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Abstract

Walled cells, such as plants and fungi, compose an important part of the model systems
in biology. The cell wall primarily functions to prevent the cell from over-expansion
when exposed to water, and is a porous material distributed with nanosized pores on it.
In this paper, we study the deformation of a membrane patch by an osmotic pressure
through a nanopore on the cell wall. We find that there exists a critical pore size beyond
which the membrane cannot stand against the pressure and would inflate out through
the pore. The critical pore size scales exponentially with the membrane tension and the
spontaneous curvature, and exhibits a power law dependence on the osmotic pressure.
Our results also show that the liquid membrane expansion by pressure is mechanically
different from the solid balloon expansion, and predict that the bending rigidity of the
membrane in walled cells should be larger than that of the mammalian cells so as to
prevent inflation through the pores on the cell wall.

Introduction 1

The cell wall is a structure that surrounds the cells of many organisms, including 2

plants, fungi, bacteria, and some protists [1–4]. It is a rigid layer that provides support, 3

protection, and shape to the cell. In plants, the cell wall is composed primarily of 4

cellulose, a polysaccharide made up of glucose units [5]. The cell wall of fungi is 5

composed of chitin, a polymer of N-acetylglucosamine [6, 7]. Bacterial cell walls are 6

made up of peptidoglycan, a polymer of amino sugars and amino acids [8, 9]. The cell 7

wall plays an important role in maintaining the integrity of the cell and protecting it 8

from mechanical stress, osmotic pressure, and other environmental factors. 9

Basically, the cell wall is a porous structure that allows for the exchange of materials 10

between the cell and its environment. The size and shape of the pores in the cell wall 11

can vary depending on the type of cell and the function of the wall. For example, in the 12

primary cell wall of plant cells, the size of the pores can range from 10-20 nanometers to 13

several micrometers in diameter, with the largest pores often found at the corners where 14

adjacent cells meet [10, 11]. In fungal cell walls, the size of the pores can also vary, but 15

is typically at an order of a few tens of nanometers [12,13]. 16

Walled cells generally have a high osmotic pressure that allows them to grow and 17

survive in the environment [14–19]. The osmotic pressure pushes the plasma membrane 18
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against the cell wall and therefore prevents some important biological process from 19

happening. In particular, endocytosis which involves the internalization of a small patch 20

of plasma membrane is hindered by the osmotic pressure [20]. In fission yeast, the turgor 21

pressure is estimated to be 0.85± 0.15 MPa by measuring the growth curve of a mutant 22

yeast cell against a PDMS chamber [21, 22]. In another experiment which compares the 23

geometry of a fission yeast cell upon osmolarity change, it is estimated that the turgor 24

pressure is up to 1.5± 0.2 MPa [14]. Based on a similar osmolarity variation method, 25

the value of turgor pressure is estimated to be 0.6± 0.2 MPa in budding yeast [23]. In 26

general, the turgor pressure in yeast cells have an order of magnitude 0.1− 1 MPa. 27

In this work, we study membrane deformation through a nanopore on the cell wall 28

by the osmotic pressure with the Helfrich model. We find that when the pore is small, 29

the membrane assumes a certain shape to resist the osmotic pressure. When gradually 30

increasing the pore size beyond a critical value, the membrane cannot stand against 31

the pressure anymore and would inflate out through the pore and further expand. We 32

systematically study how the critical pore size Rcrit depends on the membrane properties 33

and find that Rcrit scales exponentially with the membrane tension and the spontaneous 34

curvature, but scales with the osmotic pressure with a power law. We show that the 35

expansion of a liquid membrane by pressure is different from a solid one in terms of 36

their p-V curve. Our results suggest that the membrane bending rigidity in walled cells 37

should be larger than that in mammalian cells so as to prevent the cell from inflation 38

through the nanopores present on the cell wall. 39
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Figure 1. Schematic illustration of a typical yeast cell and the model. (a)
Illustration of the typical morphology of a fission yeast cell. A nanopore (red frame) is
present on the cell wall (gray) and the membrane (green) is pushed outwards by the
osmotic pressure p. The size of the nanopore is exaggerated for the purpose of illustration
only. (b) Illustration of the membrane models. The membrane shape is assumed to be
axisymmetric with respect to the z-axis, and parameterized by its meridinal coordinates
[r(u), z(u)] with u = 0 labeling the membrane tip and u = 1 labeling the membrane edge.
Two types of boundary conditions (BCs) are considered, namely the free-hinge BC (left)
in which the membrane is allowed to freely rotate at the pore edge and the fixed-hinge
BC (right) in which the membrane angle is fixed. The proteins (orange) coated on the
membrane are assumed to generate the spontaneous curvature of the membrane.
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Methods 40

Model 41

We consider a walled cell with a high osmotic pressure p that pushes the cell membrane 42

against the cell wall. A nanopore with a radius of Rpore is present on the cell wall, 43

which has a much larger Young’s modulus than the osmotic pressure and a much smaller 44

curvature than the nanopore [24–27]. The cell wall is therefore modeled as a rigid and 45

flat substrate. We assume the deformation of the membrane at the pore is axisymmetric, 46

and parameterized with its meridional coordinates [r(u), z(u)], where u ∈ [0, 1] is the 47

rescaled arclength. The point at u = 0 labels the membrane tip and the points at u = 1 48

label the membrane edge (Fig. 1b). The coordinates satisfy the geometric relations 49

r′ = h cosψ, z′ = −h sinψ. (1)

Hereafter, we use f ′ to denote the derivative of an arbitrary function f with respect to 50

u. The angle ψ(u) spans between the tangential direction and the horizontal direction. 51

The constant h is essentially the total arclength of the membrane profile and is to be 52

solved with the shape equations. The total energy of the membrane reads 53

G =
κ

2

∫
(c1 + c2 − c0)2dA+ σA+ pV, (2)

where the first term is the classical Helfrich bending energy with κ denoting the bending 54

rigidity of the membrane, c1 = ψ̇/h and c2 = sinψ/r the two principal curvatures of 55

the membrane surface, c0 denoting the spontaneous curvature induced by curvature- 56

generating proteins coated on the membrane [28, 29]. In the absence of proteins, the 57

spontaneous curvature is assumed to vanish. The second term in Eq. (2) is the surface 58

tension energy with A denoting the surface area of the deformed membrane, and σ 59

denoting the membrane tension at the edge of the pore. The third term describes the 60

effect of the osmotic pressure with V being the increased volume of the membrane due to 61

inflation, and p denoting the osmotic pressure (Fig. 1a). Due to the rotational symmetry 62

of the membrane shape about the z axis, the total energy of the membrane in Eq. (2) 63

can be expressed as a functional of the shape variables 64

G = 2π

∫ 1

0

L[ψ,ψ′, r, r′, z, z′, h, γ, η]du. (3)

Here γ, η are Lagrangian multipliers that enforce the geometric relations in Eq. (1). The 65

shape equations of the membrane are obtained by applying variations of the free energy 66

G with respect to all the shape variables [30,31]. The variation δG contains both bulk 67

terms, e.g., [∂L/∂ψ − d(∂L/∂ψ′)/du] δψ, and boundary terms, e.g., (∂L/∂ψ′)δψ|u=1
u=0. 68

We obtain the shape equations by having the bulk terms to be zero. In addition, proper 69

boundary conditions (BCs) at the membrane tip u = 0 and at the pore edge u = 1 need 70

to be specified, which can be achieved by setting the boundary terms in δG to be zero. 71

There are two types of BCs, the free-hinge BC in which the membrane angle ψ is allowed 72

to freely rotate, and the fixed-hinge BC in which the membrane angle ψ is fixed to be 0 73

(Fig. 1b). They correspond to have either ∂L/∂ψ′ = 0 or δψ = 0 in the boundary term. 74

The detailed derivation of the shape equations and the BCs is provided in the appendix. 75

We numerically solve the shape equations with the bvp4c solver in MATLAB, which is 76

designed for solving boundary value problems (BVPs) of ordinary differential equations. 77
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Results 78

Critical pore size for membrane inflation scales exponentially 79

with the membrane tension and spontaneous curvature. 80

In this section, we fix the osmotic pressure p and study how the membrane is deformed 81

when gradually increasing the pore radius Rpore. The osmotic pressure p and the 82

membrane bending rigidity κ define a characteristic length Rp = (κ/2p)
1/3

, which is 83

used to rescale the length, and nondimensionalize all the other parameters. In particular, 84

the rescaled pressure p̄ = pR3
p/κ = 0.5 is a constant. The other nondimensionalized 85

parameters include the rescaled tension σ̄ = σR2
p/κ, and the rescaled spontaneous 86

curvature c̄0 = c0Rp. 87

We first consider a membrane without any curvature-generating proteins and study 88

how the membrane is deformed when continuously increasing the radius of the pore 89

Rpore under a constant membrane tension σ̄ = 0.001. The membrane is pushed down by 90

the pressure p to a depth of Dpore. It is found in the Dpore −Rpore curve, a single value 91

of the pore radius Rpore corresponds to two membrane shapes (squares and circles in 92

Fig. 2 c), one with a shallow depth and the other with a deep one. By comparing the 93

total energy of the two shapes (Fig. 2 b), we see that the energy of the shallow solution 94

is much lower than that of the deep one, indicating an energetically more favorable state 95

of the membrane. For the shallow shapes, the depth of the membrane is pushed further 96

down by the pressure as the pore size is enlarged, while for the deep shapes, the depth 97

of the membrane shows a nonmonotonic relation with the pore radius. There exists a 98

critical pore size Rcrit beyond which no solutions are found, which indicates that the 99

osmotic pressure is too strong for any membrane shape to sustain the pressure. The 100

membrane would continuously inflate out of the pore and expand over time if there is 101

constant supply of lipid molecules flowing into the pore from the edge. 102

We then plot the Dpore vs. Rpore curves for different membrane tensions σ̄ (Fig. 2)d. 103

The critical pore size R̄crit is found to strongly depend on the membrane tension σ̄. For 104

σ̄ < 0.1, the critical radius R̄crit stays around 2. Beyond σ̄ = 0.1, R̄crit has a dramatic 105

increase with σ̄ (Fig. 2e, green dotted curve). The relationship can be nicely fitted with 106

an exponential function (Fig. 2 e, cyan dashed curve). 107

We next consider a membrane totally coated by proteins and study the effect of spon- 108

taneous curvature c0 induced by the proteins on the membrane deformation, particularly 109

on the critical pore radius. The Dpore−Rpore curve for a coated membrane with positive 110

c̄0 show a similar trend with that of the uncoated membrane, i.e., a single pore radius 111

corresponding to two solutions, one with a lower energy and the other with a higher one 112

(Fig. 3a, b). However, solutions with negative depth appear for small pore radii in the 113

lower energy branch due to the positive spontaneous curvature c0 that tends to bend the 114

membrane inward against the osmotic pressure (Fig. 3a). When the pore radius becomes 115

large, the spontaneous curvature c0 cannot resist the osmotic pressure anymore and the 116

membrane is pushed outward by the pressure (Fig. 3c). The Dpore − Rpore curves for 117

different spontaneous curvatures c0 are shown in Fig. 3d. The critical radius increases 118

with the spontaneous curvature and the relationship can be well fitted by an exponential 119

function (Fig. 3e). 120

Critical pressure for membrane inflation scales with the pore ra- 121

dius with a power law 122

In this section, we fix the pore radius and study how an uncoated membrane is deformed 123

by gradually increasing the osmotic pressure p. The membrane tension σ and the 124

membrane bending rigidity κ defines a characteristic length Rσ = [κ/(2σ)]
1/2

, which is 125
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Figure 2. Effect of the surface tension on the critical radius of an uncoated
membrane. (a) Dpore vs. Rpore curve of membrane deformations for an uncoated
membrane. The critical pore size, beyond which no solutions are found, is indicated by a
pentagon. (b) The free energy curve of the corresponding membrane deformations in (a).
The solid curve indicates a stable state, and the dashed line indicates a metastable state.
(c) Illustration of the membrane shapes indicated by the corresponding symbols on the
Dpore vs. Rpore curve. (d) Dpore vs. Rpore curves are shown for different membrane
tensions σ̄. (e) The critical pore size as a function of the surface tension σ̄. The green
dotted curve represents the numerical solutions. The cyan dashed curve represents the
exponential fitting of the numerical solution.
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Figure 3. Effect of the spontaneous curvature on the critical radius of a
totally coated membrane. (a) Dpore vs. Rpore curve of membrane deformations for
a totally coated membrane with spontaneous curvature c̄0 = 1. The critical pore size
is indicated by a pentagon. (b) The free energy curve of the corresponding membrane
deformations in (a). The solid line indicates a stable state, and the dashed line indicates a
metastable state. (c) Illustration of the membrane shapes indicated by the corresponding
symbols on the Dpore vs. Rpore curve. (d) Dpore vs. Rpore curves are shown for different
spontaneous curvatures c̄0. (e) The critical pore size as a function of the spontaneous
curvature c̄0. The green dotted curve represents the numerical solutions. The cyan
dashed curve represents the exponential fitting of the numerical solution.
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used to rescale the length, and nondimensionalize all the other parameters. In particular, 126

the membrane tension can be rescaled to a constant σ̄ = σR2
σ/κ = 0.5. The rescaled 127

osmotic pressure is p̄ = pR3
σ/κ. 128

A typical D̄pore vs. p̄ curve is shown in Fig. 4a. A single osmotic pressure p̄ can find 129

two corresponding depths on the curve (Fig. 4), with the shallow one having a lower 130

energy and the deep one having a higher energy (Fig. 4b, c). We stress that for small 131

osmotic pressure p, the high energy branch can have a very large depth. This is similar 132

to the p-V curve of an inflating balloon [32–36]. When the osmotic pressure is a beyond 133

a critical value, no solutions are found. It implies that the osmotic pressure is too large 134

for any membrane shape to sustain the pressure. The membrane would inflate out of the 135

pore to form a bulge. The critical pressure p̄crit is found to increase with the pore radius 136

(Fig. 4d), and the relationship can be well fitted with a power law p̄crit = 6.978R−2.899pore 137

(Fig. 4e). 138

Discussion 139

The critical pore size is about 10 nm given the typical parameters 140

of the membrane 141

We have shown that if a nanopore is present on the cell wall and the pore radius is small, 142

the membrane is able to resist the osmotic pressure by assuming a curved shape. If the 143

pore radius is beyond a critical value Rcrit, no membrane shapes are able to sustain the 144

osmotic pressure and the membrane would inflate out and further expand. In Fig. 5, we 145

show how the critical pore size depends on the model parameters, given the typical value 146

of the membrane properties. The model parameters include the bending rigidity κ, the 147

membrane tension σ, the osmotic pressure p, and the spontaneous curvature c0. We fix 148

three of them to the typical values (listed on the top of each panel in Fig. 5), and vary 149

the fourth one to see how it impacts the critical pore size Rcrit using the fitted expression 150

R̄crit = 2.516 exp(0.518σ̄) for the free-hinge BC and R̄crit = 3.468 exp(0.434σ̄) for the 151

fixed-hinge BC. The critical pore size Rcrit is found to decrease with the osmotic pressure 152

and increase with the other three parameters, and stays in the range of 5 − 20 nm. 153

In general, Rcrit is smaller under the free-higne BC than that under the fixed hinge 154

BC. As we have pointed out, the typical pore size of the cell wall is about tens of 155

nanometers [10–13], which is comparable to the critical pore size calculated by our theory 156

(Fig. 5b). Our calculation therefore implies that the bending rigidity of the walled cells 157

must be higher than the value 20 kT we have typically assumed. This is plausible based 158

on the experimental evidence that the membrane is surrounded with actin meshwork 159

in yeast cells [37–39], which is able to effectively increase the bending rigidity of the 160

membrane. Furthermore, proteins on the membrane are also help to increase the bending 161

rigidity. 162

Liquid membrane versus solid balloon 163

In Fig. 4, we have presented the results for the membrane deformation when gradually 164

increasing the osmotic pressure. The Dpore vs. p̄ curve is found to be nonmonotic, which 165

resembles the p-V curve of an inflating balloon [32–36]. In practice, the setup shown in 166

Fig. 4 is used to measure the elastic properties of solid polymer materials, such as rubber. 167

However, for the solid balloon, in particular, at very large volume, the p-V curve would 168

increase with the pressure again due to the stretching energy of the rubber that makes 169

up the balloon. In our case, we consider an incompressible liquid membrane and the 170

membrane area increase is due to the lipid flow from the pore edge when the membrane 171

is pushed by the osmotic pressure. The membrane tension σ at the edge is fixed instead 172
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Figure 4. Effect of the osmotic pressure on the membrane deformation for
an uncoated membrane. (a) Dpore vs. p̄ curve of membrane deformations for an
uncoated membrane. The pore size is fixed at R̄pore = 1. The critical osmotic pressure
is indicated by a pentagon. (b) The free energy curve of the corresponding membrane
deformations in (a). The solid curve indicates a stable state and the dashed curve
indicates a metastable state. (c) Illustration of the membrane shapes indicated by the
corresponding symbols on the Dpore vs. p̄ curve. (d) Dpore vs. p̄ curves are shown
for different pore size R̄pore. (e) The critical pressure as a function of the pore size
R̄pore. The green dotted curve represents the numerical solutions. The cyan dashed
curve represents the power law fitting of the numerical solution.
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of increasing with the depth. Therefore, we can find deep invaginations at very small 173

pressure, which differs the liquid membrane from the solid balloon. 174

Conclusion 175

We have studied membrane inflation through a nanopore on the cell wall in the presence 176

of a high osmotic pressure. It is found that there exists a critical value of the pore size 177

Rcrit beyond which the membrane cannot stand against the osmotic pressure and would 178

inflate out through the pore and keep expansion. The critical pore size Rcrit scales 179

exponentially with the membrane tension σ and the spontaneous curvature c0, and scales 180

with the osmotic pressure p with a power law. The boundary conditions at the pore edge 181

also make a quantitative difference. In general, the fixed-hinge BC leads to a larger Rcrit 182

than the free-hinge BC. Our results also reveal that the inflation of a liquid membrane 183

by pressure behaves differently than that of a solid balloon. In walled cells where the 184

osmotic pressure is high, the membrane should have a large bending rigidity than that 185

in mammalian cells to prevent from inflation through the pores on the cell wall. 186

Appendix 187

Derivation of the membrane shape equations 188

In order to derive the membrane shape equations, we explicitly express the integrand L 189

in Eq. (3) as 190

L =
1

2
κ

(
ψ′

h
+
sinψ

r
− c0

)2

rh+
p

2
r2h sinψ + σhr

+ γ(u)(r′ − h cosψ) + η(u)(z′ + h sinψ).

(4)

Here the three terms in the first line describe the energy contribution made by the 191

bending rigidity, the surface tension, and the osmotic pressure, respectively, and the two 192

terms in the second line describe the Lagrangian multiplies γ(u) and η(u) to enforce the 193

geometric constraints Eq. (1). The variation of the functional G in Eq. (3) reads 194

δG

2π
=

∫ 1

0

du

[(
∂L

∂ψ
− d

du

∂L

∂ψ′

)
δψ +

(
∂L

∂r
− d

du

∂L

∂r′

)
δr +

(
∂L

∂z
− d

du

∂L

∂z′

)
δz

]
+

∫ 1

0

du

[
∂L

∂γ
δγ +

∂L

∂η
δη +

∂L

∂h
δh

]
+
∂L

∂ψ′
δψ
∣∣u=1

u=0
+
∂L

∂r′
δr
∣∣u=1

u=0
+
∂L

∂z′
δz
∣∣u=1

u=0
.

(5)

The variation contains both the bulk terms (first and second lines) and the boundary 195

terms (third line). By letting the bulk terms equal to zero, we obtain a set of ordinary 196

differential equations, which include a second-order equation 197

ψ′′ =
h2 cosψ sinψ

r2
− ψ′

r
h cosψ +

p

2κ
rh cosψ +

γ

κr
h2 sinψ +

η

κr
h2 cosψ, (6)

and two first-order equations 198

γ′ = h

[
1

2
κ

(
ψ′

h
− c0

)2

− κ sin2 ψ

2r2
+ σ + pr sinψ

]
, (7)
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and 199

η′ = 0, (8)

as well as the two geometric relations in Eq. (1). 200

In addition, the equation ∂L/∂h = 0 does not give an equation of h, but leads to a 201

conserved quantity [30,31] 202

H ≡ ∂L

∂h
=
κ

2
r

[(
ψ′

h

)2

−
(

sinψ

r
− c0

)2
]
− p

2
r2 sinψ − σr + γ cosψ − η sinψ = 0.

(9)

There is a freedom to choose the scale function h. Here we choose h′ = 0 such that h is a 203

constant to be determined. It is essentially the total arclength of the membrane profile. 204

Derivation of the boundary conditions 205

By letting the boundary terms in Eq. (5) equal to zero, we obtain the BCs. In particular, 206

in the boundary term about δr, we let δr
∣∣u=1

u=0
= 0, which implies to fix the radius 207

r(0) = 0, r(1) = Rpore. (10)

In the boundary term about δz, we obtain 208

∂L

∂z′
(u = 0) = η(0) = 0, z(0) = 0. (11)

As for the boundary term about δψ, at the membrane tip, we have 209

ψ(0) = 0. (12)

At the pore edge, we have two choices. If we let δψ(1) = 0, it is equivalent to the 210

fixed-hinge BC 211

ψ(1) = 0. (13)

If we let ∂L/∂ψ′ = 0, it is equivalent to the free-hinge BC 212

∂L

∂ψ′
= κ

(
ψ′

h
+

sinψ

r
− c0

)
= 0. (14)

The conserved quantity H = 0 at the membrane tip u = 0 gives rise to a BC 213

γ(0) = 0. (15)

Numerical methods to calculate the Dpore vs. Rpore curve 214

So far we have obtained a total number of 5 equations, which include Eqs. (1), (6), (8), 215

(8). Since only Eq. (6) is first order, they are equivalent to a total number of 6 first 216

order ordinary differential equations. In addition, Eqs. (10), (11), (12), (13) or (14) 217

constitute a total number of 7 BCs. Overall, the 6 equations plus 1 unknown parameter 218

h, and the 7 BCs constitute a well-defined boundary value problem. 219

We solve the problem with the matlab solver bvp5c, which requires the equations and 220

the BCs as its input. Furthermore, the solver requires an initial guess of the solutions. 221

In order to obtain the Dpore vs. Rpore curve, We always start with a small Rpore and use 222

the flat shape as our initial guess. In this case, the membrane is almost flat, and it is 223

easy for the solver to find the solution. We then gradually increase the pore radius Rpore 224

to Rpore + ∆R and use the solution for Rpore as the initial guess to solve the equation 225

11/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2023. ; https://doi.org/10.1101/2023.02.19.529118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.19.529118
http://creativecommons.org/licenses/by-nc-nd/4.0/


for Rpore + ∆R. This iteration step allows us to extend the solution to the critical pore 226

radius since beyond which no solutions are found anymore. We then use the solution at 227

the critical pore radius as the starting point and iterate over the membrane depth Dpore 228

to obtain the other branch of the solution. During this iteration, we add the boundary 229

condition z(0) = Dpore and set the pore radius Rpore as an unknown parameter to be 230

solved by the solver. 231
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