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Abstract 26 

The spinal motor neurons are the only neural cells whose individual activity can be non-invasively 27 

identified using grids of electromyographic (EMG) electrodes and source separation methods, i.e., EMG 28 

decomposition. In this study, we combined computational and experimental approaches to assess how 29 

the design parameters of grids of electrodes influence the number and characteristics of the motor units 30 

identified. We first computed the percentage of unique motor unit action potentials that could be 31 

theoretically discriminated in a pool of 200 simulated motor units when recorded with grids of various 32 

sizes and interelectrode distances (IED). We then identified motor units from experimental EMG signals 33 

recorded in six participants with grids of various sizes (range: 2-36 cm2) and IED (range: 4-16 mm). 34 

Increasing both the density and the number of electrodes, as well as the size of the grids, increased the 35 

number of motor units that the EMG decomposition could theoretically discriminate, i.e., up to 82.5% 36 

of the simulated pool (range: 30.5-82.5%). Experimentally, the configuration with the largest number 37 

of electrodes and the shortest IED maximized the number of motor units identified (56 ± 14; range: 39-38 

79) and the percentage of low-threshold motor units identified (29 ± 14%). Finally, we showed with a 39 

prototyped grid of 400 electrodes (IED: 2 mm) that the number of identified motor units plateaus beyond 40 

an IED of 2-4 mm. These results showed that larger and denser surface grids of electrodes help to 41 

identify a larger and more representative pool of motor units than currently reported in experimental 42 

studies.  43 

 44 

Significance statement 45 

Individual motor unit activities can be exactly identified by blind-source separation methods applied to 46 

multi-channel EMG signals recorded by grids of electrodes. The design parameters of grids of EMG 47 

electrodes have never been discussed and are usually arbitrarily fixed, often based on commercial 48 

availability. In this study, we showed that using larger and denser grids of electrodes than conventionally 49 

applied can drastically increase the number of motor units identified. These samples of motor units are 50 

moreover more balanced between high- and low- threshold motor units and provide a more 51 

representative sampling of neural drive to muscles. Gathering large datasets of motor units using large 52 

and dense grids will impact the study of motor control, neuromuscular modelling, and human-machine 53 

interfacing. 54 

  55 
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Introduction 56 

Decoding the neural control of natural behaviours relies on the identification of the discharge activity 57 

of individual neural cells. Classically, arrays of electrodes are implanted close to the cells to record their 58 

electrical activity. The application of algorithms that separate the overlapping activity of these cells has 59 

enabled researchers to study neural processes in multiple areas of the brain (Stringer et al., 2019), such 60 

as in the motor or the sensorimotor areas (Churchland and Shenoy, 2007; Gallego et al., 2020). At the 61 

periphery of the nervous system, it is also possible to record the activity of individual motor neurons 62 

innervating muscle fibres (Heckman and Enoka, 2012; Farina et al., 2016; Enoka, 2019). The motor 63 

unit, i.e., a motor neuron and the fibres it innervates, acts as an amplifier of the neural activity, as one 64 

action potential propagating along a motor neuron’s axon generates an action potential in each of the 65 

innervated muscle fibres. The activity of motor units can be identified by decomposing surface 66 

electromyographic (EMG) signals into trains of motor unit action potentials (MUAPs) using blind-67 

source separation algorithms (Holobar and Farina, 2014; Farina and Holobar, 2016). The multiple 68 

observations for source separation are obtained by recording EMG signals with grids of electrodes. This 69 

approach usually allows for the reliable analysis of 5 to 40 concurrently active motor units (Del Vecchio 70 

et al., 2017; Del Vecchio et al., 2020; Hug et al., 2021a).  71 

While the design of intracortical (e.g., (Jun et al., 2017; Steinmetz et al., 2018)) and intramuscular (e.g., 72 

(Muceli et al., 2015; Muceli et al., 2022)) arrays of electrodes has scaled up over the years to record 73 

larger samples of neural cells, the configuration of surface EMG grids of electrodes has not 74 

systematically evolved. Most researchers currently use grids with 64 electrodes arranged in 13  5 or 8 75 

 8 montages, the interelectrode distance (IED) between adjacent electrodes (e.g., 4 mm, 8 mm, or 10 76 

mm) being dictated by the size of the muscle to cover. Yet, optimizing these parameters, i.e., grid size 77 

and IED, may influence the performance of EMG decomposition. Currently, there are no 78 

recommendations on optimal design parameters for grids when using surface EMG for the study of 79 

motor units.  80 

Source separation algorithms are based on the necessary condition that identifiable motor units have 81 

unique representations across the multi-channel EMG signal (Farina et al., 2008; Holobar and Farina, 82 

2014; Farina and Holobar, 2016). This implies that the three-dimensional waveform of a MUAP (one 83 

time dimension and two spatial dimensions) should be unique within the pool of motor units detected 84 

by the surface grid. In practice, the identified motor units are those that innervate larger numbers of 85 

muscle fibres, as their action potentials tend to have the largest energy. Conversely, low-threshold motor 86 

units usually remain hidden since their energy is close to the baseline noise. Increasing the density of 87 

electrodes would increase the spatial sampling frequencies of the EMG signals (Farina and Holobar, 88 

2016). This should improve the discrimination of MUAPs, allowing the identification of a larger number 89 

of motor units. Additionally, increasing the electrode density may reveal the hidden low-threshold motor 90 
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units by sampling their action potentials across a larger number of electrodes, leading to a better 91 

compensation of the additive noise in the mixture model of the EMG signal. 92 

In this study, we combined computational and laboratory experiments to identify the optimal design 93 

criteria for grids of surface electrodes with the aim of maximizing the number of identified motor units, 94 

specifically increasing the relative number of identifiable low-threshold motor units. We first simulated 95 

a pool of 200 motor units and the associated EMG signals recorded from grids of electrodes of various 96 

sizes and densities. These simulations showed that the greater the size and the density of the grid, the 97 

higher the percentage of identifiable motor units and the relative ratio of identifiable small and deep 98 

units. We confirmed these theoretical results with experimental signals recorded with a grid of 256 99 

electrodes with a 4-mm IED that was downsampled in the space domain to obtain six grid configurations 100 

(surface range: 2-36 cm2 and IED range: 4-16 mm). Finally, we prototyped a new grid of 400 electrodes 101 

with a 2-mm IED and demonstrated that the number of identified motor units approximately plateaus 102 

beyond a 2-4-mm IED.  103 
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Methods 104 

Computational study 105 

A pool of 200 motor units was simulated to test whether increasing the density and the size of surface 106 

grids of electrodes would impact the number of identifiable motor units.  The simulations were based 107 

on an anatomical model of a cylindrical muscle volume with parallel fibres (Farina et al., 2008; 108 

Konstantin et al., 2020), where subcutaneous and skin layers separate the muscle from the surface 109 

electrodes. Specifically, we set the radius of the muscle to 25.4 mm and the thicknesses of the 110 

subcutaneous and skin layers to 5 mm and 1 mm, respectively. The centres of the motor units were 111 

distributed within the cross section of the muscle using a farthest point sampling. The farthest point 112 

sampling filled the cross-section by iteratively adding centres points that were maximally distant from 113 

all the previously generated motor unit centres, resulting in a random and even distribution of the motor 114 

unit territories within the muscle. The number of fibres innervated by each motor neuron followed an 115 

exponential distribution, ranging from 15 to 1500. The fibres of the same motor unit were positioned 116 

around the centre of the motor unit within a radius of 0.0082 to 0.8 mm, and a density of 20 fibres/mm2. 117 

Because motor unit territories were intermingled, the density of fibres in the muscle reached 200 118 

fibres/mm2. The MUAPs were detected by circular surface electrodes with a diameter of 1 mm. The 119 

simulated grids were centred over the muscle in the transverse direction, with a size ranging from 14.4 120 

to 36 cm2, and an IED ranging from 2 to 36 mm. 121 

 122 

Laboratory study 123 

Participants 124 

Six healthy participants (all males; age: 26 ± 4 yr; height: 174 ± 7 cm; body weight: 66 ± 15 kg) 125 

volunteered to participate in the first experimental session of the study. They had no history of lower 126 

limb injury or pain during the months preceding the experiments. One of these individuals (age: 26 yr; 127 

height: 168 cm; bodyweight: 51 kg) participated in a second experimental session to test the prototyped 128 

grid with an IED of 2 mm. The Ethics Committee at Imperial College London reviewed and approved 129 

all procedures and protocols (no. 18IC4685). All participants provided their written informed consent 130 

before the beginning of the experiment. 131 

 132 

Experimental tasks 133 

The two experimental sessions consisted of a series of isometric ankle dorsiflexions performed at 30% 134 

and 50% of the maximal voluntary torque (MVC) during which we recorded high density 135 

electromyographical (HD-EMG) signals over the Tibialis Anterior muscle (TA). The participants sat on 136 

a massage table with the hips flexed at 30°, 0° being the hip neutral position, and their knees fully 137 
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extended. We fixed the foot of the dominant (right in all participants) leg onto the pedal of a commercial 138 

dynamometer (OT Bioelettronica, Turin, Italy) positioned at 30° in the plantarflexion direction, 0° being 139 

the foot perpendicular to the shank. The thigh was fixed to the massage table with an inextensible 3-cm-140 

wide Velcro strap. The foot was fixed to the pedal with inextensible straps positioned around the 141 

proximal phalanx, metatarsal and cuneiform. Force signals were recorded with a load cell (CCT 142 

Transducer s.a.s, Turin, Italy) connected in-series to the pedal using the same acquisition system as for 143 

the HD-EMG recordings (EMG-Quattrocento; OT Bioelettronica). The dynamometer was positioned 144 

accordingly to the participant’s lower limb length and secured to the massage table to avoid any motion 145 

during the contractions.  146 

All experiments began with a warm-up, consisting of brief and sustained ankle dorsiflexion performed 147 

at 50% to 80% of the subjective MVC. During the warm-up, all participants learnt to produce isometric 148 

ankle dorsiflexion without co-contracting the other muscles crossing the hip and knee joints. At the same 149 

time, we iteratively adjusted the tightening and the position of the straps to maximize the comfort of the 150 

participant. Then, each participant performed two 3-to-5 s MVC with 120 s of rest in between. The peak 151 

force value was calculated using a 250-ms moving average window, and then used to set the target level 152 

during the submaximal contractions. After 120 s of rest, each participant performed two trapezoidal 153 

contractions at 30% and 50% MVC with 120 s of rest in between, consisting of linear ramps up and 154 

down performed at 5%/s and a plateau maintained for 20 s and 15 s at 30% and 50% MVC, respectively. 155 

The order of the contractions was randomized. One participant (S2) did not perform the contractions at 156 

50% MVC. 157 

 158 

High-density electromyography 159 

In the first experimental session, four adhesive grids of 64 electrodes (13 x 5; gold coated; 1 mm 160 

diameter; 4 mm IED; OT Bioelettronica) were placed over the belly of the TA. The grids were carefully 161 

positioned side-to-side with a 4-mm-distance between the electrodes at the edges of adjacent grids 162 

(Figure 1A). The 256 electrodes were centred to the muscle belly and laid within the muscle perimeter 163 

identified through palpation. The skin was shaved, abrased and cleansed with 70% ethyl alcohol. 164 

Electrode-to-skin contact was maintained with a bi-adhesive perforated foam layer filled with 165 

conductive paste. The grids were wrapped with tape and elastic bands to secure the contact with the 166 

skin. The four 64-pre-amplifiers were connected in-series with stackable cables to a wet reference band 167 

placed above the medial malleolus of the same leg. HD-EMG signals were recorded in monopolar 168 

derivation with a sampling frequency of 2,048 Hz, amplified (x150), band-pass filtered (10–500 Hz), 169 

and digitised using a 400 channels acquisition system with a 16-bit resolution (EMG-Quattrocento; OT 170 

Bioelettronica). 171 
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In the second experimental session, one ultra-dense custom-made grid of 400 dry electrodes (20 x 20; 172 

gold coated; 0.5 mm diameter; 2 mm IED) was placed over the belly of the TA. The skin was first shaved 173 

and cleansed with abrasive paste. Then, the electrode was directly placed on the skin after the skin was 174 

wetted to decrease the impedance between the skin and the dry electrodes. The HD-EMG signals were 175 

then recorded in monopolar mode with a sampling frequency of 2,048 Hz, following the same procedure 176 

as before with eight 64-pre-amplifiers connected in-series with stackable cables to a wet reference band 177 

placed above the medial malleolus of the same leg.  178 

Grid configurations 179 

During the first experimental session, we recorded the myoelectric activity of the TA with a total of 256 180 

electrodes covering 36 cm2 of the muscle surface (10 cm x 3.6 cm, 4-mm IED, Figure 1A). To investigate 181 

the effect of the electrode density, we downsampled the 256-electrode grid by successively discarding 182 

rows and columns of electrodes and artificially generating three new grids covering the same area with 183 

IEDs 8 mm, 12 mm, and 16 mm, involving 256, 64, 35, and 20 electrodes, respectively (Figure 1B-D). 184 

It is noteworthy that the 8-mm and 16-mm grids covered a surface of 32 cm2 because they included an 185 

odd number of rows and columns. To investigate the effect of the size of the grid, we discarded the 186 

peripherical electrodes to generate grids of 63, 34 and 19 electrodes with a 4-mm IED, covering 7.7, 3.8 187 

and 2 cm2 of the muscle (Figure 1E-G). Note that we chose these grid sizes to match the number of 188 

electrodes used in the density analysis, thus comparing grids with similar number of electrodes, but 189 

different densities and sizes (in Figure 1, B versus E, and C versus F).  190 

During the second experimental session, we recorded the myoelectric activity of the TA with the ultra-191 

dense grid of 400 dry electrodes covering 16 cm2 of the muscle (4 cm x 4 cm, 2-mm IED). Using the 192 

same procedure as above, we generated two artificial grids with an IED of 4 mm and 8 mm, and 100 193 

and 25 electrodes, respectively.  194 
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 195 

Figure 1: The eight grid configurations considered in this study. From the grid of 256 electrodes (A, grid 196 

size: 36 cm2, IED: 4 mm), six shallower and smaller grids (B-G) were artificially obtained by discarding 197 

the relevant electrodes and used in the first experimental session. (B,C,D) Density analysis: 8, 12, and 198 

16mm IED. (E,F,G) Size analysis: 7.7, 3.6, and 2 cm2 surface area. (H) The ultra-dense grid of 400 dry 199 

electrodes (grid size: 16 cm2, IED: 2 mm) used in the second experimental session.  200 

 201 

HD-EMG decomposition 202 

We decomposed the signals recorded in all the conditions using the same parameters and procedure. 203 

First, the monopolar EMG signals were bandpass filtered between 20-500 Hz with a second-order 204 

Butterworth filter. After visual inspection, channels with low signal-to-noise ratio or artifacts were 205 

discarded. The HD-EMG signals were then decomposed into motor unit spike trains using convolutive 206 

blind-source separation, as previously described (Negro et al., 2016). In short, the EMG signals were 207 

first extended to reach 1000 channels and spatially whitened. Thereafter, a fixed-point algorithm that 208 

maximized the sparsity was applied to identify the sources embedded in the EMG signals, i.e., the series 209 

of delta functions centred at the motor unit discharge times. These sources are sparse, with most samples 210 

being 0 (i.e., absence of discharge) and a small number of samples being 1 (i.e., discharge times). In this 211 

algorithm, a contrast function was iteratively applied to the EMG signals to estimate the level of sparsity 212 
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of the identified sources, and the convergence was reached once the level of sparsity did not vary when 213 

compared to the previous iteration, with a tolerance fixed at 10-4 (see Negro et al., 2016, for the definition 214 

of the detailed contrast functions). At this stage, the estimated source contained high peaks (i.e., the 215 

delta functions from the identified motor unit) and low peaks from other motor units and noise. High 216 

peaks were separated from low peaks and noise using peak detection and K-mean classification with 217 

two classes. The peaks from the class with the highest centroid were considered as the spikes of the 218 

identified motor unit. A second algorithm refined the estimation of the discharge times by iteratively 219 

recalculating the motor unit filter and repeating the steps with peak detection and K-mean classification 220 

until the coefficient of variation of the inter-spike intervals was minimized. This decomposition 221 

procedure has been previously validated using experimental and simulated signals (Negro et al., 2016). 222 

After the automatic identification of the motor units, duplicates were removed, and all the motor unit 223 

spike trains were visually checked for false positives and false negatives (Del Vecchio et al., 2020). This 224 

manual step is highly reliable across operators (Hug et al., 2021b). Only the motor units which exhibited 225 

a pulse-to-noise ratio (PNR) > 28 dB were retained for further analysis.  226 

 227 

We further tested whether decomposing subsets of electrodes within a highly populated grid of 256 228 

electrodes increased the number of identified motor units. Indeed, the lower ratio of large motor units 229 

sampled by each independent subset of 64 electrodes could allow the algorithm to converge to smaller 230 

motor units that contribute to the signal. For a similar number of iterations, it is likely that these motor 231 

units would have otherwise contributed to the noise component of the mixture model of the EMG signal 232 

(Farina and Holobar, 2016). Thus, we decomposed the four separated grids of 64 electrodes before 233 

removing the motor units duplicated between grids. Similarly, the grid with 400 electrodes was 234 

decomposed as eight separated partially overlapping subsets of 64 electrodes.  235 

 236 

Analysis 237 

Computational study 238 

We first estimated the theoretical percentage of identifiable motor units for each of the simulated 239 

conditions. To do so, the simulated MUAPs detected over the entire set of electrodes were compared 240 

with each other. The comparisons were done pairwise by first aligning the MUAPs in time using the 241 

cross-correlation function, and then computing the normalised mean square difference between the 242 

aligned action potentials. Pairs of action potentials with a mean square difference below 5% were 243 

considered not discriminable. The 5% criterion was based on the variability of motor unit action 244 

potential shapes observed experimentally for individual motor units (Farina et al., 2008). After 245 

computing all pair-wise comparisons, we then computed the proportion of action potentials that could 246 
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be discriminated from all others, i.e., the proportion of unique action potentials. This metrics is 247 

independent from the algorithm used for decomposition and establishes an upper bound in the number 248 

of motor units that can be identified by any decomposition algorithm. For each unique action potential, 249 

we also computed the distance between the centre of the territory of the corresponding muscle fibres 250 

and the skin surface. 251 

 252 

Laboratory study – number of identified motor units 253 

We reported the absolute number of motor units (PNR > 28 dB) identified with all the experimental grid 254 

configurations. For each participant, the number of identified motor units was then normalized to the 255 

maximal number of motor units found across all conditions, yielding normalized numbers of identified 256 

motor units �̅� then expressed in percentage. For each condition, we calculated the mean and standard 257 

deviation of the �̅� values across participants. To investigate the effects of density and size of the grid, 258 

we fitted logarithmic trendlines to the relationships between the averaged �̅� values and IED and grid 259 

size. We also fitted a logarithmic trendline to the average �̅� values and their corresponding number of 260 

electrodes, in which case the conditions involving the same number of electrodes, but different grid size 261 

and density, were given a weight of 0.5 in the minimization function. We reported the r2 and p-value for 262 

each regression trendline. To maintain consistency with the computational study on the investigation of 263 

the maximum number of identifiable motor units depending on grid design, the trendlines were fitted on 264 

the results obtained when the complete grids of 256 electrodes were decomposed as independent subsets 265 

of 64 electrodes, which systematically returned the highest number of identified motor units. The 266 

trendlines fitted on the results obtained when all available signals were simultaneously decomposed are 267 

reported in Supplementary Material A.  268 

 269 

Laboratory study – characteristics of identified motor units 270 

To investigate the effects of electrode density and grid size on the characteristics of the motor unit 271 

identified, we used a typical frequency distribution of the motor unit force recruitment thresholds in the 272 

human TA (Caillet et al., 2022a), where 𝐹𝑡ℎ(𝑗) is the force recruitment threshold of the jth motor unit in 273 

the normalized motor unit pool ranked in ascending order of 𝐹𝑡ℎ.  274 

𝐹𝑡ℎ(𝑗) = 0.50 ∙ (58.12 ∙ 𝑗 + 120𝑗1.83
), 𝑗 ∈ [0; 1] 275 

Based on their measured force recruitment threshold, the identified motor units were classified with this 276 

relationship to the first (‘low-threshold’ or ‘small’) or second (‘high-threshold’ or ‘large’) half of the 277 

active pool, consistent with the Henneman’s size principle (Henneman and Mendell, 1981; Caillet et al., 278 

2022b). For each condition, we reported the percentage of identified motor units classified as ‘small’. 279 
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We did not report this metric when five or fewer motor units were identified in one condition for three 280 

or more participants.  281 

 282 

Laboratory study – correlation between observations 283 

We assessed how the density of electrodes impacted the information redundancy in the EMG signals 284 

recorded by adjacent electrodes. To this end, MUAP shapes were identified over the 256 electrodes with 285 

the spike-triggered averaging technique. To do so, the discharge times were used as a trigger to segment 286 

and average the HD-EMG signals over a window of 50 ms. For each motor unit, we identified the 287 

electrode with the highest MUAP peak-to-peak amplitude and calculated the average correlation 288 

coefficient 𝜌 with the MUAPs recorded by the four adjacent electrodes using an IED of 4 mm, 8 mm, 289 

12 mm, and 16 mm. We also repeated this correlation analysis for the ultra-dense grid of 400 electrodes 290 

using an IED of 2 mm, 4 mm, and 8 mm.  291 
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Results 292 

Computational study 293 

We simulated the firing activity of 200 motor units recorded by 84 configurations of grids of electrodes 294 

(Figure 2; surface range: 14.4 to 36 cm2, IED range: 2 to 36 mm). The number of identifiable motor 295 

units increased with the surface size of the grid, from 49.9 ± 6.5% of the motor units identifiable with a 296 

grid of 14.4 cm2 to 78.7 ± 2.6% of the motor units identifiable with a grid of 36 cm2. The number of 297 

identifiable motor units also increased with a decrease in interelectrode distance. For example, with a 298 

grid of 36 cm2, the number of identifiable motor units increased from 72% to 82.5% of the motor units 299 

with an IED of 36 and 2 mm, respectively (Figure 2B). Increasing the surface size and the density of the 300 

grid of electrodes revealed smaller and deeper motor units, with averaged territories radius of 0.165 and 301 

0.149 mm with grids of 14.4 and 36 cm2, respectively, and an IED of 2 mm (Figure 2C). The average 302 

distance of identifiable motor units from the skin increased with the surface size of the grid (Figure 2D; 303 

15.7 ± 0.1 mm vs. 17.3 ± 0.1 mm with grids of 14.4 and 36 mm2, respectively), but not with the IED of 304 

the grids (Figure 2D; 16.4 ± 0.6 mm vs. 16.3 ± 0.8 mm with an IED of 36 and 2 mm, respectively). 305 

 306 

 307 

Figure 2: Results from the 200 simulated motor units with 84 configurations of grids of electrodes. (A) 308 
Each circle represents a motor unit territory, the dash line being the muscle boundary. Blues circles are the 309 
identifiable motor units with a grid of 21.6 cm2 and an interelectrode distance (IED) of 18 mm, while the 310 

orange circles are the motor units revealed with a grid of 21.6 cm2 and an IED of 2mm. Grey circles 311 
represent the non-identifiable motor units. The percentage of identifiable motor units (B), the size of their 312 

territory (C) and their distance from the skin (D) are reported for the 84 configurations. 313 

 314 

 315 
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Laboratory study - grids of 256 electrodes 316 

Number of identified motor units 317 

The motor unit spike trains identified across all conditions, intensities, and participants were visually 318 

checked and carefully edited when a missing spike or an identified artifact were observed. The highest 319 

number of identified motor units was systematically reached with the separate decomposition of the four 320 

grids of 64 electrodes with an IED of 4 mm, resulting in 56 ± 14 motor units (PNR = 34.2 ± 1.1) and 45 321 

± 10 motor units (PNR = 34.0 ± 0.9) for 30% and 50% MVC, respectively (Figure 3). At least 82% of 322 

the motor units identified in one condition were also identified in the conditions involving a higher 323 

number of electrodes. Similarly, 91% to 100% of the motor units identified in one condition were also 324 

identified with the 256-electrode configuration (4-mm IED, 36-cm2 size, Figure 1A) when the four grids 325 

were decomposed separately. 326 

 327 

Figure 3: Maximum numbers of motor unit spike trains identified in one participant (S1) at 30% (A) and 328 
50% MVC (B), 79 and 58 motor units (PNR > 28 dB) respectively, obtained when the four grids of 64 329 

electrodes (4 mm IED) were decomposed separately. (C) The pulse trains of the 30 motor units of lowest 330 
recruitment threshold identified at 30% MVC (black box in A) are reproduced during the ascending ramp 331 

of force (black curve). 332 

 333 

When considering the effect of electrode density (grid size fixed at 32-36 cm2, Figure 1A-D), we found 334 

the lowest number 𝑁 of motor units with the 16-mm IED, identifying 3 ± 1 motor units and 2 ± 1 motor 335 
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units at 30% and 50% MVC, respectively (Figure 4A, C). Additional motor units were then gradually 336 

identified with greater electrode densities. The highest number of motor units was observed with the 337 

highest density (4-mm IED), respectively identifying 56 ± 14 or 43 ± 11 motor units and 45 ± 10 or 25 338 

± 6 motor units at 30% and 50% MVC, and this with the 4×64 or 256-electrode decomposition procedure 339 

(Figure 4A, C). Finally, we found a decreasing logarithmic relationship between the average normalized 340 

number �̅� of motor units for each participant and the IED, with r2 = 1.0 (p = 2.5∙10-5) and r2 = 0.99 (p = 341 

0.001) at 30% and 50% MVC, respectively (Figure 4B, D).  342 

When considering the effect of the size of the grid (IED fixed at 4 mm, Figure 1A, E-G), we found the 343 

lowest number 𝑁 of motor units with a grid of 2 cm2, identifying 4 ± 2 motor units and 4 ± 2 motor units 344 

at 30% and 50% MVC, respectively (Figure 5A, C). Additional motor units were then gradually 345 

identified with larger grid sizes. The highest number of motor units was observed with a grid of 36 cm2, 346 

respectively identifying 56 ± 14 or 43 ± 11 motor units and 45 ± 10 or 25 ± 6 motor units at 30% and 347 

50% MVC, depending on the decomposition procedure (Figure 5A, C). We also found an increasing 348 

logarithmic relationship between the average normalized number �̅� of motor units for each participant 349 

and the size of the grid, with r2 = 0.99  (p = 3.0∙10-4) and r2 = 0.98  (p = 0.001) at 30% and 50% MVC, 350 

respectively (Figure 5B, D). It is noteworthy that, in both density and size cases, the parameters of the 351 

fits were very similar for 30% and 50% MVC. 352 

As both the density and the size of the grids determine the number of electrodes, we finally fitted the 353 

relationship between the normalized number of motor units �̅� and the number of electrodes. As observed 354 

previously, more motor units were identified with a larger number of electrodes, following a logarithmic 355 

tendency with r2 = 0.98 (p = 0.018) and r2 = 0.95 (p = 0.016) at 30% and 50% MVC, respectively (Figure 356 

6). A plateau should theoretically be reached with highly populated grids of 1024 and 4096 electrodes 357 

(36-cm2 grids with 2-mm and 1-mm IED, respectively), with a prediction of 50% and 90% of additional 358 

motor units identified.  359 

For a fixed number of electrodes, it is noteworthy that grid size and density, although linked, may have 360 

different impact on the number of identified motor units (black crosses in Figure 6). For example, 1.25 361 

times more motor units were obtained with the 64-electrode condition (32 cm2, 8-mm IED, Figure 1B) 362 

than with the 63-electrode condition (7.7 cm2, 4-mm IED, Figure 1E) for the group of participants at 363 

30% MVC.  364 
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 365 

 366 

Figure 4: Effect of the electrode density on the number 𝑁 of identified motor units at 30% (A, B) and 50% MVC (C, D). The boxplots in the left column report the absolute number 𝑁 367 
of identified motor units per participant (grey dots) and the median (orange line), quartiles, and 95%-range across participants. In the right column, the normalized number of motor 368 
units �̅� logarithmically decreases with interelectrode distance 𝑑 (4, 8, 12, and 16mm in abscissa) as �̅� = 195 − 68 𝑙𝑜𝑔(𝑑) (𝑟2 = 1.0, 𝑝 = 2.5 ∙ 10−5) at 30% MVC (B) and �̅� =369 

196 − 71 𝑙𝑜𝑔(𝑑) (𝑟2 = 0.99, 𝑝 = 0.001) at 50% MVC (D). The standard deviation of �̅� across subjects is displayed with vertical bars. Two decomposition procedures were 370 
considered for the 256-electrode condition; the grid of 256 black electrodes indicates that the 256 signals were simultaneously decomposed and systematically returned lower �̅� 371 
results than when the grid was decomposed as four subsets of 64 electrodes. To maintain consistency with the computational study, the trendlines were here fitted with the 4*64 372 

condition that returned the higher number of identified motor units (see Supplementary Material A for the other fitting condition). 373 
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 374 

Figure 5: Effect of the size of the grid on the number 𝑁 of identified motor units at 30% (A, B) and 50% MVC (C, D). The boxplots in the left column report the absolute number 𝑁 of 375 
identified motor units per participant (grey dots) and the median (orange line), quartiles, and 95%-range across participants. In the right column, the normalized number of motor units 376 
�̅� logarithmically decreases with the size of the grid s (2, 3.8, 7.7, and 36 cm2 in abscissa) as �̅� = −20 + 33 𝑙𝑜𝑔(𝑠) (𝑟2 = 0.99, 𝑝 = 3.0 ∙ 10−4) at 30% MVC (B), and �̅� = −19 +377 
32 𝑙𝑜𝑔(𝑠) ( 𝑟2 = 0.98, 𝑝 = 0.001) at 50% MVC (D). The standard deviation of �̅� across subjects is displayed with vertical bars. Two decomposition procedures were considered for 378 
the 256-electrode condition; the grid of 256 black electrodes indicates that the 256 signals were simultaneously decomposed and systematically returned lower �̅� results than when the 379 
grid was decomposed as four subsets of 64 electrodes. To maintain consistency with the computational study, the trendlines were here fitted with the 4*64 condition that returned the 380 

higher number of identified motor units (see Supplementary Material A for the other fitting condition). 381 

 382 
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 383 

Figure 6: Effect of the number 𝑛 of electrodes on the normalized number �̅� of identified motor units at 384 

30% (A) and 50% MVC (B). The discrete results per participant are displayed with grey data points. The 385 

average �̅� values across participants per condition are displayed with black crosses. Weighted logarithmic 386 

trendlines were fitted to the data and returned (A) �̅� = −104 + 37 𝑙𝑜𝑔(𝑛) ( 𝑟2 = 0.98, 𝑝 = 0.018), and 387 

(B) �̅� = −113 + 38 𝑙𝑜𝑔(𝑛) (𝑟2 = 0.95, 𝑝 = 0.016). Two decomposition procedures were considered for 388 

the 256-electrode condition; the grid of 256 black electrodes indicates that the 256 signals were 389 

simultaneously decomposed and systematically returned lower �̅� results than when the grid was 390 

decomposed as four subsets of 64 electrodes. To maintain consistency with the computational study, the 391 

trendlines were here fitted with the 4*64 condition that returned the higher number of identified motor units 392 

(see Supplementary Material A for the other fitting condition). 393 

Characteristics of identified motor units 394 

Figure 7A shows the effect of the grid density on the type (small/large) of identified motor units at 30% 395 

MVC, with a percentage of identified ‘small’ motor units increasing from 11 ± 9%, with a 12-mm IED, 396 

to 29 ± 14%, with a 4-mm IED. Such differences were not observed at 50% MVC, where the percentage 397 

of ‘small’ motor units remained below 10% for all conditions (Figure 7C). Contrary to the density, the 398 

size of the grid did not impact the distribution of the type of identified motor units, with the percentage 399 

of ‘small’ motor units ranging from 20 to 29% across all grid sizes (Figure 7B). Again, small motor 400 

units represented less than 10% of the identified motor units at 50% MVC for all the size conditions 401 

(Figure 7D).  402 

To support the above observations made at 30% MVC, grids involving the same number of electrodes 403 

but of different grid density and size were directly compared. 62% of the motor units identified with the 404 

64-electrode (32 cm2, IED 8 mm) and 63-electrode (7.7 cm2, IED 4 mm) conditions were identified by 405 

both grids at 30%. 28 ± 9% of the remaining motor units specific to the 8-mm IED grid were ‘small’, 406 

while 44 ± 11% of the motor units specific to the 4-mm IED condition were ‘small’. Similar results were 407 

obtained with the 35- (36 cm2, 12-mm IED) and 34-electrode conditions (3.6 cm2, 4-mm IED), where 408 

more ‘small’ motor units were specifically identified with denser rather than larger grids.  409 
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 410 

Figure 7: (A) Typical frequency distribution of motor unit force recruitment thresholds in a human TA 411 
motor unit pool ranked in ascending order of force recruitment thresholds according to the Methods. The 412 

black dashed lines identify the theoretical portions of the population recruited at 30% and 50% MVC. 413 
Effect of the grid density (B, D) and grid size (C, E) on the percentage of ‘small’ motor units identified at 414 

30% (B, C) and 50% MVC (D, E). The boxplots report the results per participant (grey dots) and the 415 
median (orange line), quartiles, and 95%-range across participants. 416 

 417 

Correlation between MUAPs from adjacent electrodes 418 

Figure 8 reports the effect of electrode density on the level of MUAP correlation 𝜌 between adjacent 419 

electrodes for the six participants. The lowest average correlation coefficient 𝜌 calculated between the 420 

MUAP with the highest peak to peak amplitude and the MUAPs identified over adjacent electrodes was 421 

observed with an IED of 16 mm (𝜌 = 0.87 ± 0.03 and 𝜌 = 0.88 ± 0.04 at 30% and 50% MVC, 422 

respectively). The level of correlation increased with reduced IED (Figure 8B, C), with 𝜌 = 0.96 ± 0.04 423 

and 𝜌 = 0.95 ± 0.05 between the MUAPs from adjacent electrodes with a 4-mm IED at 30% and 50% 424 

MVC, respectively.  425 
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 426 

Figure 8: Effect of the electrode density on the MUAP correlation 𝜌 between adjacent electrodes (A) at 427 
30% (B) and 50% MVC (C). The MUAP shape identified over the red electrode was compared to those 428 

identified over the four adjacent electrodes located at 4 (orange), 8 (blue), 12 (green) and 16 (purple) mm 429 
IED (A). The boxplots report the correlation coefficient 𝜌 per participant (grey dots) and the median 430 

(orange line), quartiles, and 95%-range across participants. 431 
 432 

Laboratory study with an ultra-dense grid of 400 electrodes 433 

Maximal 𝑁 of 24 and 14 motor units (PNR > 28 dB) were identified with the ultra-dense grid of 400 434 

electrodes for one participant at 30% and 50% MVC, respectively (Figure 9A), when 8 overlapping 435 

subsets of 64 electrodes were decomposed separately. These numbers of units are consistent with the 436 

40×40 mm size of the ultra-dense grid and the results in Figure 5, considering that dry electrodes were 437 

used in the second experimental session. Moreover, also consistent with the previous findings, fewer 438 

units were identified when the electrode density decreased, with 19 and 4 motor units identified with a 439 

4- and 8-mm IED at 30% MVC, respectively, and with 9 and 5 motor units identified with a 4- and 8-440 

mm IED at 50% MVC, respectively. Although 𝑁 increased between a 4- and 2-mm IED, with five and 441 

four new motor units identified at 30% and 50% MVC respectively (red pulse trains in Figure 9B), the 442 

rate of increase of 𝑁 with electrode density was lower than previously expected (Figure 9C). As 443 

previously observed, the correlation between adjacent MUAPs increased from 𝜌 = 0.93 with an 8-mm 444 

IED to 𝜌 = 0.98 with a 2-mm IED at 30% MVC, and from 𝜌 = 0.87 with an 8-mm IED to 𝜌 = 0.94 with 445 

a 2-mm IED at 50% MVC (Figure 9A). All the motor units identified with the 8-mm and 4-mm IED 446 

were also identified with the 4 mm and 2-mm IED grids, respectively. Finally, small motor units were 447 

identified when increasing the density from a 8- to 4-mm IED (blue vs black trains in Figure 9B), while 448 

most of the smallest units were identified with an IED of 2 mm (red trains in Figure 9B).  449 
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 450 

Figure 9: Results for the ultra-dense grid (2 mm IED, 40x40 mm, 400 electrodes). (A) Description of the ultra-dense grid (electrodes represented with grey circles). In average 451 
across the 24 identified MUs, the correlation between the MUAPs at a 2 mm (orange), 4 mm (blue), and 8 mm (purple) IED and the MUAP with the highest peak-to-peak 452 

amplitude (red) reached 𝜌 = 0.98, 0.95, and 0.93 at 30% MVC, respectively, and 0.94, 0.91, and 0.87 at 50% MVC, respectively. (B) Identified spike trains at 30% (left) and 453 
50% MVC (right). The dark spike trains were identified with an 8 mm IED, the blue trains were additionally identified with the 4 mm IED, and the red trains were identified 454 
with 2 mm IED. All the spike trains identified with one grid were also identified with the denser grids. (C) Effect of electrode density on the number of identified motor units 455 
at 30% (dots) and 50% MVC (stars). The trendlines from the density analysis in Figure 4B, D computed with the grids of 256 electrodes are also reported (red dotted lines). 456 

To maintain consistency with the previous computational and laboratory results, the grid was decomposed as eight partially overlapping subsets of 64 electrodes, as 457 
explained in the Methods, to investigate the maximum number of identifiable motor units in this configuration. 458 
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Discussion 459 

This study systematically investigated how the design of surface grids of EMG electrodes (grid size and 460 

electrode density) impacts the number and the size of the motor units identified with HD-EMG 461 

decomposition. Using a combination of computational and experimental approaches, we found that 462 

larger and denser grids of electrodes than conventionally used reveal a larger sample of motor units. As 463 

those units not identifiable with less dense and smaller grids mostly have a low recruitment threshold, 464 

we conclude that denser grids allow the identification of smaller motor units. This is possible because 465 

of a better spatial sampling of the MUAP distribution over the skin surface that resulted in a better 466 

discrimination among action potentials of different motor units. These results clarify the directions for 467 

designing new surface grids of electrodes that could span across the entire surface of the muscle of 468 

interest while keeping a high density of electrodes, with IED as low as 2-4 mm. Identifying large sets of 469 

small and large motor units is relevant in many research areas related to motor control, such as the 470 

investigation of neural synergies (Hug et al., 2022), neuromuscular modelling (Caillet et al., 2022c), or 471 

human-machine interfacing (Farina et al., 2021). 472 

 473 

The number 𝑁 of identified motor units increased across participants with the density of electrodes 474 

(Figure 4; Figure 8C), the size of the grid (Figure 5), and the number of electrodes (Figure 6). On 475 

average, 30 and 19 motor units were identified with the ‘conventional’ 64-electrode grid (8-mm IED, 476 

32 cm2 surface area) at 30% and 50% MVC, respectively, which is consistent with several previous 477 

studies using similar grid designs (Del Vecchio et al., 2020). By increasing the density of electrodes and 478 

size of the grid to arrive to 256 electrodes separated by a 4 mm IED, we identified on average 56 and 45 479 

motor units at 30% and 50% MVC, respectively. We even reached 79 and 59 motor units for one subject 480 

(Figure 3), which is substantially more than the numbers of units usually reported in the HD-EMG 481 

literature, and twice those obtained with grids of 64 electrodes in this study. Our computational and 482 

experimental results showed that the size of the grid is a key factor contributing to the higher number of 483 

identified motor units (Figure 2B; Figure 5). According to our simulations, increasing the size of the 484 

grid increases the number of identifiable motor units, i.e., the number of motor units with unique sets of 485 

MUAPs across electrodes (Figure 2B). We concluded from the simulation that the differences between 486 

MUAPs result from the anatomical and physiological differences between adjacent motor units, such as 487 

the length of their fibres, the spread of the end plates, or their conduction velocity, as well as from the 488 

differences in the tissues interposed between the fibres and each recording electrode (Farina et al., 2004). 489 

Larger grids better sample these differences across electrodes, revealing the unique shapes of each motor 490 

unit (Farina et al., 2008). The density of electrodes was also found to be a critical factor contributing to 491 

increasing the number of identified motor units (Figure 4; Figure 9C). Dense grids especially contribute 492 

to identifying the small motor units (Figure 7B; Figure 9B), defined in this study according to their 493 
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recruitment threshold (Figure 7A) (Henneman and Mendell, 1981; Caillet et al., 2022b). Classically, the 494 

decomposition algorithms tend to converge towards the large and superficial motor units that contribute 495 

to most of the energy of the EMG signals (Farina and Holobar, 2016). Conversely, action potentials of 496 

the smallest motor units tend to have lower energy and are masked by the potentials of the larger units. 497 

These factors explain the lowest representation of small low-threshold motor units in available HD-498 

EMG datasets (Caillet et al., 2022a). Increasing the density of electrodes would therefore enable to better 499 

sample the action potentials of these small motor units across multiple electrodes, enabling their 500 

identification. We however observed that increasing the electrode density did not reveal small motor 501 

units anymore during high-force muscle contractions (Figure 7D), potentially because of the large energy 502 

of the recorded MUAPs from the large motor units recruited between 30% and 50% MVC. We also 503 

showed in one subject that computationally increasing the density of electrodes by spatially resampling 504 

the experimental EMG signals (Supplementary Material B) did not reveal any previously hidden motor 505 

units.  506 

 507 

The number of identified motor units 𝑁 monotonically increased with the density of electrodes (Figure 508 

4BD), the size of the grid (Figure 5BD) and the number of electrodes (Figure 6), following significant 509 

logarithmic trendlines. Remarkably, very similar logarithmic tendencies were obtained at both 30% and 510 

50% MVC in all the analyses. Altogether, these trendlines suggested that the normalized number of 511 

identified motor units �̅� would grow with an electrode density beyond a 4-mm IED, before reaching a 512 

plateau for IEDs of 1-2 mm. We experimentally tested this hypothesis by designing a new grid of 400 513 

dry electrodes separated by an IED of 2 mm. While more motor units were identified at 2 mm than 4 514 

mm IED, as expected, the rate of increase between 4-mm and 2-mm IED was lower than predicted by 515 

the trendlines (Figure 9C). We explained this result by demonstrating that the level of correlation 516 

between MUAPs identified over adjacent electrodes, which was >0.95 at both contraction levels with 4-517 

mm IED (Figure 8), tended to 1 with further increasing electrode density (Figure 9A). Therefore, the 518 

high level of information shared between adjacent electrodes in ultra-dense grids (IED < 2 mm) limits 519 

the percentage of identifiable motor units (Farina and Holobar, 2016). According to these results, we 520 

consider that optimal designs of surface grids of electrodes for identifying individual motor units would 521 

involve a surface that cover the muscle of interest with an IED of 2 to 4 mm, depending on the size of 522 

the muscle. It cannot be excluded, however, that the high correlation between adjacent electrodes with 523 

a 2-mm IED was partly due to the grid design and can be improved by reducing the electric crosstalk 524 

between electrodes, e.g., by reducing the electrode area.  525 

 526 

Another important factor for the identification of individual motor units is the quality of the identified 527 

pulse trains, estimated by the PNR (Holobar et al., 2014) or the silhouette value. In this study, we showed 528 
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that the quality of the identified motor units (i.e., decomposition accuracy) increased when increasing 529 

the density of electrodes or the size of the grid, with PNR reaching on average 37-38 dB across 530 

participants with the grid of 256 electrodes (Supplementary Material C). A greater average PNR implies 531 

the need of less manual editing following the automatic decomposition (Hug et al., 2021b). The better 532 

spike train estimate depends on the better signal to noise ratio following the inversion of the mixing 533 

matrix since the pulse train of each motor unit is computed by projecting the extended, whitened signals 534 

on the separation vector (Holobar and Farina, 2014; Farina and Holobar, 2016; Negro et al., 2016). 535 

Likewise, the PNR substantially increased after we computationally increased the number of electrodes 536 

by spatially resampling the EMG signals. This practical result is of interest for most of the physiological 537 

studies that require a lengthy processing time to visually check and manually correct the pulse trains of 538 

all the motor units (Hug et al., 2021b).  539 

Finally, by independently decomposing subsets of 64 electrodes, we increased both the total number and 540 

the percentage of small motor units identified from highly populated grids of 256 electrodes, compared 541 

to the simultaneous decomposition of all available observations (Figure 7B, C). This was likely due to 542 

the lower ratio of large motor units sampled by each subset of electrodes, allowing the algorithm to 543 

converge to smaller motor units that contributed to the signal (Figure 7B, C). According to 544 

Supplementary Material A, the plateauing behaviour previously observed in Figure 4 to Figure 6 is 545 

expected to be more pronounced when all the available signals are simultaneously decomposed. It 546 

should however be noted that the simulation results were obtained independently of a specific 547 

decomposition algorithm, as previously proposed by Farina et al (2008). On the other hand, the 548 

experimental results are based on a specific algorithm. Interestingly, however, the simulation and 549 

laboratory results were fully consistent and in agreement, indicating that the difference in shape of the 550 

spatially sampled MUAPs is the main factor influencing EMG decomposition. 551 

 552 

Conclusion 553 

By increasing the density and the number of electrodes, and the size of the grids, we increased the 554 

number of identifiable and experimentally identified motor units. The identified motor units had pulse 555 

trains with high PNR, limiting the manual processing time. Moreover, we identified a higher percentage 556 

of small motor units, which are classically filtered out with the current conventional grid designs. In this 557 

way, a maximum of 79 motor units (PNR > 28 dB; mean: 36 dB), including 40% of small motor units, 558 

were identified, which is a substantially greater sample than previously shown with smaller and less 559 

dense grids. From these results, we encourage researchers to develop and apply larger and denser EMG 560 

grids to cover the full muscle of interest with IEDs as small as 2 mm. This approach increases the sample 561 

of motor units that can be experimentally investigated with non-invasive techniques.  562 
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