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Abstract
The 3D conformations of chromosomes are highly variant and stochastic between single cells.

Recent progress in multiplexed 3D FISH imaging, single cell Hi-C and genome structure

modeling allows a closer analysis of the structural variations of chromosomes between cells to

infer the functional implications of structural heterogeneity. Here, we introduce a two-step

dimensionality reduction method to classify a population of single cell 3D chromosome

structures, either from simulation or imaging experiment, into dominant conformational clusters

with distinct chromosome morphologies. We found that almost half of all structures for each

chromosome can be described by 5-10 dominant chromosome morphologies, which play a

fundamental role in establishing conformational variation of chromosomes. These morphologies

are conserved in different cell types, but vary in their relative proportion of structures.

Chromosome morphologies are distinguished by the presence or absence of characteristic

chromosome territory domains, which expose some chromosomal regions to varying nuclear

environments in different morphologies, such as nuclear positions and associations to nuclear

speckles, lamina, and nucleoli. These observations point to distinct functional variations for the

same chromosomal region in different chromosome morphologies. We validated chromosome

conformational clusters and their associated subnuclear locations with data from

DNA-MERFISH imaging and single cell sci-HiC data. Our method provides an important

approach to assess the variation of chromosome structures between cells and link differences in

conformational states with distinct gene functions.
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Introduction
With the advent of single cell super resolution imaging1,2, multiplexed FISH imaging3–6, single

cell genomics experiments7–10, and data driven genome modeling11–22 it is now possible to

analyze 3D structures of chromosomes and entire genomes at single cell level. Chromatin

loops, topological associated domains (TADs) and patterns of chromatin compartmentalization

are readily detected in ensemble averaged Hi-C data23–26 but are very dynamic in nature and

subsequently show large stochastic variations at single cell level27,28. For instance, chromatin

loops, detected at specific locations in ensemble Hi-C are likely present only in 3 to 6.5% of

cells at any given time29 and TAD domain boundaries are only rarely observed at the ensemble

average position but rather stochastically distributed, because of dynamic loop extrusion

processes13,28,30,31. Thus, detailed analysis of single cell chromosome structures are only

meaningful when considering the entirety of structural variability observed in a cell

population32–34.

Unlike chromatin loops and TADs, little research has been conducted on structural variations of

long-range interactions and whole chromosome morphologies, specifically to investigate the role

of these structural variations on global genome organization and gene function. Recent

evidence from multiplexed FISH imaging3,6,32 and single cell Hi-C experiments10,35–37 suggests

large structural variations of chromosome morphologies between single cells. These structural

differences can affect spatial positions of genes within chromosome territories and thus a gene’s

exposure to functional compartments and nuclear bodies, which have been shown to be of

relevance for gene function38. For instance, transcriptional activities of individual genes can be

heightened in the immediate vicinity of nuclear speckles39–41. However, up to this point it remains

unclear if the variability in 3D chromosome morphology plays any role in the regulation and

cell-to-cell heterogeneity of gene function.

In this study, we address this point by examining the cell-to-cell variability of 3D chromosome

morphologies within their nuclear environment and by studying how these structural variations

alter the functional microenvironment of genomic regions in the nucleus, as defined by their

radial positions, or distances to nuclear speckles and lamina compartments. Because of the

stochastic nature of 3D chromosome structures, several important questions emerge. First, can

the structures of the same chromosome in different cells be classified into prevailing structural

states that define distinct chromosome morphologies? Second, do chromosome morphologies
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of prevailing structural states relate to distinct functional properties of genes in these

chromosomes?

To address these questions, we first introduce an approach to classify structural variations of

chromosome morphologies in single cells from ensembles of 3D chromosome structures,

extracted either from multiplex DNA-MERFISH imaging3, or structure models generated with our

data-driven structure modeling approach11. We then study if chromosomal regions are exposed

to different nuclear microenvironments in different structural states to detect potential functional

variations of genes located in different chromosome morphologies.

Due to the dynamic nature of chromosome structures, their classification based on 3D

coordinates is challenging, because some functionally unrelated regions can show large degree

of randomness in their relative positions, overshadowing relevant structural relationships

between other chromosomal regions. Our approach overcomes this problem and transforms the

problem of classifying individual chromosomes structures to a problem of detecting maxima of a

density distribution in a reduced 2-dimensional space, where each data point represents a

chromosome conformation and the detection of local maxima in the probability density function

determines locations of highly occupied clusters of chromosomes with similar 3D conformations.

Thus, our approach determines subpopulations of chromosomes with similar 3D morphology.

We discovered that a given chromosome can be clustered into around 5 to 10 morphology

classes, which are distinguished by the presence or absence of characteristic chromosome

territory domains that vary in their relative locations to each other. The boundaries of these

territory domains play a fundamental role in establishing conformational variation and their

sequence locations are shared across various cell types (GM12878, H1-hESC and HFFc6). We

validated the observed chromosome conformational states and chromosome territory domain

boundaries with data from multiplex DNA-MERFISH imaging data3 and single cell sci-HiC

experiments10. We then discovered that distinct chromosome morphologies (i.e. conformational

states) favor certain nuclear locations of some chromosomal regions and thus modulate the

functional properties of these genomic regions. For instance, preferences in radial positions,

distances to the nearest speckle, nucleolus and lamina differ substantially between the same

chromosomal regions in different conformational states. These observations point to functional

differences of chromatin in different conformational states, as smaller distances to nuclear

speckles are typically associated with increased transcriptional activities of genes. Our

observations therefore indicate that chromosome morphologies can play a key role in

modulating functional properties of some chromosomal regions, and can, at least partially, be
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responsible for the cell-to-cell heterogeneity of the expression of some genes. Our method

provides an important approach to study chromosome conformational variations and reveal links

between conformational states of chromosomal regions and gene functions.

Results
Structure generation.
We first apply our approach for characterizing chromosome morphologies and their functional

qualities to an ensemble of diploid 3D genome structures that were generated at 200kb

resolution from Hi-C data11,13,25,26. Our population-based 3D genome modeling method

(Integrative Genome Modeling, Methods)11,13,42,43 provides us with a large sampling of 10,000

diploid 3D genome structures per cell type, which, as a whole, reproduce Hi-C data and predict

with high accuracy other orthogonal experimental data11,13, namely average radial positions of

genomic regions from GPseq experiments44, mean speckle distances from SON TSA-seq45,

mean distances and contact frequencies to the nuclear periphery from lamin B1 TSA-seq45 and

lamin B1 pA-DamID46, respectively. Moreover, predicted chromosome structures show good

agreement with single cell 3D chromosome conformations from multiplex DNA-MERFISH

experiments3,11,13, and also reproduce with good accuracy speckle and lamina association

frequencies of genomic regions from DNA MERFISH11,13. We first focus our analysis on genome

structure models from lymphoblastoid cells (GM12878) from previously published work13, human

fibroblast (HFFc6)11 and human embryonic stem cells (H1ESC)), before classifying genome

structures from DNA-MERFISH experiments3.

Approach.
To classify chromosomes based on their morphology, we first extract individual chromosomes of

a given type from each of the whole genome structures in the cell population. Both homologous

chromosome copies in the diploid genome are selected, resulting in a total of 20,000

chromosome structures for each autosome (Fig. 1). For each 3D chromosome structure, we

then construct a distance matrix, which then serves as input into our dimension reduction and

clustering scheme (Fig. 1). We then use a two-step dimension reduction approach to cluster

chromosome structures based on their distance matrices into conformational states (Methods).

Specifically, each normalized distance matrix is represented as a 2D image. Our two-step

process then combines a convolutional autoencoder (consisting of an encoder and a decoder
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module) with a dimension reduction step using t-distributed stochastic neighbor embedding

(t-SNE)47 (Methods). The encoder module reduces a distance matrix to a latent vector that can

reconstruct the original matrix by the decoder module. The method reduces dimensions, while

preserving enough information to reconstruct the original image. To construct a convolutional

autoencoder we use convolutional layers, max pooling layers and up sampling layers, which is

frequently used for image embedding and classification (Supplementary Fig. 1) (Methods).

t-SNE, a method to separate data points in a reduced data space, is then used to map the latent

vectors (generated by the autoencoder) to a lower dimensional space (Fig. 1). Finally, we use a

kernel density estimation to calculate a probability density function (pdf) that represents the

chromosome conformational space in the t-SNE reduced dimensions. The resulting density

probability matrix shows a balanced distribution of local maxima separated by deep valleys (Fig.
1 lower panels), indicating the presence of a number of preferred conformational states per

chromosome, which are subsequently identified by a segmentation algorithm (Methods).

We also tested other clustering methods. However, principal component analysis (PCA),

multidimensional scaling (MDS)48, locally linear embedding (LLE)49, isomap50 and spectral

embedding (SE)51 methods are unable to determine distinct clusters with chromosomes of

similar conformational morphology, while uniform manifold approximation & projection (UMAP)52

and T-distributed stochastic neighbor embedding (t-SNE) (applied directly to distance matrices

alone) produced unbalanced clusters, in which the majority of structures were part of only a

single cluster (Supplementary Fig. 2). Instead, the balanced distribution of local maxima in the

resulting density probability matrix of our two-step clustering approach (Fig. 1 lower panels)

indicates the presence of a number of preferred conformational states per chromosome.

A large fraction of chromosome structures can be clustered into a few conformational
states.

We then identify clusters of similar chromosome conformations by determining local maxima in

the probability density distribution as cluster centers and identify structures associated to each

cluster center by watershed segmentation of the probability density distribution (Fig. 1 lower left

panel, and Methods). Chromosome structures part of the same segmentation are in the same

conformational cluster. For chromosome 6 about 40% of all chromosome structures can be

clustered into 8 dominant conformational clusters (Fig. 1, lower left panel, Fig. 2A). The

occupancy of each cluster is defined by the number of structures in a cluster divided by the total

number of all clustered chromosome conformations. The occupancy among clusters varies (Fig.
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2A). For chromosome 6, cluster 4 has the highest occupancy containing ~40% of all the

clustered structures, while all other clusters each occupy less than 20% of all clustered

structures. Similar results are found also for other chromosomes (Supplementary Fig. 4).

Preferred conformational states define distinct chromosome morphologies.
While chromosomes within each cluster share similar morphology, chromosomes between

clusters differ in their structures. For instance, when we measure the compactness of a

chromosome structure by calculating its radius of gyration, it is apparent that the structures of

each cluster vary largely in their shapes (Fig. 2B). Chromosomes in cluster 8 show the lowest

compaction with an average radius of gyration that is about 50% larger than chromosomes in

cluster 4, which show the most compact structures (Fig. 2B). Overall, chromosomes in clusters

with relatively low compaction, and thus, highest radius of gyration show also the largest

variations of their compaction values within the cluster (e.g., clusters 6, 8). Moreover, cluster 4

containing chromosomes with the most compact structures shows the highest occupancy (Fig.
2AB).

Next, we quantify the structural similarity between chromosome structures within and between

clusters by calculating the Wasserstein distance53 between their pairwise chromatin distance

distributions. Specifically, we measure the difference between distributions of all

intra-chromosomal distances calculated from all chromosomes in each cluster. In other words,

for a given pair of chromosomal regions and , we calculate the distance distribution from all𝑖 𝑗

chromosomes in a cluster and assess its similarity with the corresponding distance distribution

calculated from the structures in another cluster. The similarity between two such distance

distributions is calculated by their Wasserstein distance metric53. The combined distance

measure between two clusters is then defined as the average of all Wasserstein distances

between all intra-chromosomal distance distributions calculated from the chromosomes in the

two clusters (Fig. 2C). We normalize this measure by the average Wasserstein distance for

chromosome structures within the same cluster (Methods). We observe that the average

Wasserstein distance is always substantially larger (i.e., ~2-4 fold) for structures in different

clusters, showcasing the structural distinction between chromosomes in the different clusters.

We also found similar results when assessing clusters with other distance measures, including a

Euclidean distance measure and Gaussian dissimilarity32,54, confirming an overall higher

similarity between structures within than between different clusters (Methods) (Supplementary
Fig. 3).
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Importantly, each cluster shows distinct average contact frequency matrices, calculated from the

physical chromatin contacts of all chromosomes in each cluster (Fig. 2D, average contact

frequency matrix shown in fifth panel from top). These distinct contact patterns confirm the

presence of characteristic chromosome morphologies in each cluster. A characteristic feature of

these contact patterns is the presence of domain boundaries that divide the chromosome

territory into large units, with increased interaction frequencies within, and reduced contact

frequencies between territory domains (for instance in clusters 1, 3, 6 and 8 of chromosome 6,

Fig. 2D (territory domain locations are indicated by green blocks below the contact frequency

matrix.)) These territory domains are particularly evident when calculating the average distance

matrix for each cluster (i.e., from all intra-chromosomal 3D distances in a chromosome),

because territory domains show increased spatial distances from each other, thus are separated

spatially from each other in 3D space (see for instance domains 2 in clusters 3 and 6 in Fig.
2D). The spatial separation between domains explains the reduced contact frequencies

between the territory domain regions. The location and size of territory domains vary between

the clusters. On average, chromosome structures contain between 1 and 4 territory domains per

studied chromosome (green blocks below in Fig. 2D, Supplementary Fig. 4DH). Figure 2D
also shows representative structures of the chromosome morphology found in each cluster of

chromosome 6. The structures show the spatial separation between territory domains, as

observed in the average distance matrices. For instance, cluster 6 of chromosome 6 shows a

territory domain boundary at around 134 Mb sequence position, which separates the q-arm

terminal end of the chromosome into a separate territory domain (domain 2 in cluster 6

(134-171 Mb), Fig. 2D). This domain shows relatively increased spatial distances and low

chromatin contact frequencies to other chromosomal regions upstream of the territory domain

boundary (Fig. 2D). In contrast, cluster 3 shows a domain boundary at sequence position 155

Mb, which forms an even smaller domain at the q-terminal end of chromosome 6 (domain 2 of

cluster 3 (155-171 Mb), Fig. 2D), which is well separated from the bulk of the remaining

chromosome (also evident in the representative chromosome structure (lower panel).) Cluster 2

contains a relatively small chromosome territory domain at the p-arm terminal end of

chromosome 6 (domain 1 in cluster 2 (0-10 Mb), Fig. 2D). Noticeable, the boundaries between

territory domains act as hinge regions allowing the relative positions of territory domains to vary

in 3D between models, while the territory domain itself appears as structural units

(representative structures in Fig. 2D). Accordingly, chromosomes in different clusters also show

differences in their local chromatin compaction, as measured by the radius of gyration (RG) over

a 1 MB window of the chromatin fiber (Fig. 2D, third profile panel from top). Local peaks in the
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RG profile are regions with relatively low fiber compactness (which often correspond to TAD

boundaries as previously shown11,13). These profiles show distinct differences between clusters,

noticeable at locations of some territory domain boundaries. To highlight these differences, we

calculated the RGRatio as the log ratio of the average RG value for a chromatin region in the

cluster and the overall ensemble. For instance, the RGRatio profile of both domain 3 boundaries

in cluster 8 show high values, indicating that these boundary regions are decompacted in cluster

8 in comparison to the same region in the overall ensemble (Fig. 2D, RG and RGRatio profiles

are shown in the third and fourth panel from top.) Also, the boundary that separates the small

domain 2 in cluster 3 from the bulk of the chromosome territory shows substantially increased

RGRatio, thus shows a substantial decrease in fiber compactness in the cluster in comparison

to the compactness in the overall ensemble of chromosomes, therefore allowing domain 2 the

freedom to loop away from the bulk of the remaining chromosome territory (see black arrow in

RGRatio of cluster 3 in Fig. 2D). These observations indicate that local chromatin properties can

facilitate the formation of specific chromosome morphologies.

Besides chromosome 6, also other chromosomes show very similar results, with distinct

chromosome contact frequency patterns for each cluster. For instance, conformational clusters

for chromosome 8 and chromosome 10 are also distinguished by a total of 8-10 different

chromosome morphologies with distinct territory domains whose locations vary between

individual clusters (Supplementary Fig. 4).

Chromosome clusters can be validated by imaging experiments.
We assessed our findings with data from multiplex DNA-MERFISH imaging experiments3, which

traced 3D coordinates of whole diploid genomes in IMR90 fibroblast cells at a step size of

~3Mb. To allow a direct comparison, we down sampled our models to the genomic regions

sampled in the experiment and classified the chromosome conformations from DNA MERFISH

into clusters (Methods), based on the similarity of their distance matrix with cluster averages in

our models (Fig. 3AB). For chromosome 6, around 60% of all chromosome structures from

DNA MERFISH (about 4,000 structures) can be classified into our predicted chromosome

clusters based on their structural similarity (Fig. 3A-E). When we average the distance matrices

of all imaged chromosome structures in each cluster, we see that the cluster averages from

DNA-MERFISH experiments are almost identical to those calculated from our models (Fig.
3AB). Also in experiment, cluster 4, with the most compact chromosome structures, shows the

highest occupancy (Fig. 3F). Moreover, individual representative single cell chromosome

structures from DNA-MERFISH imaging show almost identical chromosome structures and
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distance matrices to those from our predicted models (Fig. 3CD). Thus, DNA-MERFISH imaging

confirms the presence of preferred chromosome morphologies and the presence of

chromosome territory domains that vary in their locations between the clusters.

Chromosome morphologies show distinct preferences in nuclear locations of
chromosomal regions.

We now focus on the nuclear organization of chromosomes in different morphologies. The

question we want to address is: does the morphology of chromosome structures relate to

specific nuclear locations of chromosomal regions and thus modulate their functional

properties? Because we model whole genome structures, we can analyze chromosome

structures in their nuclear context. First, we can extract the nuclear radial positions of

chromosomal regions and average the radial positions from chromosomes in each

conformational cluster (Fig. 2D, top profile panel). We assess the differences of the radial (RAD)

profile between clusters by calculating the RadRatio, defined as the log ratio between the

average radial position of a genomic region (RAD) in a cluster and its value in the whole

population of clustered structures (Fig. 2D, second profile panel from top). A negative RadRatio

value for a genomic region indicates that its average radial position in the cluster is closer to the

nuclear interior in the cluster than in the overall population as a whole. We see that RadRatio

profiles differ substantially between clusters for chromosome 6 in particular for clusters 1, 3, 5, 6

and 8, which show pronounced peaks in the RadRatio profile, both in positive and negative

values. For instance, the RadRatio profiles in clusters 1 and 3 differ substantially across the

entire chromosome (Fig. 2D). In cluster 1 the genomic location 24-48 Mb (region I of cluster 1 in

Fig. 2D), which includes the MHC gene cluster, is substantially shifted towards interior nuclear

positions (i.e. negative RadRatio values) in comparison to the location of the same region I in

clusters 3, 5 and 6, which show positive RadRatio values, thus more exterior locations than in

the population average (p-values of Welch’s t-test55 on average radial position against clusters

3, 5 and 6 = 4.06e-12, 1.02e-03 and 6.17e-09 (Table 1), Fig. 2D). Instead, cluster 3 shows a

small chromosome territory domain at the q-terminal chromosome end, readily visible in the

contact frequency and distance maps (genomic location 155-171 Mb: domain 2/region III in

cluster 3 in Fig. 2D). This territory domain loops towards the nuclear interior in cluster 3, as

shown in the RadRatio profile and the representative structures (Fig. 2D). In other clusters (e.g.,

cluster 1 and 2) the same region III shows a more exterior nuclear location and does not form a

separate domain, but is part of an overall larger chromosome territory domain (see region III in
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clusters 1 and 2, Fig. 2D). Another example is the genomic region II at sequence location

105-114 Mb. It forms a small territory domain in cluster 8 (domain 3, region II in cluster 8 in Fig.
2D), which shows strongly negative RadRatio, and therefore loops towards the nuclear interior.

Instead, the same region II in cluster 6 is part of a larger territory domain, which restricts its

looping towards the nuclear interior in comparison to cluster 8 (p-values = 1.04e-09, Welch’s

t-test on average radial positions in cluster 8 and 6 (Table 2)). In cluster 2 the same region II is

even shifted more towards the nuclear periphery in comparison to the population average (see

negative RadRatio for regions II in cluster 2 in Fig. 2D)(p-values = 4.95e-17, Welch’s t-test on

average radial positions in cluster 8 and 2 (Table 2)). Moreover, in cluster 4 chromosomes are in

their most compact conformation, which correlates with a shift of almost the entire chromosomal

regions towards the nuclear periphery in comparison to the population average (see positive

values in RadRatio profile in Fig. 2D) (p-values = 1.69e-34, Welch’s t-test on average radial

positions in cluster 8 and 4 (Table 2)).

Chromosome morphologies are likely linked to differences in gene functions.

The differences in radial positions of genomic regions could indicate differences in their

functional properties. It is known that transcriptionally active chromatin is more likely located

towards the nuclear interior, and highly transcribed genes are often found close to nuclear

speckles3,23,56. It has been previously shown that smaller mean speckle distances of genes

correlate with high transcriptional activity13,39–41. We therefore examine if chromosome

conformations influence speckle associations of genomic regions. We previously showed that

our models can predict with good accuracy locations of nuclear speckles in single cell

models11,13 by identifying the geometric centers of highly connected clusters of

speckle-associated chromatin in each model. Our models predicted with good accuracy data

from SON TSA-seq experiments45, which measure the mean distances of genomic regions to

speckles (0.87 Pearson’s correlation coefficient between predicted and experimental data13), as

well as speckle association frequencies (SAF) of genomic regions from DNA-MERFISH imaging

experiments (0.79 Pearson’s correlation coefficient between prediction and experiment13). When

we predicted SAF, SON-TSA-seq and mean speckle distances (SpD) for chromosomes in

different clusters, we noticed that all these profiles vary considerably for chromosomes in

different clusters (Fig. 4A, top 3 panels). For instance, in cluster 8 the more interior nuclear

location of chromosomal region II (genomic location: 105-114 Mb) (Fig. 4A) leads to a

substantially decreased mean speckle distance (Fig. 4B), as shown by the higher predicted
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SON TSA-seq signals and a ~four times larger SAF value in comparison to the same region in

cluster 6 (Fig. 4A), which is buried in a larger chromosome territory (p-value = 2.36e-06,

Welch’s t-test on average speckle distances between cluster 6 and 8 (Fig. 4B, Table 2). We

showed previously that a higher SAF, thus smaller mean speckle-distance, generally correlates

with higher transcriptional activity13). We therefore speculate that in cluster 8 genes in this region

(105-114 Mb – region II in Fig. 4A), if transcriptionally active, are predisposed for higher

transcriptional activity than the same regions in cluster 6 (Fig. 4A). Moreover, chromosomes in

cluster 4 have the most compact structures and almost all chromosomal regions, with the

exception of the MHC gene cluster, are predicted to have larger speckle distances and

decrease speckle association frequencies (SAF) in comparison to chromosomes in other

clusters (Fig. 3A). We validated our predicted speckle distances and SAF values using the

clustered chromosome conformations taken from DNA-MERFISH imaging3, which also image

speckle locations. These images confirm that the mean speckle distances and SAF profiles vary

considerably for chromosomes in different clusters (Fig. 3B). For a better comparison, we

calculated the SafRatio, defined as the log ratio between the SAF of a genomic region in the

cluster and the overall value in the ensemble of all clustered structures. The most compact

conformations in cluster 4 shows indeed a more exterior nuclear location and reduced speckle

association frequencies for regions across the entire chromosome, except the MHC genes, in

comparison to more extended chromosome conformations in all other clusters, confirming our

predictions (see reduced SafRatio (Methods), Fig. 3B). For instance, cluster 1 shows a distinctly

different SafRAtio in comparison to cluster 4 and 7, with certain chromosomal regions showing

opposing SafRatio values, indicating that these regions show different speckle distances in

different clusters. For instance the p-terminal end of chromosome 6 in cluster 1 (0-24 Mb

(indices 0-8) in Fig. 3AB) shows substantially increased SAF over the population average in

both the predicted and experimental cluster 1, while the same region in cluster 4 and 7 show

decreased speckle association frequency. This observation may indicate an increased

transcriptional propensity for genes in the region (0-24 Mb (indices 0-8)) in cluster 1. Moreover,

region IV (indices 14-20) in cluster 1 shows decreased speckle association frequencies in both

experiment and prediction (SafRatio in Fig. 3AB), while the same region shows increased

speckle association frequency in clusters 2, 3 and 8, in both the experiment and the prediction.

Overall, the experimental structures confirm the predicted patterns of increased and reduced

speckle associations across the chromosome clusters (see magenta and green shaded blocks

in SafRatio of Fig. 3AB), even though the experiments were done on IMR90 cells with a

different nuclear shape. In summary, our analysis reveals that changes in chromosome
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conformations can be linked to changes in specific nuclear locations of genomic regions relative

to nuclear bodies, which possibly affect their functional properties.

Characteristic features of chromosome territory domain boundaries.
Next, we investigate the characteristic properties that define a territory domain (TD) border (Fig.
2D). We noticed that if a territory domain undergoes a major change in nuclear position in a

cluster (i.e., RadRatio shows pronounced minima or maxima) its boundaries show lower

chromatin compaction to facilitate the passage of the domain to the interior (or exterior) regions

of the nucleus (Fig. 4AC). The local compaction of the chromatin fiber can be calculated from

the radius of gyration (RG) of a chromosomal region (Methods): The log ratio between the RG

profile in a cluster over the population average (RgRatio) shows a sharp peak when a TD

boundary is present in a cluster, as is shown for cluster 8 (Fig. 4AC) (Methods). Thus, these

boundary (bd) regions show substantially reduced chromatin compaction in chromosomes of

cluster 8 than in the population average (Fig. 4C). Interestingly, boundaries of domain 3 (region

II) in cluster 8 seem to have an alternative second downstream boundary (bd2’), which allows

the inclusion of a small gene cluster into the domain in some structures (Fig. 4C). In contrast, in

cluster 4, where there are no domain boundaries present at these positions, chromosomes do

not show any decompaction at the corresponding chromosomal regions, on the contrary, they

are slightly more compacted with lower RG values than observed in the population average

(RgRatio < 0, RGRatio is defined as the log ratio of the RG value for a genomic region in the

cluster and its value in the ensemble (Methods) (Fig. 4C).

Interestingly, TD boundaries are often located close to transitions between gene poor and gene

rich chromosomal regions (Fig. 4C). The territory domain itself contains chromatin with histone

modifications related to active chromatin (e.g. H3K27ac, H3K4me1 and H3K4me3) (Fig. 4C,
Supplementary Fig. 5B, 6B, 7B). These domains have positive SON TSA-seq signals of

intermediate strength, indicating that these regions can be close to nuclear speckles in some

structures. The domain boundary contains genes lacking H3K27ac and other activating histone

modifications but instead are marked often with repressive histone modifications (such as

H3K27me3), which mark the boundary to gene poor regions outside the domain (Fig. 4C). Also,

domain boundaries often mark transitions between Hi-C subcompartments, as defined by Rao

et al25. For instance, most territory domain boundaries in chromosome 6 coincide with

boundaries between the A2 and B3 subcompartments. Finally, we also noticed that territory
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domains are also chromosomal regions with generally high cell-to-cell variability in their radial

positions (see δRAD profiles in Fig. 4C).

Inter-chromosomal interactions are specific to chromosome clusters.
Chromosome morphologies influence the predisposition of chromosomal regions to form

inter-chromosomal interactions. In some morphologies chromosomal regions may be shielded

from inter-chromosomal interactions, while the same region in another morphology may be

exposed to other chromosomes. To quantify the role of chromosome morphology on

inter-chromosomal interactions, we calculated for each cluster the inter-chromosomal proximity

matrix, as the frequency of a genomic region to be in spatial proximity with a specific region of

other chromosomes.

As expected, the proximity matrices for a given chromosome in different conformational clusters

vary considerably (Fig. 5A, second panels from the left). To quantify these differences we

calculated the IPP profile for chromosome 6, defined as the total number inter-chromosomal

proximities for a given chromosomal region averaged over all genome structures in a given

cluster (Methods). To compare the IPP profiles between different clusters, we calculated the

IppRatio, defined as the ratio of the IPP profiles in a cluster and the whole population of

clustered structures (Methods). IppRatios of different clusters vary substantially (Fig. 5A, right

profile panels). As expected, the IPPRatio of chromosome 6 in cluster 4 shows reduced

exposure to inter-chromosomal interactions across the entire chromosome, due to the more

compact chromosome structure observed in cluster 4 in comparison to those in other clusters

(Fig. 5A). Indeed, cluster 4 shows the overall lowest IPPRatio values. Overall, cluster 8 shows

the highest IPPRatio. However, there are differences for individual domains in each cluster. For

instance, domain 3 in cluster 5 shows higher IPPratio then the corresponding region in cluster 8

(region indicated by green bar in Fig. 5A). Interestingly, chromosomes in different clusters favor

interactions to different chromosomes (Fig. 5B). Chromosome 6 in cluster 8 shows the highest

averaged IppRatio and thus substantially increased inter-chromosomal interactions with

chromosomes 2, 21 and 8, while chromosome 6 in cluster 5 shows increased interchromosomal

interactions with chromosome 20 and 16 instead (Fig. 5B). For instance, Figure 5C compares

the inter-chromosomal proximity matrix between chromosome 6 and chromosome 2 for cluster 8

and cluster 4. Chromosome 6 shows increased inter-chromosomal interactions with

chromosome 2 in cluster 8 in comparison to cluster 4 (Fig. 5C).
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Chromosome clusters can be validated by single cell Hi-C experiments.

We further assessed our findings by single cell Hi-C (sci-HiC) data of GM12878 cells10,

containing more than 11,000 single cell contact maps, each with relatively low coverage (on

average 3,879 contacts per cell in 200kb resolution) (Fig. 6AB). To increase the relatively low

contact coverage, we applied the scHiCluster method57, a single cell Hi-C imputation method

based on linear convolution and random walk algorithms (Fig. 6B). About 8,500 imputed single

cell contact matrices of chromosome 6 could then be classified into clusters based on their

similarity to the average contact maps of our detected clusters (Methods) (Fig. 6CD). The

average contact frequency maps for each cluster for both, the imputed and raw sci-HiC maps,

show good agreement with those from our models (Fig. 6AB, Supplementary Fig. 8B). To

ensure that the agreement is not due to overfitting, we generated a control experiment, where

contact entries in each sci-HiC contact matrix were randomly rearranged while maintaining its

diagonality and the number of overall contacts. Performing the same analysis with randomized

sci-HiC matrices, resulted in cluster averages that did not reproduce the contact patterns in our

clusters (Supplementary Fig. 8C).

Finally, we also used an available data set from single nucleus sn-HiC experiments36,37 of

WTC11 cells (made available by the laboratory Bing Ren), which contained only 188 single cell

contact maps (on average 129,499 contacts per cell in 200kb resolution) and were

preprocessed by the imputation method Higashi27. Despite the small sample size, we found

representative single cell maps of chromosome 6, with similarities in their contact patterns to

those found in our clusters (Fig. 6E). Therefore, single cell/nucleus Hi-C data confirms the

presence of predicted chromosome morphologies, even though these data do not distinguish

between homologous copies. We assume that when phased single cell data becomes available

the already good agreement will be further improved.

Chromosome morphologies are conserved across cell types.

Chromosome morphologies are distinguished by territory domain boundaries, which are found

at a few chromosome locations and vary per cluster. To determine if chromosome morphologies

and the locations of territory domain boundaries are conserved between different cell types, we

applied the same clustering protocol to genome structures generated from Hi-C maps of two

additional cell types, the human embryonic cell H1 hESC, and the fibroblast cell HFFc6. Figure
7 compares the averaged contact patterns of all highly occupied conformational clusters for

chromosome 6 between all the three cell types (H1 hESC, HFFc6, GM12878). In all cell types
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we detected very similar clusters containing chromosome structures with very similar

chromosome morphologies and thus similar locations of chromosome territory domain

boundaries. The only exceptions are clusters 5 and 7, which were not detected in H1 hESC

cells. Thus, preferred chromosome morphologies and chromosome territory domains are largely

conserved between these cell types. However, the number of structures in each cluster, i.e. the

cluster occupancy, can vary between the cell types.

Discussion
Our manuscript addresses one of the key challenges in genome biology, namely, how to

systematically characterize the cell-to-cell variability of whole chromosome structures and

analyze the role of structural stochasticity in gene function. Due to the large dynamic variability

of genome structures in a population of cells, clustering of whole chromosome and genome

structures is very challenging. Traditional tools used in structural biology fail to detect

functionally relevant structural similarities in chromosome morphologies, because some

functionally unrelated regions can show large degree of randomness in their relative positions,

overshadowing relevant structural relationships between other chromosomal regions.

Subsequently, so far, little attention has been given to the heterogeneity of long-range

chromosome morphologies between cells and the impact of these variations on genome

function33. Here we present the first large-scale quantitative assessment of the 3D structural

variability of whole chromosome morphologies that also considers the context of the nuclear

environment. To achieve this goal, we introduce an efficient two-step clustering method that

combines convolutional autoencoder with t-SNE dimension reduction to cluster large ensembles

of single cell whole 3D chromosome structures, either from genome structure models or

multiplex FISH imaging, into dominant conformational clusters with characteristic chromosome

morphologies. Importantly, these chromosome morphologies are analyzed in their nuclear

context, that is, in relation to the entire single cell diploid genome as well as relative locations to

nuclear bodies and compartments. Our findings were validated by independent experiments

from multiplex DNA-MERFISH imaging and single cell Hi-C.

We found that almost half of the structures for each chromosome can generally be described by

5-10 dominant chromosome morphologies, which play a fundamental role in establishing

conformational variation of chromosome structures. Each morphology cluster is distinguished by

a specific combination of 2 to 4 chromosome territory domains that vary between clusters.
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Territory domains are consecutive chromosomal regions with enhanced interactions that can be

spatially separated from other territory domains. Interestingly, we found that the detected

chromosome morphologies and locations of territory domain borders are largely conserved

across different cell types and similar conformational clusters are found in GM12878, H1-hESC

and HFFc6 cells. However, the relative cluster occupancy can vary between the cell types.

Importantly, our analysis not only discovered dominant chromosome morphologies, but also

identified the relationship of chromosome morphologies with specific nuclear microenvironments

of chromosomal regions. Specifically, we discovered a link between chromosome morphologies

and specific subnuclear properties of chromosomal regions, such as specific preferences in

nuclear positions and associations to nuclear speckles, lamina, and nucleoli. Our analysis

shows that chromosome morphologies can either enhance or shield the exposure of specific

chromosomal regions to the nuclear interior, exterior or nuclear speckles. Subsequently, the

radial positions and speckle association frequencies for the same chromosomal region can differ

substantially in different chromosome morphologies. It is known that shorter distances to nuclear

speckles can enhance gene expression efficacy for some transcriptionally active genes39–41.

Thus, by modulating the exposure of chromosomal regions to specific nuclear

microenvironments, chromosome morphologies could influence chromatin function in single

cells. Our work indicates that some chromosomal regions may show functional distinction in

different chromosome morphologies, which could contribute to the heterogeneity of gene

transcription in single cell RNA-seq experiments58,59. This information is crucial to uncover the

role of genome structure on regulatory processes of genome function.

Most prominently we observe that some territory domains allow chromosomal regions to

undergo relatively large changes in their nuclear position between different morphologies. These

chromosomal regions show overall large cell-to-cell variability of their radial positions in the

population of cells and are often also part of the active chromatin compartment that are

embedded between extended regions of inactive B compartment chromatin. The corresponding

territory domain borders are often close to transitions between the A2 and B3 Hi-C

subcompartment. These regions show intermediate SON TSA-seq signals, indicative of active

chromatin with a larger mean distance to nuclear speckles and lower gene expression levels

than active chromatin in the A1 subcompartment, which is speckle associated in almost all cells

of a population. Another interesting conclusion is that our results provide a connection between

local chromatin structure properties and the presence of chromosome morphologies. For

instance, we found that if a territory domain is present in a chromosome morphology, the

corresponding domain boundary region shows increased chromatin fiber decompaction in
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comparison to the whole ensemble average. One could speculate that a decreased occupancy

of cohesin (or other chromatin properties) at these locations in some single cells could favor the

presence of a chromosome domain border at a specific sequence location, and subsequently

could favor the presence of a specific chromosome morphology.

Finally, we also showed that genome structural models can facilitate the classification of

multiplex FISH imaging data. Because of the currently relatively low coverage in multiplex FISH

chromosome tracing experiments, a direct clustering of chromosome structures from

experiments is challenging and can fail to detect clusters. However, as demonstrated here, it is

possible to cluster chromosome structures from models generated at higher resolution. The

resulting structural clusters can then facilitate the classification of chromosome morphologies in

the DNA-MERFISH data. Thus, high resolution modeling of chromosome structures can also

play a key role for the structural analysis of low-resolution 3D structures determined by

chromosome tracing in multiplex FISH imaging experiments.
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Figures

Figure 1: Overview of the two-step dimension reduction Every chromosome structure is represented by an input
distance matrix, which is constructed by calculating pairwise Euclidean distances between each pair of loci in the
chromosome structure. After preprocessing, the matrix is then used as the input of the autoencoder. After minimizing
the loss between input matrices and output matrices, the latent vectors are then embedded by t-SNE47 to obtain a
distribution of all chromosome structures in 2D space. The resulting distribution is further used for peak detection and
identification of  clusters of chromosome structures  (Methods).
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Figure 2: Clustering of chromosome 6 structures reveals dominant chromosome morphologies. A, The cluster
occupancy of the 8 predicted clusters for chromosome 6. The occupancy is defined by the fraction of structures in
each cluster. B, The distributions of the radius of gyration of all structures in each cluster (Methods). C, Pairwise
dissimilarity measure between chromosome structures in 8 clusters. The dissimilarity matrix is calculated by
measuring the average Wasserstein distance53 of all intra-chromosomal distance distributions between two clusters.
Each entry represents the log fold ratio between the inter-cluster dissimilarity and the intra-cluster dissimilarity, where
positive values indicate the inter-cluster dissimilarity is larger than the intra-cluster dissimilarity. D, For each cluster
the following information is shown (Methods): (top panel) The average radial position profile (RAD) calculated from all
all chromosome structures in the cluster; (second panel from top) RadRatio: the log fold ratio of the average radial
position in the cluster with respect to full ensemble average; (third panel from top) RG: the radius of gyration of a 1Mb
chromosomal region centered at the target locus (fourth panel from top) RGRatio: the log fold ratio of RG in the
cluster with respect to the value in the full ensemble; (fifth panel from top) The average contact frequency matrix
calculated from all structures in a cluster; (sixth panel from top) different shade of green indicate the location of
chromosome territory domains; (seventh panel from top) The average distance matrix calculated from all
chromosome structures in the cluster; (eighth panel from top) Selected example of a chromosome structure in the
cluster. Numbers and circles indicate chromosomal regions of the corresponding chromosome territory domains. The
color bar indicates the sequence position of each chromosomal region. We also highlighted several specific genomic
regions (regions I, II and II) below the RadRatio and RGRatio profiles, which are compared and discussed in the text.

.
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Figure 3: Chromosome clusters can be validated by imaging experiments. A, Average distance matrices from
modeled chromosomes (chromosome 6) in each cluster downsampled to the respective coverage as observed in
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DNA-MERFISH experiments3. Tick labels of all distance matrices indicate sequence location in Mb. Also shown are
several structural features calculated from the genome structures of the cluster ensemble, namely the average
distance to the nearest speckle (SpD), the log fold ratio of the average distance to nearest speckle (SpdRatio) in the
cluster with respect to full ensemble average and the log fold ratio of the speckle association frequency (SafRatio) in
the cluster with respect to the full ensemble average. Green and magenta shaded areas indicate coarse matches of
the varied SafRatio in predicted and experimental determined clusters. For comparison with experiment distance
matrices were down sampled to the same coverage in the experiment (window size 3Mb). B, The corresponding
average distance matrices of chromosomes from DNA-MERFISH experiments for each cluster. Shown are also the
average distance to the nearest speckle (SpD) in each cluster, the log fold ratio of the average distance to nearest
speckle (SpdRatio) in each cluster and the log fold ratio of the speckle association frequency (SafRatio) in each
cluster, all measured from DNA-MERFISH imaging3. Green and magenta shaded areas indicate coarse matches of
the varied SafRatio in predicted and experimental determined clusters. C, Selected representative examples of single
cell modeled structures and the corresponding downsampled version for chromosome structures for each cluster.
Matrices are calculated with window size 200kb. D, Average distance matrices and selected representative single cell
chromosome structures from DNA-MERFISH experiment for each cluster. In panels A, B, lower panel C and D
distance matrices are shown at 3Mb resolution (coverage in DNA MERFISH experiment); in upper panel C the
distance matrix is shown at 200 kb resolution. E, Matching probabilities indicating the similarities between distance
matrices of all classified single cell DNA-MERFISH chromosome structures against all modeled clusters. Note that
around 60% of the single cell structures are successfully classified and assigned to one of the modeled clusters. F,
Comparison of the cluster occupancy between the chromosome conformational clusters observed in our models and
corresponding chromosome conformational clusters from DNA-MERFISH experiments.
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Figure 4: Chromosome morphologies show preferences in nuclear locations A, Contact frequency matrices and
4 profiles of different structural properties for chromosome 6 in clusters 6 and 8. (Top panel) The structural variability
(δRAD) of chromosomal regions (Methods). Positive values in red indicate regions of high structural variability in the
ensemble of all structures. Negative regions in blue indicate regions with low structural variability in the ensemble.
(Second panel from top) SON TSA-seq predicted from genome structures in each cluster. Positive values indicate
shorted mean distances to nuclear speckles. (Third panel from top) SafRatio, log ratio of SAF calculated from
chromosomes in the cluster over SAF calculated from structures in the whole ensemble (Methods). (Fourth panel
from top) RadRatiocalculated from chromosomes in the cluster, RadRatio is defined as in Figure 2 and Methods.
(Fifth panel from top) Average contact frequency matrices calculated from structures in the cluster. The first five
panels show data for a zoomed-in genomic region in chromosome 6. The sixth and seventh panels from top show the
predicted cluster SON TSA-seq and cluster average contact frequency matrices for the full length chromosome 6.
The bottom panel shows selected representative structures for chromosome 6 in each cluster. Also indicated is
region II (genomic location (105-114 Mb)), which is discussed in the text. B, Distributions of the average radial
position and average speckle distances for a region II (genomic location: 105-114 Mb) in clusters 4, 6 and 8 as well
as the p-values of Welch’s t-test55 between two pairs of clusters. Differences between clusters of the radial positions
and average speckle distances are significant. C, Characteristic features for a chromosomal region spanning across
region II, which forms territory domain 3 in cluster 8 and the same region II in cluster 4. Shown are epigenetic marks
and other features for this sequence region. From the top to the bottom, the displayed features are chromosome
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sequence location, Hi-C subcompartments, refseq genes, H3K27ac, H3K4me1, H3K4me3, H3K9me2, H3K9me3,
H3K27me3, H4K20me1, and the ensemble structural variability (δRAD) calculated from all structural models. In
addition the following features are shown for the same regions calculated from cluster 8 and cluster 4: SON TSA-seq,
RgRatio and RadRatio (Definitions as in Figure 2 and 4, Methods). Also shown are lines that indicate the territory
domain in cluster 8 and corresponding domain boundaries that overlap with regions of reduced chromatin compaction
(RGRatio) (bd1 and bd2). For bd2 two alternative boundaries exist in the cluster (bd2 and bd2’). D, Illustration of
schematic features of a chromosome morphology with three territory domains. Shown are also nuclear bodies. bd
regions indicate domain boundaries that show increased decompaction of the chromatin fiber (i.e., RG) in comparison
to the ensemble average, and which allow the territory domain to loop towards the nuclear interior, while other
territory domains remain at the periphery.
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Figure 5: Comparison of inter-chromosomal proximity frequency map and associated features for
chromosomes in different clusters. A, (left panels) The average contact frequency matrices of chromosome 6
calculated from all structures in different clusters. Indicated by green boxes are also 4 genomic regions, whose
properties are discussed in the text. (Second panels from left) The average proximity frequency matrix between
structures of chromosome 6 and structure of all other chromosomes in the genome for different clusters (Methods),
(third panels from left) Inter-chromosomal proximity profile (IPP), defined as the total number of inter-chromosomal
contact proximities of a genomic region with any other chromosomal region of any chromosome divided by the total
number of genome structures in a cluster (Methods). The red line shows the genome-wide IPP profile calculated from
the whole ensemble of structures, while the blue line shows the IPP profiles calculated from the structures in each
cluster. (Forth panels from left) IppRatio, defined as the log ratio of IPP values in a cluster over the IPP value
calculated from the ensemble of all clustered structures. Each row of panels shows these properties calculated from
different clusters, namely clusters 4, 5 and 8. B, Ranking of the average IppRatios between chromosome 6 and the
other chromosomes in different clusters. Only the 7 top ranked chromosomes leading to the highest averaged
IPPRatio are shown. C, (top left panel) Interchromosomal proximity frequency map between chromosome 6 and
chromosome 2 calculated from structures in cluster 8 and (bottom left panel) and structures in cluster 4. (Top middle
panel) IPP profile of chromosome 6 considering interactions only to structures of chromosome 2 in cluster 8 and
(bottom middle panel) in cluster 4. (Top right panel) IppRatio profiles between chromosomes 6 and 2 in cluster 8 and
(Bottom right panel) in cluster 4. Also shown are representative structures of chromosome 6 and 2 in cluster 8 (top)
and cluster 4 (bottom).
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Figure 6: Assessment of predicted clusters by single-cell and single nucleus Hi-C data for chromosome 6. A,
The average contact frequency matrices of clusters 1, 4, 6, 7 and 8 calculated for predicted clusters. B, Average
contact frequency maps calculated from clustered sci-HiC contact maps10 imputed by convolution and random walk
with restart57. C, Matching probabilities indicating the similarities of all classified sci-HiC contact matrices against all
modeled clusters. D, Comparison of the cluster occupancy for clusters observed in our models and imputed sci-HiC
data. E, Selected examples of sn-HiC contact matrices36,37 imputed by Higashi27 for different clusters.
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Figure 7: Comparative analysis of predicted clusters of chromosome 6 from genome structures of GM12878,
H1-hESC and HFFc6 cells. A, The contact frequency matrices of the 8 predicted clusters of chromosome 6 in
GM12878 cells. B, The contact frequency matrices of the predicted clusters of chromosome 6 in H1-hESC cells.
Clusters 5 and 7 were not observed in H1-hESC cells and are indicated by "N/A". C, The contact frequency matrices
of the predicted clusters of chromosome 6 in HFFc6 cells.
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Clusters Average Radial Position

2 2.71e-05

3 4.06e-12

4 8.09e-18

5 1.02e-03

6 6.17e-09

7 9.71e-05

8 2.14e-02

Table 1: P-values of the two-sample t-test (Welch’s t-test)55 between cluster 1 and the other clusters of Chr6
on average radial position of region I (24-48 Mb)
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Clusters Average Radial Position Average Speckle Distance

1 9.67e-11 4.21e-09

2 4.95e-17 4.43e-09

3 6.95e-22 3.02e-15

4 1.69e-34 7.18e-26

5 5.09e-05 5.37e-03

6 1.04e-09 2.36e-06

7 2.33e-10 1.88e-05

Table 2: P-values of the two-sample t-test (Welch’s t-test)55 between cluster 8 and the other clusters of Chr6
on average radial position and average speckle distance of region II (105-114 Mb)
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Methods

Population-based modeling
We used ensemble Hi-C data with the Integrative Genome Modeling (IGM) platform11 to

generate one 10,000 whole genome structure population for HFFc6 (raw Hi-C data from 4DN

Data Portal, accession code 4DNES2R6PUEK60) and H1-hESC (raw Hi-C data from 4DN Data

Portal, accession code 4DNES2M5JIGV60) cell lines, and used a previously generated and

analyzed 10,000 structure population for GM1287813.

IGM simulates a population of structures that is compatible with the available ensemble Hi-C

data by optimizing the positions of the chromatin regions. Let denote a diploid𝑿
𝑠

= {𝒙
1𝑠

,  …,  𝒙
𝑁𝑠

}

whole genome structure of regions, being the Cartesian coordinates of the th𝑁 𝒙
1𝑠

∈ ℝ3 𝑖

genomic region. A population of structures is defined as a collection of such structures𝑆

. Also, let denote the Hi-C contact probability matrix, so that𝑿 = {𝑿
1 

, ...,  𝑿
𝑆 

} 𝑨 = 𝑎
𝐼𝐽( )

𝐻×𝐻

indicates the probability that two unphased loci and ( ) are in contact.0 ≤ 𝑎
𝐼𝐽

≤1 𝐼 𝐽 𝐼,  𝐽∈{1,  …,  𝐻}

In the following, we will denote with (lowercase) and the two copies associated with𝑖 𝑖'

unphased region (uppercase). Our genome simulation approach numerically approximates the𝐼

solution to the optimization problem , where is the probability that a𝑿
^

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑿

𝑃 𝑨|𝑿( ) 𝑃 𝑨|𝑿( )

population of structures reproduces the input contact matrix 𝑨. However, this poses major𝑿

difficulties: first of all, it is an extremely highly dimensional maximization problem. Second, the

input data does not provide information on which contacts coexist within the same structure in𝐴  

the population and, since it is unphased, does not specify which alleles in the representation

(either or , or ) are actually in contact. In order to account for this missing information, we𝑖 𝑖' 𝑗 𝑗'

introduce an indicator tensor , such as indicates that loci𝑾 = 𝑤
𝑖𝑗𝑠( )

𝑁×𝑁×𝑆
,  𝐻 ≤ 𝑁 𝑤

𝑖𝑗𝑠
= 1(0) 𝑖

and are (not) in contact in diploid structure s-th. It is then essential to jointly optimize both𝑗 𝑿

and variables, i.e.𝑾

.𝑿
^

,  𝑾
^

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑿, 𝑾

𝑃 𝑨,  𝑾|𝑿( )

We adapted a hard Expectation-Maximization algorithm that uses a series of numeric strategies

for efficient and scalable model estimation to tackle such a daunting task. We first initialize the

chromatin structures in random territories, and then we start an iterative optimization, where 𝑾
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and are alternatively optimized. Each iteration consists of one Assignment step (A-step),𝑿

where a given subset of contacts from the input Hi-C matrix are optimally allocated across the

structures ( is optimized), and a Modeling Step (M-step) where the structure coordinates are𝑾

optimized using Simulated Annealing Molecular Dynamics and Conjugate Gradient ( is𝑿

optimized). Additional batches of chromatin contacts are gradually added in each iteration, so

as to improve and facilitate overall convergence. Upon convergence, a population of𝑿
^

single-cell whole genome structures are available, which are statistically consistent with the

input ensemble Hi-C matrix , and also predict a number of orthogonal observables. More𝑨

details on IGM formulation and implementation can be found in Boninsegna et al.11 and Tjong et

al.,43.

Preliminary raw Hi-C datasets preprocessing into a 200k base pair resolution contact probability

matrix was accomplished by following the protocol detailed in Yildirim et al.13.

Genome representation
Chromosomes are represented in our models as homopolymer chains of monomers at 200-kb

base-pair resolution, so that the full diploid genome is represented with N=30,332 monomers for

GM12878 and N=29,838 for both H1-hESC and HFFc6. Each 200-kb chromatin region is

modeled as a sphere of radius around in all cell lines, so that the ratio of the𝑅
𝑏𝑒𝑎𝑑

= 118 𝑛𝑚

genome volume to the nuclear volume is 0.413,43. The nuclei for GM12878 and H1-hESC are

modeled as spheres of radius 13,43. The nucleus for HFFc6 is modeled as an𝑅
𝑛𝑢𝑐

= 5, 000 𝑛𝑚

ellipsoid of semiaxes 11.𝑎, 𝑏, 𝑐( ) = (7, 840 𝑛𝑚,  6, 470 𝑛𝑚,  2, 450 𝑛𝑚)

Two-step dimension reduction
The basic aim of this study is selecting representative single cell structures from our population

and studying their significance. Multiple features of a single cell structure can be extracted and

calculated, such as contact matrix and distance matrix, which can be further calculated as a

feature vector. Due to the high dimension of the feature vector of our 200kb model, direct

classification of these feature vectors is unrealistic. We here introduce the two-step dimension

reduction that preserves both efficiency and accuracy during the dimension reduction.

Removal of unrestrained beads
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For each single structure, we remove those beads that are not restrained. All beads remaining

in the structure belonging to the “domain” category (not centromeres or telomeres) are

considered to construct the distance matrix, while beads belonging to “cen” (centromeres or

telomeres) are removed.

Input distance matrix

The distance matrix of chromosomal structure s is calculated by the𝑫(𝑠) = (𝑑
𝑖𝑗
(𝑠))

surface-to-surface distance between bead and bead :𝑖 𝑗

𝑑
𝑖𝑗
(𝑠) = ‖𝐱

𝑖𝑠
− 𝐱

𝑗𝑠
‖

2
− 2𝑅

𝑏𝑒𝑎𝑑

where and are the 3D coordinates of bead and bead in structure s and is the𝐱
𝑖𝑠

𝐱
𝑗𝑠

𝑖 𝑗 𝑅
𝑏𝑒𝑎𝑑

bead radius in our model. is set to be 0 if . The matrix is then applied normalization to𝑑
𝑖𝑗
(𝑠) 𝑖 = 𝑗

ensure the maximum entry in the matrix is 1 (dropping the structure superscript s):

𝑑
𝑖𝑗
' =

𝑑
𝑖𝑗

 𝑚𝑎𝑥
𝑘, 𝑙

 𝑑
𝑘𝑙

 

Due to the size of the layers in the convolutional autoencoder, the input matrix is then resized to

multiples of 50 by bilinear interpolation so that the size of the input matrix matches the

reconstructed output matrix by the autoencoder.

Convolutional autoencoder

Convolutional autoencoders are frequently used in image classification. In this study, we regard

each input distance matrix as an image, which is then regarded as the input of the input layer.

The autoencoder consists of an encoder and a decoder, where the input distance matrix is the

input of the encoder while the latent matrix is the output. The latent matrix is then used as the

input of the decoder to generate the final output. We perform 15 epochs with batch size 200 to

train the autoencoder after shuffling the input dataset. The autoencoder is implemented by the

python package keras https://github.com/keras-team/keras.

Convolutional layer

A convolutional layer performs convolution operation to an original input over each window and

constructs a new output. We use three convolutional layers in the encoder and four

convolutional layers in the decoder. In the encoder, the first layer has 16 filters with a kernel with

size . The next two layers each have 8 filters with a kernel with size and 4(10,  10) (10,  10)
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filters with a kernel with size . We use the ReLU activation function to process the(10,  10)

output of each convolutional layer:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0,  𝑥) 

 

In the decoder, the first layer has 4 filters with a kernel with size . The next two layers(10,  10)

each have 8 filters with a kernel with size and 16 filters with a kernel with size .(10,  10) (10,  10)

We use the ReLU activation function to process the output of these convolutional layers. To

generate the output, the last convolutional layer uses 1 filter with a kernel with size , we(10,  10)

use the sigmoid activation function to ensure that the values in the final output matrix are

located between 0 and 1:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+𝑒−𝑥

For each convolutional layer, we use the stride size and the same padding size to ensure(1,  1)

the output has the same height and width as the input.

Max pooling layer

A max pooling layer is used to downsample an original input by calculating the maximum value

in each window and generate a new value. We use three max pooling layers in the encoder. The

first two layers have a pooling window with size . The last layer has a pooling window with(5,  5)

size . We use the same padding size for each max pooling layer to generate the output.(2,  2)

The stride size is the same as the window size for each layer.

Upsampling layer

An upsampling layer is used to up sample an original input by filling each window with the

corresponding value. We use three upsampling layers in the decoder. The first layer has a

sampling window with size and the next two layers have a sampling window with size(2,  2)

.(5,  5)

Latent vector

The latent vector is generated by directly flattening the latent matrix. We then use standard

normalization to normalize the whole set of latent vectors to ensure that each dimension

of the set of new vectors has mean 0 and standard deviation 1:𝐱
𝑙
' = (𝑥

𝑙1
' ,  𝑥

𝑙2
' ,  ..,  𝑥

𝑙𝑁
' )

𝑥
𝑙𝑖
' =

𝑥
𝑙𝑖

−𝑥
𝑙
 

σ
𝑙
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where and is the mean and the standard deviation of each dimension𝑥
𝑙

σ
𝑙

𝐱
𝑙

= (𝑥
𝑙1

,  𝑥
𝑙2

,  ...,  𝑥
𝑙𝑁

)

of the set of original vectors. is the size of the training set.𝑁

Mean squared error

We use the mean squared error (MSE) to calculate the loss between the input matrix and𝑴𝑖𝑛𝑝𝑢𝑡

the output matrix , which is the mean Euclidean distance between the input matrix and𝑴𝑜𝑢𝑡𝑝𝑢𝑡

the output matrix of the training dataset:

𝑀𝑆𝐸 = 1
𝑁

𝑖=1

𝑁

∑ ‖𝑴
𝑖
𝑖𝑛𝑝𝑢𝑡 − 𝑴

𝑖
𝑜𝑢𝑡𝑝𝑢𝑡 ‖

2

2

where is the size of the training set.𝑁

Optimizer

We use an optimizer that applies the Adadelta algorithm61 to train the autoencoder. In

comparison with other gradient descent methods, this method does not require setting of the

learning rate parameter and is relatively more robust.

T-distributed stochastic neighbor embedding

T-distributed stochastic neighbor embedding (t-SNE) is a robust and nonlinear dimension

reduction method47. By using proper probability distributions and to measure𝑷 = (𝑝
𝑖𝑗

) 𝑸 = (𝑞
𝑖𝑗

)

similarities between data points in both the original space and the lower dimensional space. The

method facilitates the embedding by minimizing the Kullback–Leibler divergence62 between the

two distributions by:

𝐾𝐿(𝑷||𝑸) =
𝑖≠𝑗
∑ 𝑝

𝑖𝑗
𝑙𝑜𝑔

𝑝
𝑖𝑗

𝑞
𝑖𝑗

We set the dimension of the embedded space to be 2, the perplexity to be 200 and the learning

rate to be 1,000.

Principal component analysis

Principal component analysis (PCA) is a frequently used dimension reduction method which

computes the principal components of the data. The method uses singular value decomposition

(SVD) of the covariance matrix to construct principal components which are then used to find

embedded data points in the lower dimensional space. The dimension of the embedded space

is set to be 2.
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Multidimensional scaling

Classical multidimensional scaling (MDS), which is also known as Principal Coordinates

Analysis (PCoA), is another nonlinear dimension reduction48. The classical MDS transforms

pairwise distances between data points into dissimilarities and minimizes a cost function. We

use Euclidean distances as dissimilarity measurement. The dimension of the embedded space

is set to be 2.

Locally linear embedding

Unlike PCA which projects data points in a linear way, locally linear embedding (LLE) is a

nonlinear dimension reduction technique49. The method can be viewed as a collection of local

PCA which preserves distances within each local neighborhood graph. The dimension of the

embedded space is set to be 2.

Isomap

Isomap, which is also a nonlinear dimension reduction method, is an extended version of

MDS50. Specifically, the method uses geodesic distances of each local neighborhood graph as

similarity measurement before performing MDS. The dimension of the embedded space is set to

be 2.

Spectral embedding

Spectral embedding (SE) is another nonlinear dimension reduction method51. The method uses

eigenvectors of the Laplactian matrix to construct embedded data points in the lower

dimensional space. The dimension of the embedded space is set to be 2. All embedding listed

above including t-SNE, PCA, MDS, LLE, Isomap and SE are performed by the python package

sklearn63.

UMAP

Uniform Manifold Approximation and Projection (UMAP) uses knowledge of algebraic topology

and simplicial complexes to perform dimension reduction52. The method is an increasingly

frequently used nonlinear dimension reduction method which is often used to compete with

t-SNE. UMAP is performed by the python package umap-learn52. We set the dimension of the

embedded space to be 2 and the learning rate to be 1.0.

Peak detection
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In the 2D embedded conformational space, every data point represents a single structure. The

structures that are closed with each other in 2D distance are more likely to have similar

conformations. The next step is to sample part of the data points which are representative from

the 2D distribution.

Outlier removal

To remove outlier data points, we first calculate a pairwise distance matrix of all data points. We

then generate the total distance between each data point and all the other data points by

calculating the row sum of each row. The data points that have extreme total distances are

removed by the 3-sigma rule. We only select data points whose row sums are within 3-sigma

range , where and is the mean and the standard deviation of the row(𝑠
𝑙

− 3σ
𝑙
,  𝑠

𝑙
+ 3σ

𝑙
) 𝑠

𝑙
σ

𝑙

sum vector .𝑠
𝑙

Kernel density estimation

Then we use bivariate kernel density estimation to calculate the probability density function of

the distribution. Given a 2D independent and identically distributed sample

, each point can be we are able to find a density function so that this set𝑿 = (𝐱
1
,  𝐱

2
,  𝐱

3
,...,  𝐱

𝑁
) 𝑝

of data points is sampled directly from a distribution with joint probability density function :𝑝

𝑝 𝐱( ) = |𝐇|
− 1

2

𝑁
𝑖=1

𝑁

∑ 𝐾(𝐇
− 1

2 (𝐱 − 𝐱
𝑖
))

where . We choose to be the gaussian kernel. The bandwidth is estimated by𝐱
𝑖

= (𝑥
𝑖1

,  𝑥
𝑖2

)𝑇 𝐾 𝐇

Scott’s Rule64. The resulting 2D density measures how data points are distributed in the

conformation space. Each local maximum of the 2D density is defined as a peak, which is a

representative conformation.

Grid approximation

We use a grid to approximate probability density function and generate a(1000,  1000) 𝑮 𝑝 𝐱( )

2D density matrix . The grid is constructed with the minimum value and the maximum value of𝑷

each of the two dimensions and :𝑥
𝑖1

𝑥
𝑖2

𝑮 = 𝑚𝑖𝑛
𝑖
 𝑥

𝑖1
,  𝑚𝑎𝑥

𝑖
 𝑥

𝑖1
 ( ),  𝑚𝑖𝑛

𝑖
 𝑥

𝑖2
,  𝑚𝑎𝑥

𝑖
 𝑥

𝑖2
 ( ){ }

1000×1000

We then calculate the density value by the probability density function at each grid point𝑝 𝑥( )

and construct the density matrix :𝑷 = (𝑝
𝑖𝑗

)
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𝑝
𝑖𝑗

= 𝑝 𝑮(𝑖,  𝑗)( )

Maximum filter

A local maximum is an entry that is larger than all its 8 neighbors in the 2D density matrix . To𝑃

avoid selecting multiple local maxima in a small area, however, we compare each entry with a

larger range of its neighborhood. A maximum filter with size is applied to matrix to(5,  5) 𝑃

generate another matrix . We then use exclusive disjunction (XOR) to generate matrix𝑷' = (𝑝
𝑖𝑗
' )

by comparing and :𝑸 = (𝑞
𝑖𝑗

) 𝑷 𝑷'

𝑞
𝑖𝑗

= 𝐼
𝑝

𝑖𝑗
=𝑝

𝑖𝑗
'  ⨁ 𝐼

𝑝
𝑖𝑗

=0

where is the indicator function which equals 1 when is true. The entries in matrix with𝐼
𝐴

𝐴 𝑄

value 1 are detected as local maxima or peaks.

Cluster analysis
Boundary estimation by watershed
Considering each local maximum, we use a watershed-like approach to simulate the cluster

boundary around it. We first create a density gradient with 100 levels ranging from 0 to the

largest density in the 2D density matrix . A set of contour lines which are polygons formed by𝑃

grid points gradually change (shrink) over the density gradient. The change terminates when

there is a contour in the set containing only the target local maximum, which results in our target

contour line that contains only the corresponding maximum. All points surrounded by the

contour line are then considered as the cluster members of the corresponding maximum. A

cluster is not considered if it contains fewer than 100 members.

Contact frequency matrix construction

By selecting a certain number of neighbors around each peak, we are able to construct a

contact frequency matrix for each peak. We estimate a path (polygon) surrounding each peak

based on density. We then select all points inside the polygon as a cluster that corresponds to

the peak. To calculate the contact frequency matrix for structure , we say beads i and j𝑪𝑴(𝑎) 𝑎

are in contact is structure (i.e., ) if and only if:𝑎 𝑐𝑚
𝑖𝑗

(𝑎) = 1

‖𝐱
𝑖𝑎 

− 𝐱
𝑗𝑎

‖
2
≤ 3𝑅

𝑏𝑒𝑎𝑑
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where and are the 3D coordinates of bead or bead . is the bead radius in our𝐱
𝑖𝑎 

𝐱
𝑗𝑎 

𝑖 𝑗 𝑅
𝑏𝑒𝑎𝑑

model. The contact frequency matrix for cluster , is calculated by the sum of all contact𝐴 𝑪𝑴(𝐴),  

matrices in the cluster:

𝑪𝑴(𝐴) =
𝑎ϵ𝐴
∑ 𝑪𝑴(𝑎)

The contact frequency matrix for all structures that are classified to a cluster is calculated as:

𝑪𝑴(𝐸𝑛𝑠) =
𝑎ϵ𝑆
∑ 𝑪𝑴(𝑎)

where is the set of clustered structures. To enhance off-diagonal contacts, we visualize all𝑆

contact frequency matrices from the models by applying transformation . All color𝑙𝑜𝑔
2
(𝑐𝑚

𝑖𝑗
+ 1)

bars shown together with contact frequency matrices in the figures show a ratio with regards to

the maximum value.

Average distance matrix construction

Similarly to the construction of a contact frequency matrix, we can also construct an average

distance matrix for each cluster. Each entry of the distance matrix for structure is𝑑𝑚
𝑖𝑗
(𝑎) 𝑫𝑴(𝑎) 𝑎

calculated by the Euclidean distance between bead and bead :𝑖 𝑗

𝑑𝑚
𝑖𝑗
(𝑎) = ‖𝐱

𝑖𝑎 
− 𝐱

𝑗𝑎
‖

2

where and are the 3D coordinates of beads and . is set to be 0 if the entry is at𝐱
𝑖𝑎 

𝐱
𝑗𝑎

𝑖 𝑗 𝑑𝑚
𝑖𝑗
(𝑎)

the diagonal. After min-max normalization of each distance matrix, the average matrix for cluster

(which we will denote as ) is calculated by the average of all matrices in the cluster:𝐴 𝑫𝑴(𝐴)

𝑫𝑴(𝐴) = 1
𝑆

𝐴 𝑎ϵ𝐴
∑ 𝑫𝑴(𝑎)

where is the number of structures in cluster . All color bars shown together with average𝑆
𝐴 

𝐴

distance matrices in the figures show a ratio with regards to the maximum value.

Dissimilarity measurement

Euclidean distance dissimilarity
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We first construct two flattened distance matrices and for structure and structure .𝑹 𝑎( ) 𝑹 𝑏( ) 𝑎 𝑏

Each matrix contains Euclidean distances between all possible pairs of beads in each structure.

The Euclidean distance between these two structures is further calculated by:𝑠
𝑒
(𝑎𝑏)

𝑠
𝑒
(𝑎𝑏) = ‖𝑹 𝑎( ) − 𝑹 𝑏( )‖

2

Then the final Euclidean distance dissimilarity between cluster and cluster is the average𝐴 𝐵

value of all possible pairs between these two clusters:

𝑠
𝑒
(𝐴𝐵) = 1

𝑀
𝑎ϵ𝐴,  𝑏ϵ𝐵

∑ 𝑠
𝑒
(𝑎𝑏)

where is the total number of pairs between the two clusters. To compare inter-cluster𝑀

dissimilarity and intra-cluster dissimilarity, we normalize by the intra-cluster dissimilarity of𝑠
𝑒
(𝐴𝐵)

cluster :𝐴 𝑠
𝑒
(𝐴𝐴)

𝑟𝑠
𝑒
(𝐴𝐵) = 𝑙𝑜𝑔

2

𝑠
𝑒
(𝐴𝐵)

𝑠
𝑒
(𝐴𝐴)  

Gaussian dissimilarity

The calculation of Gaussian dissimilarity is adapted from Eastwood and Wolynes54 and Cheng

et al32, which is an alternative way to compare pairwise distances between two structures. After

generating and which are the Euclidean distances between bead and bead for both𝑑
𝑖𝑗
𝑎( )  𝑑

𝑖𝑗
𝑏( ) 𝑖 𝑗

structure a and structure b, the Gaussian dissimilarity is calculated by:𝑠
𝑔
(𝑎𝑏)

𝑠
𝑔
(𝑎𝑏) = 1 − 1

𝑁
𝑖<𝑗
∑ 𝑒𝑥𝑝 (−

(𝑑
𝑖𝑗
𝑎( ) − 𝑑

𝑖𝑗
𝑏( ))

2

2σ2 )

where the scaling factor and is the bead radius in our model. is the totalσ = 8𝑅
𝑏𝑒𝑎𝑑

𝑅
𝑏𝑒𝑎𝑑

𝑁

number of pairs of beads in the structure. Similarly, the final Gaussian dissimilarity between

cluster and cluster is the average value of all possible pairs between these two clusters:𝐴 𝐵

𝑠
𝑔
(𝐴𝐵) = 1

𝑀
𝑎ϵ𝐴,  𝑏ϵ𝐵

∑ 𝑠
𝑔
(𝑎𝑏)
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where is the total number of pairs between the two clusters. To compare inter-cluster𝑀

dissimilarity with intra-cluster dissimilarity, we normalize by the intra-cluster dissimilarity of𝑠
𝑔
(𝐴𝐵)

cluster :𝐴 𝑠
𝑔
(𝐴𝐴)

𝑟𝑠
𝑔
(𝐴𝐵) = 𝑙𝑜𝑔

2

𝑠
𝑔
(𝐴𝐵)

𝑠
𝑔
(𝐴𝐴)  

Due to computational complexity, we randomly select 200 structures from each cluster to

compute the similarities above.

Wasserstein distance dissimilarity

We calculate both intra-cluster dissimilarity and inter-cluster dissimilarity by distance

measurement to compare low intra-cluster dissimilarity with high inter-cluster dissimilarity. The

Wasserstein distance measures the dissimilarity between two probability distributions𝑊 𝑢,  𝑣( ) 𝑢

and by:𝑣 

𝑊 𝑢,  𝑣( ) =
−∞

+∞

∫ 𝑈 − 𝑉| |𝑑𝑠

where and are the cumulative probability distributions of and 53. To measure dissimilarity𝑈 𝑉 𝑢 𝑣

between two clusters of structures, for each pair of bead and bead , we obtain the 1D𝑖 𝑗

probability distributions for the distances between pair and in cluster and the distances𝑖 𝑗  𝐴 𝑑
𝑖𝑗
𝐴( )

between pair and in cluster , which are then used to calculate the Wasserstein distance𝑖 𝑗  𝐵 𝑑
𝑖𝑗
𝐵( )

of these two distributions. The final dissimilarity is obtained by averaging the Wasserstein𝑠
𝑤
(𝐴𝐵)

distances of all possible pairs:

𝑠
𝑤
(𝐴𝐵) = 1

𝑁
𝑖<𝑗
∑ 𝑊(𝑑

𝑖𝑗
𝐴( ),  𝑑

𝑖𝑗
𝐵( ))

where is the total number of pairs of beads in the structure. For intra-cluster dissimilarity, we𝑁

randomly sample a subcluster with size and indices which is then used to calculate the final𝑀
2 𝑖

dissimilarity with its reverse subcluster with indices , where is the number of(𝑀 − 𝑖 − 1) 𝑀

structures in cluster . For inter-cluster dissimilarity, we directly apply the method above. To𝐴

compare inter-cluster dissimilarity with intra-cluster dissimilarity, we normalize by the𝑠
𝑤
(𝐴𝐵)

intra-cluster dissimilarity of cluster :𝐴 𝑠
𝑤
(𝐴𝐴)
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𝑟𝑠
𝑤
(𝐴𝐵) = 𝑙𝑜𝑔

2

𝑠
𝑤
(𝐴𝐵)

𝑠
𝑤
(𝐴𝐴)  

Proximity frequency map

The calculation of a proximity frequency map is similar to the calculation of a contact frequency

matrix. We select a larger range to visualize inter-chromosomal contact patterns. To calculate

the proximity frequency map for structure , we define the -th bead and the -th bead in𝑷𝑴(𝑎) 𝑎 𝑖 𝑗

structure forms a contact (i.e., ) if and only if:𝑎 𝑝𝑚
𝑖𝑗

(𝑎) = 1

‖𝐱
𝑖𝑎

− 𝐱
𝑗𝑎

‖
2
≤ 𝑅

𝑠𝑜𝑓𝑡

where or are the 3D coordinates of bead or bead . We set . The𝐱
𝑖𝑎

𝐱
𝑗𝑎 

𝑖 𝑗 𝑅
𝑠𝑜𝑓𝑡

= 2, 000 𝑛𝑚

proximity frequency map for cluster is calculated as:𝐴 𝑷𝑴(𝐴)

𝑷𝑴(𝐴) = 1
𝑆

𝐴 𝑎ϵ𝐴
∑ 𝑷𝑴(𝑎)

where is the number of structures in cluster . The inter-chromosomal parts of each map are𝑆
𝐴

𝐴

shown as the average of both homologous copies, while the intra-chromosomal part is

calculated from the target chromosome copy only.

Structural features prediction

Radial position (RAD)

The radial position of a chromatin region in structure in a spherical nucleus (as GM12878) is𝑖 𝑠

calculated as:

𝑟
𝑖
(𝑠) =

‖𝐱
𝑖𝑠

‖
2

𝑅
𝑛𝑢𝑐

where is the the 3D coordinates of bead in structure s, and is the nucleus radius which𝐱
𝑖𝑠

𝑖 𝑅
𝑛𝑢𝑐

is 5 μm. means the region is at the nuclear center while means it is located at𝑟
𝑖
(𝑠) = 0 𝑖 𝑟

𝑖
(𝑠) = 1

the nuclear surface. The average radial position (RAD) of cluster is the average of radial𝐴

positions of all structures in this cluster:

𝑟
𝑖
(𝐴) = 1

𝑆
𝐴 𝑎∈𝐴

∑ 𝑟
𝑖
(𝑎)
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where is the number of structures in cluster . To compare against the ensemble profile, we𝑆
𝐴

𝐴

use a log ratio comparison to show the difference. The log ratio of cluster radial position𝐴

against the ensemble one (RadRatio) is calculated as:

𝑟𝑟
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑟
𝑖
(𝐴)

𝑟
𝑖
(𝐸𝑛𝑠)    

where the ensemble radial position is calculated in the same way, but for all structures that are

classified to any cluster. Similarly, we can calculate all following structural features with the

superscript.(𝐸𝑛𝑠)

Radius of gyration (RG) (i.e., local chromatin fiber decompaction).

The local compaction of the chromatin fiber at the location of a given locus is estimated by the

radius of gyration for a 1 Mb region centered at the locus. To estimate the values along an entire

chromosome we use a sliding window approach over all chromatin regions in a chromosome.

The radius of gyration for a 1 Mb region centered at locus in structure , is calculated as:𝑖 𝑎

𝑟𝑔
𝑖
(𝑎) =

𝑗=1

5

∑ 𝑑
𝑗
2

where is the distance between the chromatin region to the center of mass of the 1-Mb𝑑
𝑗

𝑗

region. The average radius of gyration (RG) of cluster is the average of radial positions of all𝐴

structures in this cluster:

𝑟𝑔
𝑖
(𝐴) = 1

𝑆
𝐴 𝑎∈𝐴

∑ 𝑟𝑔
𝑖
(𝑎)

where is the number of structures in cluster . Similarly, the log ratio of cluster radius of𝑆
𝐴

𝐴 𝐴

gyration against the ensemble one (RgRatio) is calculated as:

𝑟𝑟𝑔
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑟𝑔
𝑖
(𝐴)

𝑟𝑔
𝑖
(𝐸𝑛𝑠)    

For the overall compactness of the conformation, we use all the beads to calculate the radius of

gyration for structure :𝑎

𝑟𝑔(𝑎) =
𝑗=1

𝑁

∑ 𝑑
𝑗
2

where is the total number of beads in the structure, is the distance between the chromatin𝑁 𝑑
𝑗

region to the center of mass of the whole structure.𝑗
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Structural variability (δRAD)

The structural variability (δRAD) of region in cluster is calculated as:𝑖 𝐴

𝑠𝑣
𝑖
(𝐴) = 𝑙𝑜𝑔

2

σ
𝑖
(𝐴)

σ(𝐴) 
   

where is the standard deviation of the population of radial positions of region in clusterσ
𝑖
(𝐴) 𝑖 𝐴

and is the mean standard deviation calculated from all regions within the same chromosomeσ(𝐴)

of the target region. Positive values ( ) result from high cell-to-cell variability of radial𝑠𝑣
𝑖
(𝐴) > 0

position, whereas negative values ( ) indicate low variability. The log ratio of cluster𝑠𝑣
𝑖
(𝐴) < 0 𝐴

structural variability against the ensemble one (δRadRatio) is calculated as:

𝑟𝑠𝑣
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑠𝑣
𝑖
(𝐴)

𝑠𝑣
𝑖
(𝐸𝑛𝑠)   

Building chromatin interaction networks

A chromatin interaction network (CIN) is calculated for each model and for chromatin in each

subcompartment separately as follows: Each vertex represents a 200-kb chromatin region. An

edge between two vertices , is drawn if the corresponding chromatin regions are in physical𝑖 𝑗

contact in the model if the spatial distance , where is the bead radius in our𝑑
𝑖𝑗

≤4𝑅
𝑏𝑒𝑎𝑑

𝑅
𝑏𝑒𝑎𝑑

model.

Identifying spatial partitions by Markov clustering

Spatial partitions of subcompartments as well as regions in A compartment with low and high

structural variability are identified by applying Markov Clustering Algorithm (MCL)65, a graph

clustering algorithm, which identifies highly connected subgraphs within a network. MCL

clustering is performed for each subcompartment subgraph in each structure by using the MCL

tool in the MCL-edge software65. The 25% smallest subgraphs (with less than 7 nodes) are

discarded from further analysis to focus on highly connected subgraphs. Speckle locations are

identified as the geometric center of A1 subgraphs identified by Markov clustering of A1

subgraphs. In each structure, A1 subgraphs are considered with size larger than 3 nodes.

Speckle distance (SpD)
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The speckle distance (SpD) for region is calculated by measuring the distance between the𝑖

surface of each chromatin region to the nearest speckle:𝑖

𝑠𝑑
𝑖
(𝐴) = 1

𝑆
𝐴 𝑎ϵ𝐴

∑ 𝑑
𝑖𝑙
(𝑎) 

where is the number of structures in cluster , is the distance between the region and𝑆
𝐴

𝐴 𝑑
𝑖𝑙
(𝑎) 𝑖

the predicted nearest nuclear body location . The log ratio of cluster speckle distance against𝑙 𝐴

the ensemble one (SpdRatio) is calculated as:

𝑟𝑠𝑑
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑠𝑑
𝑖
(𝐴)

𝑠𝑑
𝑖
(𝐸𝑛𝑠)   

Speckle TSA-seq (SON TSA-seq)

Speckle TSA-seq can be viewed as an average over distances to all speckles. To predict

TSA-seq signals for speckle from our models, we use the following equation:

𝑠𝑔
𝑖
(𝐴) = 1

𝑆
𝐴 𝑎ϵ𝐴

∑
𝑙=1

𝐿

∑ 𝑒
−𝑘𝑑

𝑖𝑙
(𝑎)

where is the number of structures in cluster , is the number of predicted speckle locations𝑆
𝐴

𝐴 𝐿

in structure , is the distance between the region and the predicted nuclear body location ,𝑎 𝑑
𝑖𝑙
(𝑎) 𝑖 𝑙

and is the estimated decay constant in the TSA-seq experiment45 which is set to 4 in our𝑘

calculations. The normalized TSA-seq signal for region then becomes:𝑖

𝑡𝑠
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑠𝑔
𝑖
(𝐴)

𝑠𝑔(𝐴)
 

where is the mean signal calculated from all regions in the genome. The predicted𝑠𝑔(𝐴)

speckles are used for distance calculations. The log ratio of cluster speckle TSA-seq against𝐴

the ensemble one (SON TSA-seq Ratio) is calculated as:

𝑟𝑡𝑠
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑡𝑠
𝑖
(𝐴)

𝑡𝑠
𝑖
(𝐸𝑛𝑠)   

Speckle association frequency (SAF)

For a given 200-kb region, the association frequency to the speckle (SAF) is calculated as:

𝑠𝑎𝑓
𝑖
(𝐴) =

𝑛
𝑑

𝑖
<𝑑

𝑡

𝑆
𝐴

45
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where is the number of structures in cluster , is the number of structures, in which𝑆
𝐴

𝐴 𝑛
𝑑

𝑖
<𝑑

𝑡

region have a distance to the speckle smaller than the association threshold . We set to𝑖 𝑑
𝑡

𝑑
𝑡

be 1,000 nm for the model and 500 nm for the DNA-MERFISH dataset3. For SAF calculation, we

use the predicted speckle to calculate distances (see Identifying spatial partitions by Markov

clustering), where we calculate distances from the surface of the region to the center-of-mass of

the partition. The log ratio of cluster SAF against the ensemble one (SafRatio) is calculated𝐴

as:

𝑟𝑠𝑎𝑓
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑠𝑎𝑓
𝑖
(𝐴)

𝑠𝑎𝑓
𝑖
(𝐸𝑛𝑠)    

Inter-chromosomal proximity profile (IPP)

The calculation of inter-chromosomal proximity profile (IPP) is based on the proximity frequency

map. For a given 200-kb region, the process is similar to the calculation of speckle association

frequency, but we replace the distance to the smallest speckle by the contact with any

inter-chromosomal regions which can be chromosome-wide or genome-wide:

𝑖𝑝𝑝
𝑖
(𝐴) =

𝑛
𝑑

𝑖
≤𝑅

𝑠𝑜𝑓𝑡

𝑆
𝐴

where is the number of structures in cluster , is the total number of contacts, in𝑆
𝐴

𝐴 𝑛
𝑑

𝑖
≤𝑅

𝑠𝑜𝑓𝑡

which region is within contact range with any target inter-chromosomal𝑖 𝑅
𝑠𝑜𝑓𝑡

= 2, 000 𝑛𝑚

regions from the same genome structure. Every IPP is shown as the average of both

homologous copies. The log ratio of cluster IPP against the ensemble one (IppRatio) is𝐴

calculated as:

𝑟𝑖𝑝𝑝
𝑖
(𝐴) = 𝑙𝑜𝑔

2

𝑖𝑝𝑝
𝑖
(𝐴)

𝑖𝑝𝑝
𝑖
(𝐸𝑛𝑠)    

When calculating the average IppRatio of a chromosome, we calculate the mean of

chromosome-wide IppRatios of the chromosome.

Histone modification signals and reference genes

We collected histone modification signals including H3K27ac, H3K4me1, H3K4me3, H3K9me3,

H3K27me3 and H4K20me1 for GM12878 and H3K9me2 for GM23338 from the ENCODE66.

The reference genes file for hg38 was downloaded from the UCSC Genome Browser67. All
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related signals and genes together with other structural features are shown by the Integrative

Genomics Viewer (IGV)68.

Cluster assessment with experimental single cell data

Single cell Hi-C assessment

Sci-HiC dataset

We collected multiple sci-HiC datasets of GM12878 from the 4DN data portal

(4DNESUE2NSGS)10. Each dataset consists of single cell sequencing data of thousands of cells

and we collected more than 11,000 single cells in total. A systematic way of massively

demultiplexing single cell Hi-C is discussed in Ramani et al10 which applies combinatorial

cellular indexing to chromosome conformation capture. We use the provided pipeline to process

all collected sci-HiC datasets. Due to the large number of missing contacts, it is necessary for us

to preprocess the datasets to reconstruct missing information. We adapt the preprocessing

method from Zhou et al57. Given a raw single cell contact matrix , we𝑴𝑟𝑎𝑤 = (𝑚
𝑖𝑗
𝑟𝑎𝑤)

𝑛×𝑛

construct a new matrix by applying convolution with filter𝑴𝑐𝑜𝑛𝑣 = (𝑚
𝑖𝑗
𝑐𝑜𝑛𝑣)

𝑛×𝑛

:𝑭 = (𝑓
𝑖𝑗

)
(2𝑤+1)×(2𝑤+1)

𝑚
𝑖𝑗
𝑐𝑜𝑛𝑣 =

𝑘, 𝑙
∑ 𝑓

𝑘𝑙
𝑚

𝑘𝑙
𝑟𝑎𝑤 

For a 200kb matrix, we set . In this step, we integrate the interaction information from the𝑤 = 5

genomic neighbors to impute the interaction at each position. Random walk with restart is then

performed to estimate contact probability between every two beads. In order to perform a

random walk, a transition matrix is calculated based on the contact matrix𝑴𝑡𝑟𝑎𝑛𝑠 = (𝑚
𝑖𝑗
𝑡𝑟𝑎𝑛𝑠)

𝑛×𝑛

after convolution. Every entry in the original matrix is normalized by its corresponding row sum:

𝑚
𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 =

𝑚
𝑖𝑗
𝑐𝑜𝑛𝑣

𝑗'
∑𝑚

𝑖𝑗'
𝑐𝑜𝑛𝑣

We initialize the random walk by an identity matrix so that the contact probability between𝑹
0

every two beads is set to be 0. By applying the following recurrence formula, we are able to

obtain a resulting matrix after the values converge:
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𝑹
0

= 𝐥

𝑹
𝑡

= 1 − 𝑝( )𝑹
𝑡−1

𝑴𝑡𝑟𝑎𝑛𝑠 + 𝑝𝐥

where 𝐥 is the identity matrix and 𝑝 is the restart probability with 0.5. We define there is a

convergence when . Each element in the resulting matrix after‖𝑹
𝑡

− 𝑹
𝑡−1

‖
2

≤ 10−6 𝑹
𝑡

convergence indicates the probability of the random walk to reach the 𝑗-th node when starting

from the 𝑖-th node. All contacts with probability larger than the 75th percentile of all probabilities

in each row are chosen to convert into a binary matrix .𝑹
𝑡

𝑴𝑟𝑤

Sci-HiC assessment

For comparison of clusters, a direct way is to compare their contact frequency matrices. We

define the difference matrix of cluster to be:𝐴

𝑑
𝑖𝑗
(𝐴) = 𝑙𝑜𝑔

2

𝑆
𝐴

𝑚
𝑖𝑗
(𝑃𝑜𝑝)

𝑆
𝑃𝑜𝑝

𝑚
𝑖𝑗
(𝐴) 

 

where is the resulting difference matrix. is the contact frequency𝑫(𝐴) = (𝑑
𝑖𝑗
(𝐴)) 𝑴(𝑃𝑜𝑝) = (𝑚

𝑖𝑗
(𝑃𝑜𝑝))

matrix for the whole population calculated by contact range 2, while is the contact𝑴(𝐴) = (𝑚
𝑖𝑗
(𝐴))

frequency matrix for the cluster. is the cluster size while is the population size. Due to the𝑆
𝐴

𝑆
𝑃𝑜𝑝

sparsity of single cell Hi-C, we preprocess each raw contact matrix by the preprocessing method

above to construct a processed contact matrix. The next step is to assign each contact matrix to

the clusters defined by our model. For cluster , a superiority mask and an𝐴 𝑴
𝑠𝑢𝑝
(𝐴) = (𝑚𝑠

𝑖𝑗
(𝐴))

inferiority mask are calculated by its difference matrix :𝑴
𝑖𝑛𝑓
(𝐴) = (𝑚𝑖

𝑖𝑗
(𝐴)) 𝑫(𝐴)

𝑚𝑠
𝑖𝑗
(𝐴) = 𝐼

𝑑
𝑖𝑗
(𝐴)≥5

𝑚𝑖
𝑖𝑗
(𝐴) = 𝐼

𝑑
𝑖𝑗
(𝐴)≤−1

where is the indicator function which equals 1 when is true. For each preprocessed matrix𝐼
𝐴

𝐴

from the sci-HiC population, we define the assessment score as:𝑴𝑟𝑤

𝑠(𝐴) = 𝑒𝑥𝑝 (
〈𝑴𝑟𝑤,   𝑴

𝑖𝑛𝑓
(𝐴)〉

𝐹

〈𝑬,   𝑴
𝑖𝑛𝑓
(𝐴)〉

𝐹

−
〈𝑴𝑟𝑤,   𝑴

𝑠𝑢𝑝
(𝐴)〉

𝐹

〈𝑬,   𝑴
𝑠𝑢𝑝
(𝐴)〉

𝐹

)
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where is the Frobenius inner product between matrix and matrix . is a matrix of〈𝑿,  𝒀〉
𝐹

𝑿 𝒀 𝑬

ones. For each contact matrix, we choose the pair of masks that has the largest assessment

score with the matrix and assign the matrix to the corresponding cluster. To filter matrices that

are different from all clusters, we only classify matrices to a cluster when ,𝐴
1

𝑠
𝐴

1( )
− 𝑠

𝐴
2( )

≥0. 01

where is the cluster with the largest matching score and is the second largest one. The𝐴
1

𝐴
2

final matching probability is defined as:

𝑝
(𝐴

1
)

= 𝑠
(𝐴

1
)

𝑘=1

𝐾

∑ 𝑠
(𝐴

𝑘
)

where is the total number of clusters. Similarly, a contact frequency matrix can be generated𝐾

using all inferred sci-HiC matrices classified to each cluster. To preserve symmetry, we

symmetrize each contact frequency matrix by selecting the minimum number of contacts

between pairs and .(𝑖,  𝑗) (𝑗,  𝑖)

Sci-HiC control dataset

A control dataset is generated to ensure our assessment procedure is not classifying artifacts

and false signals. For each sci-HiC contact matrix, we randomly rearrange all the entries while

maintaining its diagonality and the total number of contacts to construct a sudo single cell

contact matrix. We apply this process for every sci-HiC matrix and construct a control dataset in

the end. The same assessment procedure is then applied to the control dataset.

Sn-HiC dataset

In total, 188 WTC-11 sn-HiC matrices were obtained from the 4DN data portal

(4DNESF829JOW and 4DNESJQ4RXY5)36,37. Higashi27 is then used to impute missing contacts

from the raw contact matrices. All contacts with probability larger than are chosen to0. 003𝑝
𝑚𝑎𝑥

convert each imputed matrix into a binary matrix, where is the maximum probability of the𝑝
𝑚𝑎𝑥

imputed matrix.

Imaging assessment

DNA-MERFISH dataset

We process the DNA-MERFISH datasets from Su et al3 which includes high-resolution

coordinates of chromosome 2 from 3,029 copies and low-resolution coordinates of chromosome

6 from 7,336 copies. For chromosome 6, we also process distances of imaged genomic regions

to the nearest detected speckle. All datasets are preprocessed by linear interpolation to remove
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missing values if applicable. We remove copies without valid values in coordinates and in

speckle distances.

DNA-MERFISH assessment

The preprocessed DNA-MERFISH coordinates can be then used for assessment. Each single

structure is used to calculate a distance matrix in the same way stated above. To compare𝑫𝑴

with the average distance matrix for cluster , we first downsample by𝑫𝑴 𝑫𝑴(𝐴) 𝐴 𝑫𝑴(𝐴)

selecting the beads that are mapped by the DNA-MERFISH coordinates. Then we flatten both

matrices by extracting the upper triangular parts and normalizing them by min-max

normalization to generate two distance vectors and . We define the assessment score as:𝑹 𝑹(𝐴)

𝑠(𝐴) = 𝑒𝑥𝑝 (𝑟(𝑹,  𝑹 𝐴( )))

where measures the Pearson’s correlation coefficient between vector and vector . For𝑟(𝐱,  𝐲) 𝐱 𝐲

each distance matrix, we choose the average distance matrix that has the largest assessment

score with the matrix and assign the matrix to the corresponding cluster. To filter matrices that

are different from all clusters, we only classify matrices to a cluster when ,𝐴
1

𝑠
(𝐴

1
)

− 𝑠
(𝐴

2
)
≥0. 05

where is the cluster with the largest matching score and is the cluster the second largest𝐴
1

𝐴
2

one. The final matching probability is defined as:

𝑝
(𝐴

1
)

= 𝑠
(𝐴

1
)

𝑘=1

𝐾

∑ 𝑠
(𝐴

𝑘
)

where is the total number of clusters. Similarly, an average distance matrix can be generated𝐾

using all DNA-MERFISH distance matrices classified to each cluster.

Data visualization
All chromosome structures are visualized by Chimera69.
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