








addition to increasing the event frequency.

Antibiotic susceptibility of single cells Finally, we
explored if this method can be applied for testing the
efficacy of antibiotics. We compared the signal of live
bacteria on bare silicon and on patterned microwells, to
the signal of the bacteria after exposure to chlorampheni-
col, an antibiotic that blocks protein synthesis (26 ), or
ciprofloxacin, an antibiotic that blocks the activity of
DNA gyrases (27 ).

Figure 4 shows the signal variances before and after
administering the antibiotic for both cases. One hour
after the addition of antibiotics, there was a significant
drop in the signal for both antibiotics. For the data on
a silicon surface, however, no significant change could be
observed after addition of the chloramphenicol.

To test the efficacy of the technique in detecting an-
tibiotic resistance, we also performed an additional ex-
periment on E. coli with KanR resistance gene (28 ). We
exposed these resistant cells to kanamycin (29 ), an an-
tibiotic that inhibits protein synthesis, but we did, as
expected, not observe a change in the variance of the
signal after administering the antibiotic (see figure S4).
Even after several hours of incubation the signal stayed
unchanged, demonstrating that the technique is able to
demonstrate not only susceptibility to antibiotics but
also the resistance of bacteria against them.

Discussion and Conclusion

We presented an optical detection technique to measure
the viability of single motile bacterial cells. Our method
is based on the fluctuations of a laser signal when bacte-
ria run through its focal plane. To extend the time dur-
ing which a bacterium motility can be measured in the
laser spot, we introduced microwells in the silicon sur-
face with 285 nm depth and 8µm diameter. Because the
bacteria are trapped at these predetermined microwell
spots, the bacteria stay longer near the laser spot (figure
1a), and more events can be observed during the mea-
surement window, i.e. larger signals are collected. To yet
further increase the throughput of this method, a more
elaborate chip design can be conceived. One could for
example guide bacteria towards the laser focus by chan-
nels or mazes (30 ), which would allow samples at lower
concentrations to be used for detection. Optimization of
the trap depth might also aid measurements - see for ex-
ample figure S5 where the duration of trapping events is
prolonged- although too deep traps will impact readout
quality adversely and might limit the natural motility of
the bacteria.

Next to our experimental observations, we performed
numerical studies, and concluded that the variations in
the reflected signal can be explained by a combination
of refraction and absorption of the laser light by the E.
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Figure 4: Effect of antibiotics on the observed signal
amplitude. Signals before and after administering var-
ious antibiotics. 1h after administering Chlorampheni-
col (34µg/ml) and 3h after administering Ciprofloxacin
(20µg/ml). On the etched microwells (blue, n = 67), af-
ter administering antibiotics (chloramphenicol, light blue
bars (n=67), or ciprofloxacin, dark grey bars (n=200)) a
significant drop of the initial signal (p < 10−5, ****) can
be observed for susceptible bacteria. For measurements
on bare silicon (grey, n = 54) no significant difference
(p = 0.94, ns) was measured after exposure to the an-
tibiotic (light grey, n = 54). Boxplot whiskers extend to
maximum 1.5 times the interquartile distance and out-
liers are indicated with crosses. Red horizontal line rep-
resents the median values. Measurements are compared
using a two-tailed Wilcoxon ranksum test.

coli bacteria. Peak variations in signal during experi-
ments (up to 20%) were of comparable magnitude as the
maximum variations that were calculated from the simu-
lations (maximum 28%). Our finite-element simulations
showed that bacterial motion resulted in larger signal
fluctuations near a reflective surface than in the free vol-
ume. The simulations provide a better understanding of
the optimal conditions for optical detection.

The detected signal in measurements of the bacteria
described here is directly linked to the motility of the
pathogens, which vanishes upon exposure to anitbiotics.
We believe that the high-speed nature of our technique
will be helpful for developing rapid diagnostic tools for
detection for AST of motile pathogens. For example,
in urinary tract infections by E.coli (which accounts to
75% of infections) (31 ), we envisage our technique to be
highly efficient. It is important to highlight that we could
detect the susceptibility and resistance to antibiotics in
less than an hour, which is significantly quicker than
existing detection techniques based on growth rate of
bacteria that typically take days (32 ). We are confident
that the current results provide a good base to further
accelerate the development of next-generation AST tests.
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Methods

Sample preparation. All experiments we performed
on MG1655(+IS1) E. coli cells, described earlier (33 ).
Experiments with Kanamycin resistant E.coli cells were
performed on MG1655(kanR) cells described earlier
(16 ). The E. coli cells, were grown in LB medium
overnight at 30◦C to reach the late exponential phase.
The next day before performing experiment, the cul-
ture was refreshed (1:100 volume) for 2.5 hours on fresh
LB medium at 30◦C reach an optical density (OD600)
OD=0.2. The chamber was filled with the solution
at this concentration, unless stated otherwise, and left
for 15 minutes horizontal position to deposit the bac-
teria on the surface. For experiments where antibiotics
were used, antibiotics were dissolved in LB and incu-
bated with bacteria for 1h. Chloramphenicol was used
at 34µmg/ml, Ciprofloxacin at 20µg/ml and Kanamycin
at 25µg/ml final concentration. An optical microscope
(Keyence VHX-7000) was used to inspect the sample.
The chamber was placed in the interferometric setup
that was equipped with Attocube ECSx5050 nano po-
sitioners that allow automated scanning. The motion of
the bacterium caused changes in the optical path, that
were monitored by a photodiode and an oscilloscope (Ro-
hde & Schwarz RTB2004). At each measured point on
the substrate, a trace was recorded for 30 seconds with
50’000 datapoints. The measurements were performed
in an air-conditioned room with a temperature of 21◦C.
The substrates were either 5x5 mm2 silicon chips, or 5x5
mm2 silicon chips with a 285 nm layer of silicon oxide.
The latter were patterned with circular cavities by a re-
active ion etch, where silicon acted as a stop layer, cre-
ating cavities with a diameter of 8 µm, described earlier
(16 ).

Bacterial shape manipulation. In order to grow the
E.coli cells into spherical shapes, low doses of the A22
drug were added to the to LB. On the day of the exper-
iment, the cell culture was refreshed (1:100 volume) in
the presence of A22 drug (5µg/ml final concentration)
for 1.5 hours on fresh LB medium at 30◦C reach an opti-
cal density (OD600) between OD=0.2–0.3. A22 inhibits
the MreB polymerization, thereby disrupting the typical
rod shape of E. coli (18 ). These spherical cells remain
physiologically active and can replicate and divide (34,
35 ). In order to grow the cells into tubular shapes, low
doses of cephalexin drug (25µg/ml final) were added to
the to LB and cells were grown for 1 hours on fresh LB
medium at 30◦C. Cephalexin blocks cell division but al-
lows cells to grow in length (19 ).

Optical Microscopy. To measure the sizes of E.coli
cells we used Nikon Ti-E microscope with a 100X CFI
Plan Apo Lambda Oil objective with an NA of 1.45
equipped with a phase ring. Images were captured by

Andor Zyla USB3.0 CMOS Camera.

Statistics. Since the data reported in the paper are
not normally distributed, we relied on non-parametric
tests for statistics. We represent the median and quar-
tiles of data in boxplots, in accordance with the use of
non-parametric tests. We use a rank sum test for com-
parison between measurement sets. We used MATLAB’s
built-in functions for statistical analysis. All statistical
tests were two-sided. On all figures, the following con-
ventions are used: not significant (NS) 0.05 < P, *0.01 <
P < 0.05, **0.001 < P < 0.01, ***0.0001 < P < 0.001,
****P < 0.0001. We report a significant difference in
results if P < 0.01.

Laser interferometry. A red laser (λred = 632.8 nm)
focused with a 4 µm spot size on the sample was used for
detection of the amplitude of the cell motion, where the
position-dependent optical absorption of the cell results
in an intensity modulation of the reflected red laser light,
that was detected by a photodiode (36 ). The incident
red laser power was 3 mW.

Calculation of linear attenuation coefficient. The
optical density (OD) of a sample is defined as the loga-
rithm of the ratio between the incident and transmitted
laser power, that is: OD = log10(I1/I0). This means
that at OD = 1, a fraction x = 0.1 of the incident light
is transmitted. A measurement of OD = 1 corresponds
to approximately 109 bacteria /mL in a 1 cm cuvette
(37 ).The fraction of light x that is transmitted by a sin-
gle bacterium can thus be expressed as x = (I1/I0)σc/σt ,
where σc is the physical cross section of the cuvette and
σt is the total cross section of n bacterial cells in suspen-
sion with each a physical cross section σ, i.e. σt = nσ.
We wish to compute the linear attenuation coefficient
µ, which relates the transmitted laser power to the dis-
tance d travelled through a bacterium by the follow-
ing expression: I(d) = I0 · e−µd. This can be rewrit-
ten into µ = −ln(x)/d. From the measured physical
cross section of a single bacterium (A ≈ 1 × 2µm2) (38 )
and the cross section of the cuvette (A = 1 cm2), we
find that a single bacterium absorbs around x = 11%
of the incoming light and an attenuation coefficient of
µ = −ln(x)/d = 1.1 × 105 m−1 for E.coli cells with av-
erage diameter d = 1µm.

Data processing. The signal obtained from the pho-
todiode voltage due to the variations in reflected inten-
sity of the red laser is recorded by an oscilloscope. The
time trace of the photodiode voltage Vpd(t) was normal-
ized by division over its average, Vnorm(t) = Vpd(t)/ <
Vpd(t) >, after which a linear fit was subtracted from
the data to eliminate the effects of drift during the mea-
surements.
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