high repeatability. In this way, repeatability in 393 

inversion containing regions may reflect the preferential retention of inversions, as well as the 394 

retention of locally adaptive alleles. As an example, chromosome 15 harbours a large (72 Mbp) 395 

haploblock in H. annuus that is strongly associated with NFFD (number of frost-free days), and 396 

also shows some signatures of association in the other taxa, with particularly strong signatures of 397 

association on either side of the haploblock in H. argophyllus (Figure 3A). Interestingly, loci of 398 

repeated association identified by PicMin within this region include two genes whose homologs 399 

are known to regulate responses to cold: COLD-RESPONSIVE PROTEIN KINASE 1,CRPK1 400 

(Liu et al. 2017)) and LATE ELONGATED HYPOCOTYL, LHY (Mizoguchi et al. 2002; Dong et 401 

al. 2011). While many studies have demonstrated the importance of inversions for adaptation 402 

(Wellenreuther and Bernatchez 2018; Hager et al. 2022), to our knowledge only one other study 403 

has documented the involvement of the same loci making contributions in the absence of the 404 

recombination-suppressing effect of the inversion (Lee et al. 2017). This also highlights how 405 

comparative studies of a species lacking an inversion may help identify which genes are driving 406 

adaptation in another species with an inversion, as segregating inversions tend to have extensive 407 

LD that prevents identification of any potential targets of natural selection within them.  408 

 While our results suggest a large number of loci can potentially contribute to adaptation, 409 

implying high redundancy (Figure 3B; S13), there are several factors that complicate inference. 410 

Separating the effects of drift and selection to detect signatures of local adaptation is notoriously 411 

difficult, because population structure often covaries with features of the environment that drive 412 

adaptation (Lotterhos and Whitlock 2014; Hoban et al. 2016; DeRaad et al. 2021). As found by 413 

other analyses (Yeaman et al. 2016; DeRaad et al. 2021), when we use structure correction in our 414 

genotype-environment association tests, we find many fewer signatures of repeated association 415 
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(Figure S6 vs. S8), likely due to the reduced power of Baypass to detect true positives when the 416 

environment covaries with population structure. Here, we have side-stepped the issues involved 417 

in correction for population structure by instead relying on comparisons among species to 418 

identify loci with associations more extreme than expected by chance, using the null-W and 419 

PicMin tests. This assumes that most loci in the genome are not involved in local adaptation, so 420 

that the relatively small proportion that are driving adaptation can therefore be picked out due to 421 

their tendency to fall into the tail of the distribution of association statistics. While this approach 422 

should be relatively robust for identifying loci with repeated patterns of adaptation, there is no 423 

way to formally estimate significance of associations found in only a single species, many of 424 

which may be false positives due to covariation of population structure and environment. 425 

However, even if we assume that 80% of the observed non-repeated loci are false positives, we 426 

still find that estimates of the effective number of loci contributing to adaptation (Leff) are in the 427 

hundreds (Figure S13C). As we are unable to detect loci of small effect due to the limited power, 428 

our estimates of Leff will also be biased downwards by excluding these potentially important 429 

drivers. Finally, it is also difficult to exclude the contribution of introgression or incomplete 430 

lineage sorting to the observed signatures repeated association. If a locus tended to be highly 431 

introgressed between two species in a restricted region of their range, it is possible it could also 432 

covary with environment and therefore result in a signature of repeated association that would be 433 

mistakenly interpreted as adaptation. While it is difficult to preclude this from our analysis, 434 

regions of the genome with signatures of repeated association do not tend to have higher levels 435 

of shared standing variation than background regions (Figure S5), suggesting this is not a broad 436 

explanation for our observations. If anything, shared standing variation would be expected to 437 

increase repeatability of adaptation (MacPherson and Nuismer 2017), adding further weight to 438 

the inference that there is high genotypic redundancy in these species. 439 

In general, we find that temperature is the strongest driver of repeated adaptation at both 440 

the phenotypic and genomic levels. We quantified local adaptation at the phenotypic level using 441 

correlations between traits measured in common gardens and the home environment of the 442 

population they were sampled from. Across all phenotypes, these correlations tended to be 443 

strongest and most similar among species for temperature variables, particularly in comparisons 444 

among H. annuus and H. petiolaris subspecies (Figure S2). We see similar patterns of 445 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528989doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528989
http://creativecommons.org/licenses/by/4.0/


 18 

repeatability reflected in the genome, where temperature variables also tend to have the greatest 446 

repeatability (Figure 4). The similarity in these phenotypic and genomic signatures is consistent 447 

with an effect of strong selection, as other artefactual or drift-based explanations for repeatability 448 

would not be expected to reflect patterns found at the phenotypic level. It should be noted that 449 

the reduced importance of soil variables in the SIPEC index might be partly driven by the fact 450 

that all traits were measured on above-ground features, due to the difficulty of getting good root 451 

phenotypes. 452 

Taken together, these results suggest that some fraction of the genome contributes to adaptation 453 

with low redundancy and high repeatability (which tend to be enriched within inversions), while 454 

the remainder of the adaptive response is driven by loci with high redundancy and species-455 

specific contributions. Models in evolutionary genetics tend to focus on extremes: population 456 

genetic approaches explore cases where strong selection deterministically drives a change in 457 

allele frequency, whereas quantitative genetic approaches make the infinitesimal assumption that 458 

phenotypic change can be realized through small frequency changes at many loci (Barton et al. 459 

2017; Barghi et al. 2020; Yeaman 2022). Our results suggest that adaptation is a complex 460 

process that does not map cleanly onto the assumptions of either approach, but that at least some 461 

component of trait variation experiences sufficiently strong selection to overcome migration and 462 

drift and behave in a way approximately consistent with population genetic models. Given the 463 

difficulty of rigourously quantifying the contribution of alleles of small effect, it remains an open 464 

question what proportion of adaptive response is governmed by loci with dynamical behaviour 465 

that follow the infinitesimal assumption. This could perhaps be quantified explicitly by 466 

decomposing trait heritabilities as has been done for standing variation in humans (Visscher et al. 467 

2017), but this would require a considerable increase in sample size as methods such as GCTA 468 

(Yang et al. 2011) do not yield accurate estimates at the sample sizes used here 469 

 470 

Materials and Methods 471 

Data collection, common garden, and phenotyping. Seed samples were collected from 151 472 

wild sunflower populations covering most of their native distributions during the summer of 473 

2015 (H. annuus: 61 populations for GWAS and 71 populations for GEA, H. petiolaris fallax: 23 474 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528989doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528989
http://creativecommons.org/licenses/by/4.0/


 19 

populations, H. petiolaris petiolaris: 18 populations and H. argophyllus: 30 populations, Figure 475 

1 and Supplementary Table 1). Seeds from ten additional populations of H. annuus for the GEA 476 

analysis had been previously collected in the summer of 2011. Sample seeds were obtained from 477 

randomly chosen mothers, and were first germinated in a greenhouse for two weeks, later moved 478 

to an open-sided greenhouse for acclimation. Phenotypic data were collected throughout the 479 

growing season, as detailed in Supplementary Table 1. Extensive records of developmental and 480 

morphological traits throughout the growth of the plants including leaves, stem, and seeds which 481 

were collected and digitally imaged to extract relevant phenotypic data.  482 

 483 

Similarity in Phenotype-Environment Correlation (SIPEC). Locally adapted traits tend to 484 

exhibit strong correlations between environment and common-garden phenotype, so 485 

environments that are important to driving local adaptation should exhibit strong correlations 486 

with many traits. As an index to represent the similarity among pairs of species in an 487 

environment’s average correlation across all measured phenotypes, we calculate SIPEC = 488 

∑ "#𝑟!,## + #𝑟!,$#&#𝑟!,###𝑟!,$#/𝑛%!  where ri,1 and ri,2 are the Pearson correlations between the 489 

environment and the ith phenotype in the first and second species, respectively, and np is the 490 

number of phenotypes. This SIPEC index is maximized when the correlation is large in both 491 

species regardless of the direction, so it does not differentiate phenotypically convergent vs. 492 

divergent patterns of local adaptation, and provides a means of estimating the relative importance 493 

of an environment driving local adaptation across all measured phenotypes. To account for non-494 

independence among traits, for each pair of species we fit a PCA to all measured phenotypes and 495 

use the Principal Components that collectively explain 95% of the variance, and calculate SIPEC 496 

on the correlations of these variables with environment. 497 

 498 

Tests of SNP association with environment (GEA) and phenotype (GWAS). A total of 39 499 

environmental variables (21 climatic variables, 3 geographic variables, 15 soil variables 500 

Supplementary Table 1) were used for the genotype-environment association analysis (GEA). 501 

We refer to the climatic, soil and geographic variables collectively as the “environmental 502 

variables”, for simplicity. Soil data were collected by taking three to five soil samples collected 503 

at each population from across the area in which seeds were collected and submitted to Midwest 504 
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Laboratories Inc. (Omaha, NE, USA) for analysis. Climate data for each population were 505 

collected over a 30-year period (1961-1990) from geographic coordinates of the locations where 506 

the samples were collected, using the software package Climate NA (Wang et al. 2012). We used 507 

the package BAYPASS version 2.1 (Gautier 2015), which provides a re-implementation of the 508 

Bayesian hierarchical model, and explicitly accounts for the covariance structure among the 509 

population allele frequencies that originate from the shared history of the populations through the 510 

estimation of the population covariance matrix. This renders the identification of SNPs subjected 511 

to selection less sensitive to the confounding effect of population demography (Günther and 512 

Coop 2013). Population structure was estimated by choosing a random and unlinked set of 10 kb 513 

SNPs and running BAYPASS under the core model (i.e. no covariates). Then the Bayes factors 514 

(BF) were calculated running BAYPASS under the STD covariate model to evaluate association 515 

of SNPs with environmental variables (i.e. adjusting for population structure). For each SNP, the 516 

Bayes factor (denoted BFis as in Gautier 2015) was presented in decibian units (db) via the 517 

transformation 10 log10 (BF). BFis relies on the importance sampling algorithm proposed by 518 

Coop et al., 2010 and uses MCMC samples obtained under the core model. To produce a 519 

narrower set of outlier loci, we followed the popular Jeffreys’ rule (Jeffreys 1961) that identified 520 

outlier loci with BF ≥ 10. As genome scan methods that correct for population structure can 521 

remove some potential signals of local adaption when there is covariation between the 522 

demographic history of the species and the environmental variables or phenotypic traits of 523 

interest, we also calculated Spearman’s rank correlation (ρ, uncorrected GEA) between 524 

population allele frequencies for each SNP and each environment variable. 525 

GWAS analysis was performed 86, 30 and 69 developmental and morphologic traits in H. 526 

annuus, H. argophyllus and H. petiolaris, respectively (Supplementary table 1). 29 variables 527 

were measured in all three focal species, and 39 were measured only in H. annuus and in H. 528 

petiolaris subspecies (Supplementary table 1). Seed and flower traits could not be collected for 529 

H. argophyllus, since most plants of this species flowered very late in our common garden, and 530 

failed to form fully developed inflorescences and set seeds before temperatures became too low 531 

for their survival. Population structure was controlled for in GWAS by including the first three 532 

principal components as covariates, as well as an identity-by-state (IBS) kinship matrix 533 

calculated by EMMAX (Kang et al. 2010). We ran each trait GWAS using EMMAX 534 

(v07Mar2010), as well as the EMMAX module in EasyGWAS (Grimm et al. 2017). For every 535 
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SNP/peak above the Bonferroni significance threshold, candidate genes were selected within a 536 

100 Kb interval centered in the SNP with the lowest p-value, or within the boundaries of the 537 

GWAS peak, whichever was larger. All variants used for association were initially filtered for 538 

VQSR 90% tranche, and then further filtered to only include bi-allelic SNPs genotyped in ≥ 90% 539 

of samples and with a minor allele frequency ≥ 3%. 540 

Identification of top-candidate windows. We calculated the bottom 0.01 quantiles for the p-541 

values from association tests, Spearman’s rank correlation (uncorrected GEA) and GWAS 542 

(corrected and uncorrected), yielding two 1% cutoffs. For each environmental and phenotypic 543 

variable, we identified all outlier SNPs as those that fell below the respective 1% cutoff. For 544 

BayPass, we considered SNPs with Bayes factor ≥ 10 as outlier SNPs. For each 5 kb window 545 

that we defined across the whole genome, we counted the number of outlier SNPs (a) and the 546 

total number of SNPs (n). To identify top-candidate windows for each variable, we compared the 547 

number of outlier SNPs per each 5 kb window to the 0.9999 quantile of the binomial expectation 548 

where the expected frequency of outlier SNPs per window is calculated as: 𝜌 = ∑𝑎!/𝑛! 549 

(summation over all 5 kp windows), calculating 𝜌 independently for each environmental and 550 

phenotype variable and excluding windows with 0 outliers from the calculation of 𝜌 (as per 551 

Yeaman et al. 2016). We also calculated a top candidate index using the same approach to 552 

categorize outliers, obtaining a p-value for a binomial test for the number of SNPs per window 553 

given an expected proportion of outliers (𝜌; this p-value is not exact due to non-independence of 554 

SNPs so we refer to this as an index). 555 

Identifying outlier SNPs detected by genome scans from genome-wide distribution without 556 

accounting for local recombination rate variation can promote false positive signals in 557 

recombination cold spots (i.e., low recombination regions) and be overly conservative in 558 

recombination hot spots (i.e., high recombination regions) (Booker et al. 2020). Therefore, to 559 

account for local recombination rate variation, all genomic windows were binned by their 560 

estimated recombination rates into 5 equally sized bins (bin1: 0-20% quantile, bin2: 20%-40% 561 

quantile, bin3: 40%-60% quantile, bin4: 60%-80% quantile, bin5: 80%-100% quantile). For each 562 

recombination bin, we estimated expected frequency of SNPs per window (𝜌) and calculated cut-563 

off separately. Windows falling above the threshold were identified as top candidate windows. 564 
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Genome-wide survey of repeatability (null-W test). To explore repeatable genomic signatures 565 

of adaptation for each of the six pairwise contrasts among the 4 taxa (Figure 1), we used the 566 

method developed by Yeaman et al. (2016) with some modifications. A common approach is to 567 

identify candidates for adaptation independently in each species and then examine the overlap 568 

between these lists, however this approach is quite stringent and may miss many interesting 569 

signals. The null-W test is more sensitive, as it takes the list of top candidates from one species 570 

and tests whether they tend to show more extreme signatures of association than expected by 571 

chance. The null-W test is especially favorable when LD increased divergence of SNPs in tight 572 

linkage with casual SNPs but did not raise the test values enough for a window to be classified as 573 

an outlier according to the binomial test. For each top candidate window that we identified for 574 

each focal species in a pair, we refer to the same window in the other species as “top candidate 575 

ortholog”. The null distribution for each focal species and variable was constructed by randomly 576 

sampling 10,000 background SNPs from non-top candidate ortholog windows. For each non-top-577 

candidate window, we then estimated the test statistic (W) for the Wilcoxon-signed rank test vs. 578 

the 10,000 background SNPs. This resulted in a null distribution representing the differences 579 

between the 10,000 background SNPs and the non-top-candidate ortholog windows. These were 580 

then standardized to Z-scores using the method in Whitlock and Schluter (2020): 581 

𝑍 = "#	%&'&"
(&'&"(&'*&"*')/-

              (Equation 2) 582 

 583 

where n1 and n2 are the sample sizes being compared. In order to control for heterogeneity in 584 

recombination rate and its possible effects on the null distribution, we estimated null distribution 585 

for each recombination bin separately (5 in total, see above). We then compared the p-values and 586 

bayes factors (BFs) for each focal top-candidate widow to the 10,000 background SNPs, 587 

calculating the W statistics and converting into a Z-score. Empirical P-values were then 588 

calculated by comparing the Z-score for each top-candidate window to the null distribution. 589 

When individual windows had values of W that exceeded the bounds of the null distribution, 590 

their empirical p-value was set to the reciprocal of the number of genes in the null distribution. 591 

Empirical p-values were converted to q-values for estimation of False Discovery Rate and 592 

applied this separately to the empirical p-values for each of the variables. For each species pair, 593 
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we refer to the windows identified as significant by this test as “Windows of Repeated 594 

Association” or WRAs. 595 

 596 

Linkage disequilibrium and detection of clusters of repeated association. Linkage 597 

disequilibrium among adjacent genomic windows can result in statistical non-independence and 598 

similar GEA/GWAS signatures across many windows. To group neighbouring WRAs with 599 

similar signatures of repeatability into a single “Cluster of Repeated Association” (CRA), we 600 

used the following approach in each pairwise contrast, and for each environmental variable and 601 

phenotype: beginning with the first WRA along the chromosome, we compared it to the next 602 

closest WRA by calculating the Pearson correlation coefficient (r2) on the allele frequencies 603 

across all pairs of SNPs, and compared this estimate to a null distribution. To construct the null 604 

distribution, we generated a distribution of LD measurements between 10,000 randomly chosen 605 

windows with the same physical distance as between two WRAs (excluding all WRAs from the 606 

null distribution). If the r2 between the two neighboring WRAs was greater than the 95th 607 

percentile of the null distribution, we clustered these two windows together. This process was 608 

repeated successively with the next closest neighboring WRA, walking out along the 609 

chromosome until one of two stopping criteria was reached: 1) the LD between the last two 610 

windows did not exceed the 95 percent of the tail distribution or 2) the distance between the 611 

initial window and the current window next to it was larger than 1 cM, based on the linkage map 612 

from Todesco et al. (2020). When the first round of clustering stopped due to either of these two 613 

criteria, all the clustered windows were removed from the dataset and the process started with the 614 

second smallest empirical p-value. By doing this way, each WRA will only appear in a single 615 

CRA. 616 

 617 

Estimating an index of shared standing variation. As genotype calling was conducted 618 

separately for each species (due to computational concerns), we estimated the amount of shared 619 

standing variation based on counts of shared vs. non-shared SNPs. If two species are evolving 620 

independently, the number of shared SNPs should follow a hypergeometric distribution, so we 621 

used an approach similar to the C-scores (Yeaman et al. 2018) to calculate the difference 622 

between the observed number of shared SNPs and the expectation, scaled by the standard 623 
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deviation of the hypergeometric. Because of noise and a relatively small number of SNPs per 624 

window, we applied this approach on a sliding window basis, including the 5 flanking windows 625 

upstream and downstream of each focal window the calculation of its index of shared standing 626 

variation.   627 

Correspondence between regions of repeated association and chromosomal 628 

rearrangements. To assess the extent of overlap between regions of the genome with repeated 629 

signatures of association and previously identified low-recombination haploblocks, we used two 630 

approaches. Firstly, for each pairwise species contrast and variable, we constructed a 631 

contingency table for the number of top candidates that were significant WRAs vs. not-632 

significant WRAs (by the null-W test), and that did vs. did not fall within a haploblock. We 633 

calculated the Pearson’s c2 statistic on this table, and then permuted the location of haploblocks 634 

throughout the genome to construct a null distribution of c2 statistics, and calculated the p-value 635 

as the proportion of the null that exceeded the observed c2 statistic (to account for non-636 

independence of nearby WRAs). Secondly, we compared observations of the length and number 637 

of overlapping regions to expectations based on a randomization approach. For each pair of 638 

species, we kept the position of each CRA constant and randomized the position of haploblocks 639 

10,000 times to build a null distribution. By keeping the position of the CRAs constant, we 640 

maintained the architecture of adaptation independent from chromosomal rearrangements. We 641 

assessed significance by testing whether the observed overlaps between CRAs and haploblocks 642 

were more extreme than the 95th percentile of the tail of null distribution. Details about 643 

identifying chromosomal rearrangements can be found in Todesco et al. (2020). 644 

Identifying repeated signatures of association across all taxa. As a complement the the 645 

pairwise analysis, we used PicMin (Booker et al. 2022) to identify windows of the genome with 646 

strong signatures of association in multiple (sub-) species. For each environmental variable, 647 

association signatures for each window are ranked genome-wide and PicMin identifies windows 648 

with extreme ranks in multiple species. We ran the analysis once with each of the two 3-way 649 

comparisons involving one petiolaris subspecies (i.e. H. annuus, H. argophyllus, and either H. 650 

pet. petiolaris or H. pet. fallax) to control for repeatability arising from similar patterns in the 651 

two petiolaris subspecies (due to high introgression/shared standing variation).  652 
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Evaluating genotypic redundancy using C-scores. Genome-wide quantification of the 653 

repeatability of association statistics provides insights into the amount of genotypic redundancy 654 

underlying a trait or environmental adaptation, and can be assessed using the C-score approach 655 

(Yeaman et al. 2018). Briefly, for a given trait or environment, the set of association test scores 656 

within each species is classified into “associated” or “non-associated” using the binomial top 657 

candidate approach. For a given pair of species (i = 1, 2), the observed number of associated 658 

windows in each species (a1, a2) can be compared to the number of windows that are associated 659 

in both species (ab) and the total number of windows being analysed (ax). Under a null 660 

hypothesis where all windows in the genome have equal potential to be involved in adaptation 661 

(i.e. associated with the trait or environment), the expected number of windows associated in 662 

both species will be described by a hypergeometric distribution, with the expectation 𝑎&+++ =663 

	𝑎#𝑎$/𝑎'. The difference between the observed and expected amount of overlap in association 664 

scores can be quantified as a C-score by scaling the difference by the standard deviation of the 665 

hypergeometric (i.e. a C-score of 2 means that the observed amount of overlap is two standard 666 

deviations above the expectation under randomness).  667 

We assess the C-scores for each phenotype and environment trait by classifying the top 668 

0.5% of all 5 kb windows within each species as “associated” (ai; based on the binomial top 669 

candidate index), and begin by calculating the C-score obtained when ax is set to the union of ai 670 

across all four focal species/sub-species (i.e. only those windows associated in at least one 671 

species are included in ax, a number much lower than the total number of windows in the 672 

genome). This yields a negative C-score, as a random draw from such a small number of 673 

windows tends to yield many more overlapping associations by chance than the observation. 674 

When the C-score = 0, it means that the observed overlap between the pair of taxa being 675 

considered is consistent with a random draw of their respective “associated” windows from an 676 

overall pool of ax windows. Thus, by adding rows to the matrix with “non-associated” scores for 677 

all 4 species/sub-species until finding the matrix that yields C-score = 0, we can estimate the 678 

effective number of loci that contributed to variation for the trait or environment being 679 

considered (Leff), under the assumption that all such ax = Leff windows had an equal chance of 680 

contributing to the associations. 681 

 To run the C-score analysis on LD-clustered windows, we ran the following algorithm for 682 

each trait/environmental variable: for each species, we identified all CRAs that also had a top 683 
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candidate index in top 0.5%. In most cases, a large cluster with associated windows in one 684 

species corresponds to either no clusters or a small cluster in another species. To harmonize 685 

cluster boundaries across species, we bin any overlapping clusters together to their maximum 686 

extent, and take the average top candidate index for each cluster in each species as either: (a) the 687 

mean across all windows that were “associated” in that species or (b) the average across all 688 

windows associated in any species, if no windows were associated in that species. This yields a 689 

matrix that can be submitted to the hypergeometric C-score analysis.  690 

 691 

Data availability 692 

All scripts used for analysis and figures will be deposited in a Dryad archive along data files and 693 

results. Raw sequence data are deposited in the Sequence Read Archive (SRA) under BioProject 694 

accessions PRJNA532579, PRJNA398560, and PRJNA564337, as described in Todesco et al. 695 

(2020).  696 
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