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Abstract: Obtaining robust estimates of population abundance is a central challenge hindering 

the conservation and management of many threatened and exploited species. Close-kin mark-

recapture (CKMR) is a genetics-based approach that has strong potential to improve monitoring 

of data-limited species by enabling estimates of abundance, survival, and other parameters for 

populations that have been challenging to assess. However, CKMR models have received limited 

sensitivity testing under realistic population dynamics and sampling scenarios, impeding 

application of the method in population monitoring programs and stock assessments. Here, we 

use individual-based simulation to examine how unmodeled population dynamics and sampling 

strategy affect the accuracy and precision of CKMR parameter estimates, and present adapted 

models that correct the biases that arise from model misspecification. Our results demonstrate 

that a relatively simple CKMR model produces robust estimates of population abundance when 

key assumptions including annual breeding and stable population size are met; however, if strong 

population declines or non-annual breeding dynamics are present, a more complex CKMR model 

must be constructed to avoid biased parameter estimates. In addition, we show that CKMR can 

generate reliable abundance estimates for adults from a variety of sampling strategies, including 

juvenile-focused sampling where adults are never directly observed. Finally, we apply our 

adapted CKMR model to two decades of genetic data from juvenile lemon sharks (Negaprion 

brevirostris) in Bimini, Bahamas to demonstrate how juvenile-focused CKMR can be used to 

expand monitoring efforts for highly mobile populations. Overall, this study expands our 

understanding of the biological factors and sampling decisions that cause bias in CKMR models, 

and provides recommendations for sampling design and model construction that can aid 

biologists in planning and implementing an effective CKMR experiment, particularly for long-

lived data-limited species.  
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Introduction 1 

Population abundance plays important roles in both fundamental and applied biological 2 

research, and is associated with a wide range of ecological and evolutionary processes, including 3 

predator-prey dynamics (Carbone et al. 2011), competition (Robertson 1996), demographic rates 4 

(Herrando-Pérez et al. 2012), density-dependent population dynamics (Hassell 1975, Berryman 5 

1989), and genetic drift (Ellegren and Galtier 2016). Abundance estimates and trends are also 6 

key metrics for conservation and management, and are commonly used to assess conservation 7 

status (Wilson et al. 2011), quantify the impacts of threats and/or recovery efforts (Jennings 8 

2000, Ward-Paige et al. 2012, Magera et al. 2013), and scale regulated harvest quantities (e.g. 9 

allowable biological catch, annual catch limits) for managed populations of target and non-target 10 

species. Consequently, a wide range of methods have been developed for estimating population 11 

abundance (Schwarz and Seber 1999, Wilson and Delahay 2001, McCauley et al. 2012). 12 

Capture-mark-recapture (CMR) is one prominent and widely used method in which abundance is 13 

estimated by constructing capture histories for each sampled (or tagged) individual, estimating 14 

capture probabilities, and comparing the number of recaptured individuals to the total number of 15 

sampled individuals (Cormack 1964, Jolly 1965, Seber 1965). A number of variations of CMR 16 

methods have been developed over the years to account for varied population demographics and 17 

sampling schemes (Pollock 2000, Amstrup et al. 2010), but the approach remains largely 18 

intractable in situations where recapture rates are very low, as with many low density and highly 19 

mobile marine species (Kohler and Turner 2001, Webster et al. 2002, Boyd et al. 2018). Further, 20 

CMR can only directly inform about the sampled demographic, while many highly mobile 21 

marine species have spatially segregated life histories during which they are available for 22 

sampling as juveniles in nearshore habitats before transitioning to a less accessible pelagic 23 
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habitat as adults. In such cases, CMR results are restricted to providing direct information about 24 

the juvenile portion of the population, while the population dynamics of adults can only be 25 

modeled effectively if additional data are available and if key assumptions are met (Kendall 26 

1999, Pollock 2000). As alternatives to CMR, surveys or transect-based methods can be helpful 27 

tools to estimate regional abundance of species that are consistently available for observation. 28 

However, variability in survey length, uncertainty surrounding the proportion of habitat sampled, 29 

changes in behavior arising from the presence of human observers, and observation error are 30 

common pitfalls that can make such methods unreliable or incomparable across studies 31 

(McCauley et al. 2012, Davis et al. 2022).  32 

While CMR, surveys, and transect-based methods can all be useful tools in certain 33 

contexts, applying them in an unbiased way can be prohibitively challenging in many systems. 34 

As such, when estimates of absolute abundance are infeasible, indices of relative abundance are 35 

commonly used to assess populations of exploited species (Campbell 2015). In fisheries, for 36 

example, abundance trends derived from catch and effort data (e.g., catch-per-unit-effort, 37 

CPUE), in concert with biological reference points, can inform management by providing critical 38 

information about whether a population is overfished or if overfishing is actively occurring 39 

(Cortés and Brooks 2018). However, it is extremely challenging to account for all the factors that 40 

could influence catchability (Maunder et al. 2006); hence, indices of relative abundance derived 41 

from CPUE are rarely linearly proportional to actual abundance (Harley et al. 2001, Maunder 42 

and Punt 2004, Lynch et al. 2012), which can result in fundamentally flawed conclusions if 43 

CPUE data are interpreted in isolation, or if linearity between catch rate and abundance is 44 

implicitly assumed (Maunder et al. 2006). Further, producing trends of relative abundance for 45 

highly mobile species frequently requires the integration of multiple independent surveys that 46 
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suggest differing abundance trends, making it difficult to establish true abundance patterns 47 

(Peterson et al. 2021). All of these issues are amplified in taxa such as elasmobranchs (sharks, 48 

skates, and rays), which are often subject to high levels of illegal, unreported, and unregulated 49 

catch (Cortés and Brooks 2018). While CPUE can provide invaluable information regarding 50 

stock status and harvest pressure when analyzed in the right context (e.g., via an integrated 51 

model with substantial metadata), there is an urgent need for methods that can provide robust 52 

estimates of absolute population abundance and trends when catch data are unreliable or scarce. 53 

Close-kin mark-recapture (CKMR) is a genetics-based approach for estimating absolute 54 

population abundance that overcomes many of the logistical challenges inherent to CMR and 55 

other conventional methods of abundance estimation, and it has the potential to greatly improve 56 

monitoring efforts for species that have been difficult to assess (Skaug 2001, Bravington et al. 57 

2016b). In contrast to conventional CMR, the tags in CKMR are genotypes, and animals are 58 

considered “re-captured” when their kin are identified (Bravington et al. 2016b). This removes 59 

the need for individual recapture and allows for the estimation of adult abundance using samples 60 

collected solely from juveniles, as well as samples obtained lethally through fishing or hunting 61 

(Bravington et al. 2016b, Hillary et al. 2018). While CKMR can theoretically leverage any 62 

relationship, the most common applications so far have focused on parent-offspring pairs (POPs) 63 

(Bravington et al. 2016a, Ruzzante et al. 2019, Marcy‐Quay et al. 2020) and/or half-sibling pairs 64 

(HSPs) (e.g., Hillary et al. 2018). In cases where sampling is limited to juveniles, CKMR can 65 

provide added value to conventional CMR by generating parameter estimates for the adult 66 

population while CMR estimates parameters for the sampled (in this case juvenile) portion of the 67 

population. Depending on the form of the model, CKMR can estimate additional quantities 68 

including survival (Hillary et al. 2018), fecundity (Bravington et al. 2016b), dispersal (Feutry et 69 
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al. 2017, Conn et al. 2020, Patterson et al. 2022b), and population growth rate, if sufficient 70 

complementary data are available. These advantages and possibilities make CKMR an exciting 71 

tool to improve monitoring efforts and population assessments for data-limited species of 72 

management and conservation concern. 73 

Despite CKMR’s strong potential to provide key information for conservation and 74 

management, its implementation has been slowed due to a lack of clarity regarding the flexibility 75 

and limitations of the method. Several studies have discussed factors that are likely to cause bias 76 

if left unaccounted for in CKMR models (Bravington et al. 2016b, Conn et al. 2020, Waples and 77 

Feutry 2021, Trenkel et al. 2022), but there have been few quantitative assessments of the bias 78 

that arises from applying an overly simplistic CKMR model to a population with complex 79 

dynamics (but see Conn et al. 2020, Waples and Feutry 2021). For example, one key assumption 80 

of a simple base-case CKMR model (e.g., Equations 3.3 and 3.10 in Bravington et. al. 2016b) is 81 

stable population growth. However, real populations may exhibit significant interannual 82 

fluctuations in population size. If such changes are persistent, or if high levels of mortality are 83 

introduced (e.g., via environmental disaster or heavy fishing pressure), then it may be necessary 84 

to specify a more complex CKMR model that can accommodate a changing population. A 85 

second assumption of a simple base-case CKMR model is annual breeding, yet many long-lived 86 

species exhibit intermittent breeding whereby one or more years elapse between reproductive 87 

events (Shaw and Levin 2013). Systematic intermittent breeding dynamics are expected to cause 88 

bias in CKMR parameter estimates if unaccounted for in the model (Waples and Feutry 2021), 89 

but quantitative data regarding the degree of bias are scarce, as are concrete examples for how to 90 

mitigate the bias. Finally, a core component of CKMR is the use of age data, which is required to 91 

assign individuals to the correct cohort (Bravington et al. 2016b). Direct aging is very 92 
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challenging for some taxa (Cailliet 2015), and length-based age assignment is prone to bias when 93 

growth curves are based on size-selective sampling, as they often are (Gwinn et al. 2010). While 94 

more advanced statistical methods can account for uncertainty in aging during the modeling 95 

process (Schwarz and Runge 2009), it may also be possible to alleviate bias by targeting 96 

sampling to age classes that can be reliably aged, such as young-of-the-year (YOY) which are 97 

often easily distinguished from other age classes by their small size and/or the presence of 98 

umbilical scars (Feldheim et al. 2002). A better understanding regarding the circumstances in 99 

which a simple base-case CKMR model is liable to produce biased parameter estimates, in 100 

combination with strategies to mitigate that bias, will help ensure robust application of the 101 

method and facilitate its integration into conservation and management frameworks. 102 

Elasmobranchs (sharks, skates, and rays) are a group of highly vulnerable marine species 103 

that play key ecological roles as apex- and meso-predators in ecosystems around the world 104 

(Vaudo and Heithaus 2011, Ferretti et al. 2018), and are likely to benefit from future application 105 

of CKMR. Around one-third of the 1200+ elasmobranch species are threatened with extinction, 106 

due primarily to overfishing (Dulvy et al. 2021), while nearly half of elasmobranch species 107 

(46%) are classified by the IUCN as Data Deficient and only a small fraction of exploited 108 

populations are managed sustainably (Kindsvater et al. 2018). Conventional methods for 109 

estimating abundance and mortality are intractable for many elasmobranch populations because 110 

individual recapture rates for highly mobile elasmobranch species can be very low (Kohler and 111 

Turner 2001), and it can be logistically challenging to physically capture and mark larger species 112 

(Guttridge et al. 2017). In contrast to conventional methods, CKMR requires only small tissue 113 

samples that can be obtained from adults via biopsy or from juveniles that are easier to handle 114 

than their adult counterparts - without need for individual recapture - making this a more 115 
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tractable approach for many elasmobranch populations. CKMR has added potential for 116 

elasmobranchs because the life histories of many species allow for the use of juvenile-only 117 

CKMR models (e.g., half-sibling (HS) CKMR) that can estimate adult abundance without 118 

sampling a single adult (Bravington et al. 2016b), and many migratory elasmobranchs utilize 119 

nursery areas where juveniles are readily available for sampling (Heupel et al. 2007). 120 

Accordingly, CKMR has been applied to several elasmobranch populations to date (Bradford et 121 

al. 2018, Hillary et al. 2018, Bravington et al. 2019, Delaval et al. 2022, Trenkel et al. 2022, 122 

Patterson et al. 2022b) and is likely to be an important tool to inform elasmobranch conservation 123 

and management in the future. However, elasmobranchs are susceptible to steep population 124 

declines (Ferretti et al. 2018), commonly exhibit multiennial breeding cycles (Nosal et al. 2021), 125 

and are exceptionally challenging to age (Cailliet 2015), and we do not know how much bias can 126 

accrue when such factors are unaccounted for in CKMR models. As such, there is a risk that 127 

biased parameter estimates from CKMR will unwittingly be incorporated into management 128 

frameworks for elasmobranchs, leading to incorrect management actions that ultimately threaten 129 

their populations. 130 

To facilitate the robust application of CKMR to elasmobranchs and other taxa facing 131 

similar challenges with abundance estimation, we investigated the sensitivity of CKMR to 132 

unmodeled dynamics related to population growth and breeding schedule, as well as uncertainty 133 

in age assignment. We used stochastic individual-based simulation to generate distinct 134 

populations of lemon sharks (Negaprion brevirostris) under different population dynamics 135 

scenarios and sampled each population using sampling schemes that targeted different age 136 

classes. Two different CKMR models were fit to each dataset: one that was naïve to at least one 137 

component of the data-generating model (naïve model) and one that was adapted to account for 138 
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all relevant population dynamics (adapted model). We compared the bias in parameter estimates 139 

from both models (naïve vs adapted) and across all sampling schemes, including one in which 140 

age data were unreliable. Finally, we applied a model that was adapted for population growth 141 

and multiennial breeding to two decades of real genetic data from lemon sharks in Bimini, 142 

Bahamas to generate a time-series of abundance estimates for the breeding population of 143 

females. Collectively, these results provide important insights into the ways in which unmodeled 144 

population dynamics, sampling selectivity, and aging error affect CKMR model performance, 145 

while also offering guidance regarding sampling design and model construction. 146 

 147 

2. Methods  148 

Our simulation framework comprised four primary components: 1) an individual-based 149 

population simulation that stochastically generated distinct populations with known parameters, 150 

2) selective sampling of age classes from those populations, 3) construction of a pairwise 151 

comparison matrix from the samples, and 4) a CKMR model that was fit to the pairwise 152 

comparison matrix to estimate the known population parameters. The first two components 153 

comprised our data-generating model (DGM) while the latter two formed our estimation model 154 

(Figure 1).  155 

We then tested the interplay of population dynamics and model complexity by iteratively 156 

varying a subset of population parameters (Table 1) and fitting two CKMR models to the data: 157 

one that was naïve to the added dynamics, and one that was adapted to account for them. Each 158 

scenario was repeated 500 times, with each iteration producing a population with a distinct 159 

pedigree and parameter estimates. 160 

 161 

2.1 Data generating model 162 
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Parameters governing our individual-based population simulations were designed to 163 

replicate the life history traits of lemon sharks, beginning with an adult population size of 1000 164 

in year 1 (Appendix S1: Table S1). We allowed females to breed with up to three males each 165 

breeding cycle, which is typical for this species (Feldheim et al. 2004), and set no limit on the 166 

number of females a male could breed with. Survival was assumed constant within each of three 167 

life stages, which we designated as young-of-year (age 0), juvenile (age 1-11) and adult (age 12-168 

50). We assigned knife-edged maturity, so every individual age 12 and over was available for 169 

breeding, while no individuals younger than age 12 were allowed to breed. After maturity, 170 

fecundity was age-invariant, with the mean offspring produced per female per breeding event 171 

varying with the breeding cycle to keep population growth approximately stable except for 172 

simulations where we explicitly tested population change (Table 1: Scenarios 2.1-2.3).  173 

2.1.1 Population growth 174 

We varied population growth in our DGM in two ways depending on our desired 175 

magnitude of change in population growth rate. First, to examine whether CKMR parameter 176 

estimates were affected by population trends, we reduced or increased annual female fecundity 177 

by 0.5 for the last 50 years of the 90-year simulation (Scenarios 2.1 and 2.2), which resulted in a 178 

population that declined or grew by an average of 1% per year over this time period. To achieve 179 

more substantial declines in population size (~7%; Scenario 2.3), we stochastically imposed 5-180 

10% additional mortality into the simulation for juvenile and adult age classes over the last 10 181 

years of the simulation. 182 

2.1.2 Intermittent breeding 183 
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Many elasmobranchs systematically breed on multiennial cycles (Feldheim et al. 2002, 184 

2017, Nosal et al. 2021), which violates the assumption of annual breeding in a simple base-case 185 

CKMR model. To examine the bias that accrues when this trait is unaccounted for in a CKMR 186 

model, we ran simulations where 50%, 75%, 90% or 100% of females bred on a two-year cycle, 187 

and the rest bred on an annual cycle, analogous to the mixed mating periodicity observed in the 188 

finetooth shark (Carcharhinus isodon) in the Northern Gulf of Mexico (Higgs et al. 2020). Each 189 

female in our simulation was assigned an annual or biennial breeding cycle at birth; the biennial 190 

breeders were then randomly assigned to breed on odd or even years once they reached maturity. 191 

This resulted in a population where half of the biennially breeding females reproduced for the 192 

first time in the year they matured (age 12) and the other half reproduced for the first time the 193 

following year (age 13). Mature males were assumed available to breed every year once they 194 

reached maturity. Because some elasmobranchs breed on tri-ennial cycles, we also ran a 195 

simulation where 100% of females bred on a three year cycle, while males, again, were assumed 196 

available to breed each year. Finally, we added a degree of stochasticity and examined a scenario 197 

where females generally bred on a biennial schedule, but 10% of off-cycle breeders gave birth 198 

each year while 10% of on-cycle breeders failed to breed each year. 199 

2.2 Sampling 200 

All simulated populations were sampled using three different schemes that selected for 201 

different age classes: the first drew samples exclusively from young-of-year (age 0) individuals; 202 

the second made juveniles of all ages except young-of-year (ages 1-11) available to sample; and 203 

the third allowed sampling of all age classes (ages 0-50). These scenarios were chosen to 204 

replicate potential sampling scenarios for elasmobranchs such as in nursery areas (Feldheim et al. 205 
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2002, Heupel et al. 2007), juvenile aggregation sites (Rowat et al. 2007, Jacoby et al. 2012), and 206 

resident populations (Snelson and Williams 1981), respectively. 207 

In each case, the population was initially sampled at four different intensities representing 208 

0.5%, 1%, 1.5%, and 2% of the population. Samples were drawn annually for four years at the 209 

end of the population simulation (i.e. years 87 – 90), following reproduction but before mortality 210 

each year. Sampling 1.5% of the population resulted in an average of 615 total samples and 100-211 

200 half-sibling pairs (HSPs), which is expected to produce a reasonable CV for all sampling 212 

schemes (Bravington et al. 2016b). Therefore, following model validation, we focused on 213 

sampling 1.5% of the population for the remainder of our simulations. 214 

2.2.1 Aging uncertainty 215 

 A crucial component of CKMR is accurate aging, yet some taxa, including 216 

elasmobranchs, are notoriously difficult to age, with most efforts relying on length-at-age growth 217 

curves to assign age to sampled individuals (Cailliet 2015). To examine how imprecision in 218 

growth curves affects CKMR parameter estimates, we first constructed an age-length key for 219 

lemon sharks using data from a long-term study of the population in Bimini, Bahamas (Feldheim 220 

et al., 2014), and calculated the standard deviation of lengths for individuals with known ages, 221 

the majority of which (>95%) spanned ages 0-3. We then simulated lengths for each sampled 222 

individual (which were assigned ages in our DGM) using a Von Bertalanffy growth curve for the 223 

species (Brown and Gruber 1988). Each individual was assigned a length by drawing a value 224 

from a normal distribution with the mean length-at-age specified by the Von Bertalanffy curve, 225 

and the standard deviation derived empirically from our age-length key for individuals aged 0-2, 226 

and arbitrarily from a CV of 5%, 10%, or 20% for individuals aged 3+. After assigning lengths to 227 

each individual, we used a reverse Von Bertalanffy growth curve with the same values for t0 (-228 
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2.302), Linf (317.65), and K (0.057) to re-assign ages to sampled individuals based on their 229 

lengths, rounding to the nearest integer, thus giving plausible, yet sometimes incorrect, ages 230 

(similar to age-slicing; see Ailloud et al. 2015, e.g.). These re-assigned ages were then used to 231 

construct the pairwise comparison matrix that was input to the CKMR model. 232 

2.3 Pairwise comparison matrix 233 

CKMR produces estimates of abundance and other population parameters by defining 234 

kinship probabilities for every pair of sampled individuals given relevant covariates (e.g., age, 235 

sex). We constructed two standard pairwise comparison matrices for each set of samples. The 236 

first matrix contained positive and negative kinship assignments for half-siblings. To satisfy the 237 

assumption of independent sampling, whenever full siblings or self-recaptures were present, all 238 

but one individual/instance was removed prior to construction of the matrix. Once the matrix was 239 

created, same-cohort comparisons were removed, as these can complicate analyses considerably 240 

(Bravington et al. 2016b, Førland 2019).  Kinship assignment in our simulations was known 241 

without error, so each comparison was assigned as a positive if the two individuals being 242 

compared were a half-sibling pair, and negative if not.  243 

The second matrix was composed of parent-offspring (PO) comparisons. Our simulations 244 

included sampling over four years only, so the PO matrix was only relevant to the scenario that 245 

included sampling of adults. For each birth year represented in the data (a.k.a. reference year), 246 

individuals that were alive in that year were split into potential offspring or parents based on 247 

whether they were born in that year (potential offspring), reproductively mature at the time 248 

(potential parent), or neither, in which case they were left out of the matrix corresponding to that 249 

year. A separate pairwise comparison matrix was constructed for each reference year that 250 
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compared all potential parents to all potential offspring in that year, and each comparison was 251 

assigned as a positive or negative. 252 

Once the appropriate half-sibling and parent-offspring comparisons were defined for each 253 

reference year, all matrices were collated and grouped by 1) type of relationship (half-sibling or 254 

parent-offspring), 2) reference year (a.k.a. birth year of younger individual for half-sibling 255 

comparisons, or birth year of the offspring for parent-offspring comparisons), 3) reference year 256 

gap (difference between the reference year and the estimation year when specifying a population 257 

growth model; see Section 2.4.2 below), and 4) mortality year gap (difference between the birth 258 

years of the individuals being compared; see Eq. 1), as applicable. Each row was treated as a 259 

binomially distributed random variable in the CKMR model, with the probability of success 260 

defined by Equations 1-4 below, and n equal to the total number of comparisons in each group 261 

(see Appendix S1: S1.1 and Table S2 for more details). 262 

2.4 Estimation models 263 

Kinship probabilities for each pairwise comparison in CKMR are derived from the 264 

expected reproductive output of individual animals (defined by covariates such as age and sex) 265 

relative to the total reproductive output of the population in the specified reference year 266 

(Bravington et al. 2016b). The specific equations we used to define kinship probabilities in our 267 

CKMR models varied with the scenarios we tested, with each scenario comparing a “naïve” 268 

model to an “adapted” model, where the naïve model ignored one key dynamic of the simulated 269 

population and the adapted model accounted for it. All of our equations are based on the general 270 

equations defined in Bravington et. al. (2016b). 271 

2.4.1 Base-case CKMR model 272 
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Let Y{Ki,j = MHSP} be the probability that individuals i and j are a maternal half-sibling 273 

pair (i.e. they share a mother but not a father). Probabilities for Y depend on the likelihood that 274 

the same individual that birthed the older offspring (i) survived and gave birth to the younger 275 

offspring (j). If we assume that all animals of reproductive age in the population during i and j’s 276 

birth years are equally likely to have birthed each of them, and if we only include as potential 277 

parents the animals that were of reproductive age during the birth years of i and j, then the 278 

probability of kinship (K) can be defined as  279 

𝑌{𝐾𝑖,𝑗 = 𝑀𝐻𝑆𝑃} ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (
𝜙𝛿

𝑁♀(𝑦𝑗)
, 𝑅(𝑦𝑖,𝑦𝑗))    (1), 280 

where, 281 

𝜙 is the annual survival probability for adults,  282 

yj is the birth year of individual j (the younger sibling), 283 

δ is the number of years between the birth years of individuals i and j (i.e. yj – yi) during 284 

which any potential parent of i may have died a.k.a. the “mortality year gap”, 285 

𝑅(𝑦𝑖,𝑦𝑗) reflects the total number of pairwise comparisons between individuals born in 286 

years yi and yj, and 287 

𝑁♀(𝑦𝑗) is the total number of mature females in year yj. 288 

 289 

Notably, K can be generalized to refer to either half-sibling (HS) or parent-offspring (PO) 290 

relationships by re-interpreting the parameter 𝛿, which for HS relationships refers to the 291 

difference between cohort birth years, but for PO kinship refers to the difference between the 292 

birth year of the offspring and the capture year of the adult. In the latter scenario, if the parent 293 

was captured in or after the offspring’s birth year, whether sampling was lethal or non-lethal, 294 
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then we know that the parent was alive in the year the offspring was born. Thus, any value for 𝛿 295 

which is <= 0 (which would reflect a parent that is captured in or after the year the offspring was 296 

born) is assigned a value of 0 and 𝜙𝛿  reduces to 1. Thus, 297 

𝑌{𝐾𝑖,𝑗 = 𝑀𝐻𝑆𝑃 𝑜𝑟 𝑀𝑃𝑂𝑃} ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( 

1

𝑁♀(𝑦𝑗)
𝜙𝛿 , 𝑅(𝑦𝑖,𝑦𝑗)   𝛿 > 0

1

𝑁♀(𝑦𝑗)
, 𝑅(𝑦𝑖,𝑦𝑗)     𝛿 ≤ 0

)          (2). 298 

Equation 2 defines our simple base-case CKMR model. Though the model focuses on 299 

maternal kinship, the same probabilities also apply to males. POPs were only included in the 300 

likelihood for the sampling scheme in which adults were sampled with all other age classes; 301 

otherwise, the likelihood included HS probabilities only. 302 

 303 

2.4.2 Population growth model 304 

 To account for population growth/decline in our CKMR model, we chose a simple 305 

exponential growth model to describe the population dynamics and added the parameter λ to our 306 

model. As such, our adapted model that accounts for population growth is:  307 

𝑌{𝐾𝑖,𝑗 = 𝑀𝐻𝑆𝑃 𝑜𝑟 𝑀𝑃𝑂𝑃} ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( 

1

𝑁♀(𝑦𝑗)𝜆(𝑦𝑗−𝛾) 𝜙𝛿 , 𝑅(𝑦𝑖,𝑦𝑗)   𝛿 > 0

1

𝑁♀(𝑦𝑗)𝜆(𝑦𝑗−𝛾) , 𝑅(𝑦𝑖,𝑦𝑗)     𝛿 ≤ 0
)          (3), 308 

 309 

where 𝜆 defines the annual population growth rate, 𝛾 represents the estimation year (a.k.a. the 310 

year to which the abundance estimate is targeted), and (yj-γ) is the reference year gap (see 311 

Appendix S1: S1.2). To assess the degree to which the choice of estimation year affects model 312 

performance, our simulations included an evaluation of model performance for three different 313 

estimation years (𝛾): 10 years in the past, 5 years in the past, and the present year (i.e. the last 314 

year of the simulation), while all other dimensions were held constant. 315 
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2.4.3 Intermittent breeding model 316 

 If a population – or subset of a population – systematically breeds on a non-annual 317 

schedule, then CKMR estimates will be biased unless this behavior is accounted for in the model 318 

(Waples and Feutry 2021). We accounted for intermittent breeding dynamics in our CKMR 319 

model via the inclusion of parameters a and Ψ , where a refers to the number of years between 320 

breeding (e.g., 2 for biennial breeders), and Ψ is the proportion of individuals that breed every a 321 

years (similar to Patterson et al. 2022a). This implies that (1 - Ψ) individuals breed annually. Of 322 

the non-annual breeders, we assume that 1/a breed in a given year. Thus, the effective number of 323 

female breeders in a given year is given by (1 −  𝜓)𝑁♀ +  
𝜓

𝑎
𝑁♀ , and the probability of maternal 324 

half-sibling kinship is 325 

𝑌{𝐾𝑖,𝑗 = 𝑀𝐻𝑆𝑃} ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (
𝑎𝜙𝛿

(𝑎+𝜓−𝑎𝜓)𝑁♀(𝑦𝑗)𝜆(𝑗−𝛾) , 𝑅𝑖,𝑗)    (4). 326 

As part of Objective 3 of our simulations, we fixed the parameter a to 2 to reflect biennial 327 

breeding, and explored the ability of our model to estimate Ψ. If 100% of females breed on a 328 

biennial cycle (i.e. a = 2 and 𝛹  = 1), then the probability of finding half-siblings that are 329 

separated by an odd number of birth years is 0. It is the presence of δ intervals that are not 330 

divisible by a that provide information on the parameter 𝛹 (see Appendix S1: S1.3). 331 

In our simulations we assumed that intermittent breeding dynamics were only present for 332 

females, and that all males in the population were available for breeding each year; as such, 333 

Equation 4 only applied to maternal comparisons, while Equation 3 was still used for the males. 334 

Finally, because the parent is directly sampled in PO CKMR, there is no need to explicitly 335 

account for breeding periodicity in the likelihood; therefore, we continued to use Equation 3 for 336 

maternal PO comparisons when applicable. 337 
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2.4.4 Estimation framework 338 

We adopted a Bayesian approach to CKMR parameter estimation, which allows for the 339 

incorporation of auxiliary data and/or expert knowledge as priors on model parameters (Kéry and 340 

Schaub, 2012b). For model validation, survival (Φ) was given an informed beta prior which was 341 

derived by solving for α and β using the equations: 𝜇 =  
𝛼

𝛼+ 𝛽
 and 𝜎2 =  

𝛼𝛽

(𝛼+ 𝛽)2(𝛼+𝛽+1)
, where µ 342 

was set to the mean adult survival in the DGM (0.825) and σ2 was calculated from a CV of 5%. 343 

For the rest of the scenarios, survival and other parameters were assigned diffuse priors to reflect 344 

data-limited situations (Table 2).  345 

The posterior distributions for parameter estimates were approximated using Markov 346 

Chain Monte Carlo (MCMC) sampling, implemented using the software JAGS (Plummer, 2003) 347 

and applied in the R environment (Denwood, 2016; R Core Team, 2021). We ran two Markov 348 

chains with a thinning rate of 20, drawing 40,000 samples from the posterior distribution 349 

following a burn-in of 50,000 samples. These settings were empirically derived by assessing 350 

autocorrelation among successive draws and convergence among the chains. We assessed 351 

convergence of the final Markov chains with trace plots and the Gelman-Rubin statistic (Gelman 352 

and Rubin, 1992), and removed from further analysis any iteration with an Rhat value > 1.01, 353 

although these instances were rare.  354 

2.5 Application to Lemon sharks 355 

A long-term genetic dataset from lemon sharks in Bimini, Bahamas was used to illustrate 356 

application of our multiennial CKMR model (Eq. 4) to a dataset derived entirely from juvenile 357 

tissue samples (Feldheim et al. 2014). Lemon sharks are large viviparous (live-bearing) 358 

elasmobranchs that reach sexual maturity at approximately 12 years of age (Brown and Gruber 359 

1988) with a lifespan exceeding 30 years (Brooks et al. 2016). Female lemon sharks at Bimini 360 
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are regionally philopatric and return to Bimini to pup on a biennial schedule, while the males 361 

with which they mate likely reproduce over a much larger area (Feldheim et al. 2002). Juveniles 362 

use the shallow waters surrounding Bimini as a nursery and remain in the area until 2-3 years of 363 

age or until they reach 90 cm in length (Morrissey and Gruber 1993) and generally do not move 364 

between the North and South Islands (Gruber et al 2001). The Bimini nursery contributes to a 365 

larger Western Atlantic population that is classified as Vulnerable by the IUCN (Hansell et al. 366 

2018, 2021, Carlson et al. 2021). The Bimini nursery has been intensively studied since 1995, 367 

with an estimated 99% of newborn sharks sampled at the Bimini North Island each year 368 

(Dibattista et. al. 2007) and maternal kinship assigned for the majority of sampled individuals 369 

(Feldheim et al. 2002, 2004, 2014).  370 

 For CKMR abundance estimation, we focused on samples collected from the North 371 

Island, which represents a small isolated nursery for lemon sharks aged 0-3 years old (Chapman 372 

et al. 2009), collected from 1993-2015. Most individuals in our dataset were sampled as YOY 373 

and easily identified by the presence of umbilical scars, so their ages were known. Maternal 374 

kinship was assigned with high confidence, but paternal kinship was not, so we focused our 375 

efforts on maternal comparisons only. We estimated abundance as a derived quantity in our 376 

CKMR model by dividing 𝑁♀(𝑦𝑗) by a, which we fixed to 2 for this population that primarily 377 

breeds biennially. Thus, our scope of inference for parameter estimation encompassed the adult 378 

females that visited the North Island nursery to give birth during each year of estimation, a 379 

number which is likely very small (White et al. 2014). We excluded from analysis sampled 380 

individuals without a known birth year as well as same-cohort comparisons (Bravington et al. 381 

2016b), and any individuals for which maternal kinship assignment was uncertain. Since 92% of 382 

individuals were sampled as YOY, our likelihood utilized HSPs only (Eq. 4).  383 
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To replicate the type of outcome that could be produced by integrating CKMR into long-term 384 

monitoring efforts, we subset the dataset to generate a separate abundance estimate for each year 385 

from 1997 – 2015. Though our dataset includes samples from as far back as 1993, intensive 386 

sampling of the population began in 1995 (Dibattista et al. 2007) and lemon sharks breed 387 

biennially; therefore, we used 1997 as our first estimation year (i.e. one full breeding cycle after 388 

exhaustive sampling began). To generate an abundance estimate for 1997, we included samples 389 

collected from 1993-1997 only, and specified 1997 as our estimation year in the model. For 390 

1998, we added samples collected from 1998 to those collected from the years prior, specified 391 

1998 as the estimation year, and fit another CKMR model, repeating this process through 2015. 392 

We used our simulation results from the targeted sampling of YOY with no aging error to guide 393 

our expectations for the first few years of application when relatively few cohorts were included, 394 

but we expected our results to better align with the sampling scheme that included all juveniles 395 

(again with no aging error) as we increased the number of cohorts included in the dataset. 396 

Recognizing that the Bimini lemon shark dataset is unique in how thoroughly the population 397 

was sampled, we also examined whether the model performed similarly with sparser datasets. 398 

First, we applied the same iterative process as with the full dataset and generated a time-series of 399 

abundance estimates, but this time the number of samples collected each year was randomly cut 400 

to 30% of the full dataset. Finally, we generated a third time-series of abundance estimates 401 

wherein we subsampled the full dataset for five-year intervals to examine whether we recovered 402 

similar estimates and trends with datasets that span smaller time series.  403 

 404 

3. Results 405 

3.1 Model validation  406 
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When the assumptions of the model were met, a simple base-case CKMR model (Eq. 2) 407 

generally produced unbiased estimates of abundance under all sampling schemes and intensities 408 

(Figure 2a), with increasing precision as sampling intensity increased (Figure 2b). The model 409 

produced unbiased estimates of abundance whether the likelihood included HSPs only (as in the 410 

sample all juveniles and target YOY scenarios) or jointly considered HSPs and POPs (as in the 411 

sample all ages scenario), though we note improved precision for the latter. At very low 412 

sampling intensities (0.5% of the target population sampled), fewer than 25 HSPs were identified 413 

for all sampling schemes (Figure 2c) and fewer than 5 parent-offspring pairs (POPs) were 414 

identified for the sampling scheme that included all ages (Figure 2d). In contrast, when 2% of the 415 

population was sampled, over 200 HSPs were identified on average for all sampling schemes, 416 

while 10-40 POPs were identified for the scenario in which all age classes were sampled. These 417 

results demonstrate that a simple base-case CKMR model can produce unbiased abundance 418 

estimates across a range of potential sampling scenarios when population dynamics align with 419 

the model’s assumptions. 420 

 421 

3.2 Population growth 422 

3.2.1 Naïve vs adapted model 423 

When the simulated population had a trend of consistent growth or decline (+/- 1% per 424 

year), our simple base-case CKMR model that was naïve to annual population fluctuations 425 

performed almost identically to an adapted model with a narrow prior on λ (Eq. 3; Figure 3a-c). 426 

However, when we added mortality to the last ten years of the DGM to simulate a period of 427 

severe population decline, we observed considerable differences in performance depending on 428 

whether the naïve or adapted model was used, and whether the prior on λ was wide enough to 429 
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encompass the true value (Figure 3d). These results indicate that a naive CKMR model is robust 430 

to minimal increasing or decreasing population trends, but must be adapted if the data span a 431 

period of substantial population change. 432 

Using the adapted model (Eq. 3), we also tested the impact of prior specification on λ. 433 

When the simulated population exhibited a trend that was stable, slightly increasing, or slightly 434 

declining (+/-1% per year), abundance estimates were mostly unbiased whether λ was given a 435 

narrow (yellow) or diffuse (blue) prior, as long as a range of age classes were sampled (Figure 436 

3a-c, left two columns). When the population experienced a 10-year period of severe decline, a 437 

diffuse prior that encompassed the realized range of λ values (mean population λ = 0.93) was 438 

necessary to produce unbiased estimates on average (Figure 3d, left two columns). If sampling 439 

included YOY only, then giving a diffuse prior to λ resulted in poor model performance even 440 

when the population was stable, while the naïve model and the adapted model with the narrow 441 

prior on λ performed similarly to one another, giving reasonable abundance estimates when 442 

population change was minimal but producing biased abundance estiamtes when population 443 

decline was severe (Figure 3a-d, right column). Taken together, these results suggest that 444 

specification of a prior for λ can improve model performance considerably, especially under 445 

scenarios of severe population decline or when limited age classes are sampled. 446 

 447 

3.2.2 Estimation of λ and survival 448 

Estimates of λ exhibited slight bias that varied with the estimation year. The bias was 449 

generally small as long as sampling included multiple age classes, with targeted sampling of 450 

YOY producing less consistent results (Appendix S1: Figure S1). Estimates of survival were 451 

accurate regardless of estimation year; however, there were differences in bias correlated with 452 
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sampling scheme, with targeted sampling of YOY again performing worse than when a greater 453 

array of cohorts were represented in the data (Appendix S1: Figure S1).  454 

For cases where λ was given a diffuse prior, we tallied how often the model correctly 455 

identified a positive or negative population trend, regardless of the amount of bias surrounding 456 

the estimate of λ. When population change was slight in either the positive or negative direction, 457 

the model was able to correctly identify the trend (positive or negative) 57% - 66% of the time, 458 

depending on sampling scheme and estimation year (Appendix S1: Figure S2a,). When 459 

population decline was severe, the model was able to accurately determine the direction of 460 

population change in nearly all cases regardless of sampling scheme (Appendix S1: Figure S2b), 461 

though we noted a slight decline in this capacity as the estimation year was projected closer to 462 

the present. 463 

 464 

3.2.3 Impact of estimation year 465 

All combinations of sampling scheme and CKMR model performed progressively worse 466 

as the year of estimation was projected farther into the past, a trend that was reflected in 467 

estimates of abundance (Figure 3) and λ (Appendix S1: Figure S1, left), but not survival 468 

(Appendix S1: Figure S1, right). These results suggest that when population size cannot be 469 

assumed constant, the choice of estimation year can have a strong effect on CKMR parameter 470 

estimates. 471 

 472 

3.3 Intermittent breeding  473 

3.3.1 Naïve vs adapted model 474 
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When a CKMR model that is naïve to intermittent breeding (Eq. 3) was applied to data 475 

from a population with females that bred biennially, the resulting parameter estimates were 476 

substantially more biased than those generated by a model that was adapted to account for 477 

intermittent breeding (Eq. 4). In particular, estimates of abundance (Figure 4a) and survival 478 

(Appendix S1: Figure S3a) were strongly influenced by the choice of model, while estimates of λ 479 

were less affected (Appendix S1: Figure S3b). These results confirm the importance of 480 

accounting for multiennial breeding dynamics in a CKMR model. 481 

3.3.2 Variations in breeding schedule 482 

When we included a proportion of biennial breeders that stochastically bred off-cycle 483 

(Table 1; Scenario 3.6), or when the population comprised a mix of annual and biennial breeders 484 

(i.e. Ψ <1), estimates of abundance from the multiennial model remained unbiased for both 485 

females and males, though we note a slight tendency for the model to underestimate female 486 

abundance when there is a high percentage of annual breeders (Figure 4a, Table 3). For the 487 

scenarios that sampled across a broad range of cohorts, survival estimates from the multiennial 488 

model were unbiased on average regardless of the proportion of annual breeders included in the 489 

simulation (Appendix S1: Figure S3a). As the ratio of biennial to annual breeders was shifted 490 

towards annual breeders (i.e. as Ψ was made smaller in the DGM), the performance gap between 491 

the naïve (annual) and adapted (multiennial) model diminished for all parameters and sampling 492 

schemes.  493 

Estimates of Ψ were unbiased when the population comprised a high proportion of 494 

intermittent breeders that reliably bred on-cycle, but became more biased as the relative 495 

proportion of annual breeders in the population increased, or when some proportion of biennial 496 

breeders stochastically bred off-cycle (Appendix S1: Figure S3c). When we simulated a 497 
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population of females that bred on a triennial cycle and fit both an annual and multiennial model, 498 

results were similar to the case where all females bred on a biennial cycle, though the 499 

performance gap between the annual and multiennial model was greater with a population that 500 

breeds triennially (Appendix S1: Figure S4).  501 

3.4 Aging uncertainty 502 

The frequency with which samples were assigned to the incorrect cohort varied by age, 503 

with older individuals being more likely to be assigned to the wrong cohort (Appendix S1: 504 

Figure S5). The probability of age misassignment roughly corresponded to the slope of the von 505 

Bertalanffy growth curve, with the probability of age misassignment being greatest as the curve 506 

approached its asymptote (Appendix S1: Figure S5a). Consequently, the effects of aging error 507 

were minimal in the scenario in which sampling was targeted to YOY, as these individuals were 508 

far more likely to be assigned to the correct cohort (Appendix S1: Figure S5b).  509 

When multiple age classes were represented in the data, bias accrued in estimates of 510 

female abundance and survival as the CV surrounding age assignment widened regardless of 511 

whether we simulated a population that bred annually or biennially (Figure 4b). Estimates of λ 512 

had a tendency towards downward bias (Appendix S1: Figure S6a) while estimates of male 513 

abundance showed the same pattern as females (Appendix S1: Figure S6b). Targeted sampling of 514 

YOY showed a different trend, where increasing the CV on age assignment did not affect the 515 

bias of parameter estimates (Figure 4b) because the probability of misassigning an age-0 516 

individual to the wrong cohort was very low (Appendix S1: Figure S5, right column). These 517 

results confirm that reliable aging is a key component of CKMR and suggest that targeted 518 

sampling of age classes that can be reliably aged can improve model performance when accurate 519 

aging for some age classes is challenging. 520 
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 521 

3.5 Application to lemon shark data 522 

When we applied our multiennial CKMR model (Eq. 4) to different subsets of data from 523 

lemon sharks in Bimini, Bahamas, the abundance trend showed a rise and fall in abundance from 524 

1997 – 2015, with peak abundance occurring between 2006 – 2010 depending on which subset 525 

of data was used (Figure 5a). The overall parabolic trend was the same whether we used the full 526 

dataset, the downsampled dataset, or five year intervals of data. Absolute estimates of abundance 527 

for breeding females were very low in all three cases (max = 41, Table 4), suggesting that a small 528 

number of mature females visit the North Island in Bimini to breed each year. 529 

Estimates of adult survival generally agreed with the proposed range of possible values 530 

from other studies (see White et. al. 2014 for an overview), although the year-to-year consistency 531 

of survival estimates varied with the number of years sampled and richness of the dataset (Figure 532 

5b). When we used the full or downsampled dataset, estimates of survival converged as more 533 

years of data were included in the analysis, while the five-year interval dataset showed more 534 

variable estimates, consistent with our simulations that utilized fewer cohorts. All three datasets 535 

generally showed very high survival rates for mature female lemon sharks (>0.85). 536 

 537 

4. Discussion 538 

Obtaining unbiased estimates of abundance is a central challenge for effective 539 

conservation and management of many threatened and exploited populations, and is especially 540 

pertinent for populations of low density and highly mobile species where sampling of adults is 541 

largely intractable. Our simulation results broadly concur with recent work supporting CKMR as 542 

a promising approach to estimate abundance and survival in data-limited circumstances, but 543 
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emphasize the critical need to adapt CKMR models adequately to accommodate population 544 

dynamics and life history traits that violate the assumptions of a simple base-case model. 545 

Additionally, although we also confirm sensitivity of CKMR to aging error, our finding that bias 546 

in parameter estimates can be mitigated by focused sampling of as few as four cohorts that can 547 

be reliably aged provides options for applying the method in species where accurate aging is 548 

difficult. Finally, our application to lemon sharks in Bimini, Bahamas demonstrates that CKMR 549 

is a flexible framework that can be used to estimate abundance and survival of breeding adults 550 

when only juveniles are available for sampling. Taken together, our simulation results and 551 

application to lemon sharks demonstrate that CKMR is a robust tool for estimation of adult 552 

abundance and survival even when adults are not directly observed, making this framework a 553 

potentially powerful tool in monitoring programs for populations of low density and highly 554 

mobile species, including in data-limited circumstances. 555 

 556 

4.1 Accounting for population growth/decline 557 

A simple base-case CKMR model (e.g., Eqs. 1 and 2) assumes that population abundance 558 

is stable over time, such that the quantities estimated by CKMR could equally apply to every 559 

reference year in the pairwise comparison matrix. If the assumption of a stable population size is 560 

inappropriate, or if estimates of underlying population parameters are desired, population 561 

dynamics can be modeled with CKMR using latent variables. By specifying a population growth 562 

model, data can be shared among cohorts to produce a single estimate of abundance for a 563 

specified estimation year, whereas without a growth model, estimates would be wholly 564 

independent for each cohort. Other studies have referred to the designation of an estimation year 565 

as “arbitrary” (Bradford et al. 2018). While this may be true in cases where sampling is extensive 566 
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and perfectly represents the age class distribution of the population, our simulation results 567 

suggest that parameter estimates become more biased as the year of estimation is projected 568 

outside the bounds of reference years in the dataset. Importantly, the reference years do not 569 

necessarily relate to the years of sampling, but rather to the cohorts (i.e. birth years) represented 570 

in the dataset (see Appendix S1, Table S2). If sampling includes a high proportion of older age 571 

classes, then the best estimation year for the dataset may extend farther into the past than the first 572 

year of sampling. Regardless, when specifying a population growth model in conjunction with 573 

CKMR, the specified estimation year should be calibrated to the distribution of reference years 574 

in the dataset, and not necessarily the years of sampling.  575 

In our simulations, we chose to specify an exponential growth model where inter-annual 576 

population dynamics were broadly captured in the parameter λ. While inclusion of this parameter 577 

generally improved CKMR parameter estimation in scenarios of consistent population growth or 578 

decline, giving too much flexibility to the prior on λ impeded estimation of other parameters, 579 

particularly when few cohorts were represented in the data. In practical applications of CKMR, 580 

knowledge of a species’ life history in combination with Leslie matrix simulations can help set 581 

realistic bounds on λ (e.g. Hillary et al. 2018); alternatively, ancillary data sources (e.g. CPUE) 582 

could be integrated into the model via specification of the prior on λ.  583 

  584 

4.2 Intermittent breeding dynamics 585 

Intermittent breeding is a commonly observed reproductive strategy in long-lived species 586 

where reproduction bears additional “accessory” costs in terms of time, energy and/or survival 587 

(Shaw and Levin 2013), such as when reproduction includes migration to reproductive grounds 588 

and/or live-birth (Bull and Shine 1979). This strategy can be observed across a range of taxa 589 
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such as reptiles (Bauwens and Claus 2019), mammals (Desprez et al. 2018), birds (Cubaynes et 590 

al. 2011, Öst et al. 2018), teleosts (Morbey and Shuter 2013, Skjæraasen et al. 2020), and 591 

elasmobranchs (Feldheim et al. 2002, Nosal et al. 2021), including species of conservation 592 

concern like leatherback sea turtles (Dermochelys coriacea; Rivalan et al. 2005) and smalltooth 593 

sawfish (Pristis pectinata; Feldheim et al. 2017). When intermittent breeding coincides with a 594 

population that is most easily sampled during the juvenile life stage (e.g., when adults are not 595 

directly observed), our results indicate that abundance estimates derived from a CKMR model 596 

that relies on samples of juveniles and assumes annual breeding will be positively biased. 597 

However, the multiennial CKMR model presented here accommodates intermittent breeding via 598 

inclusion of the parameters Ψ and a (see Appendix S1, S1.3). While our model can accurately 599 

estimate Ψ in some highly controlled cases, in real populations, some proportion of individuals 600 

are likely to stochastically breed off-cycle, which can hinder the model’s ability to estimate Ψ 601 

even while it retains the ability to accurately estimate abundance and survival. The juxtaposition 602 

of biased estimates of Ψ with unbiased estimates of abundance and survival suggests that Ψ 603 

provides needed flexibility for the model to accurately estimate other parameters, even though 604 

the parameter itself likely cannot be estimated under realistic conditions. Similarly, the parameter 605 

a must be fixed to the expected breeding cycle. If the breeding cycle for a population is 606 

unknown, and if adults are not available for sampling, then it may be possible to estimate a from 607 

the dataset apart from the CKMR model (Waples and Feutry 2021). As a cursory example, if 50 608 

HSPs are found and nearly all were born in year gaps that are divisible by 2, then fixing a to 2 609 

would be a logical approach. If a can be fixed to a reasonable value, then the multiennial model 610 

presented here can produce reliable estimates of abundance and survival, opening the door for 611 

application of CKMR to populations that breed intermittently. Future work that adapts CKMR to 612 
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estimate Ψ and a across a range of scenarios would further expand the potential of CKMR to 613 

illuminate aspects of population breeding dynamics. 614 

 615 

4.3 Aging error 616 

CKMR depends heavily on accurate cohort assignment, which can be very challenging 617 

for many species, including elasmobranchs. Our results confirm that age misassignment can 618 

substantially bias CKMR parameter estimates. A hierarchical model that accounts for aging error 619 

may help alleviate this issue, but such a model would require some estimate of the probability of 620 

age misassignment (Hirst et al. 2004, Schwarz and Runge 2009), which may not be available in 621 

data-limited situations. It is preferable, therefore, to treat ages as fixed if sufficient data are 622 

available to assign age with confidence. In cases where only YOY can be reliably aged, our 623 

results show that CKMR can generate reliable abundance estimates from as few as four cohorts, 624 

even for a population that breeds bi- or triennially. If mature individuals are also available to 625 

sample – e.g., when visiting a nursery site to breed – then sampling potential parents as well as 626 

YOY can enable the use of POPs in the likelihood and improve precision of parameter estimates. 627 

Aging error in this case would be less critical for adults as long as maturity can be confirmed in 628 

the year of sampling, though care must be taken to ensure that potential parents and offspring are 629 

sampled independently, as parameter estimates will be biased if the probability of sampling a 630 

parent is correlated with the probability of sampling its offspring (Bravington et al. 2016b).  631 

 632 

4.4 Population dynamics and abundance of lemon sharks in Bimini 633 

Our application of CKMR to Bimini lemon sharks highlights the flexibility and potential of 634 

CKMR for long-term monitoring of populations of low density highly mobile species with 635 
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geographically distinct life histories. Estimates of abundance from CKMR suggest that a very 636 

small number of female lemon sharks give birth at the North Bimini Lagoon during each biennial 637 

breeding cycle (Table 4). These results align with a previous study that reconstructed a pedigree 638 

for the population and identified the number of adults that successfully bred at the North Island 639 

each year between 1995-2007 (DiBattista et al. 2011). In both cases, the number of females that 640 

gave birth at the North Island during this time period was estimated to be very small (<~40 per 641 

year), with an increasing abundance trend through 2006. At some point after 2006, however, our 642 

results suggest that the number of females using Bimini for breeding began to decline. Intense 643 

dredging and mangrove deforestation took place around the North Bimini Island in March 2001 644 

in preparation for development of a mega-resort (Jennings et al. 2008). Although the number of 645 

breeding females at the North Island counterintuitively increased immediately after the 646 

disturbance (DiBattista et al. 2011), there was a transient, but statistically significant, drop in the 647 

survival rates of age 0 and age 1 individuals (Jennings et al. 2008). These cohorts would have 648 

reached maturity and begun returning to Bimini for reproduction around 2013. Indeed, in our 649 

application of CKMR, we observed a declining abundance trend for adult females in 2013 in the 650 

full dataset as well as the two subsets of data (Figure 5), although the year in which the decline 651 

began varies depending on if/how the data were subsetted. 652 

Although our results closely resemble those reported in DiBattista et. al. (2011), we note that 653 

our abundance estimates from CKMR were slightly higher. CKMR with small populations is an 654 

active area of research, as there is a known tendency to underestimate variance when the method 655 

is applied to populations with fewer than 100 individuals (M. Bravington, Pers. Comm.). When 656 

dealing with abundance estimates that are small enough to cause such issues, the practical 657 

implications of this known bias are likely minimal. For example, our model estimated a 658 
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maximum of 41 females visited the North Island across all 18 years of abundance estimation, 659 

regardless of if/how we subsetted the dataset (Table 4). This value is small enough that any 660 

amount of added fishing pressure would likely threaten the sustainability of this portion of the 661 

population, especially if the true abundance is lower than what CKMR estimates. 662 

Recognizing that the dataset for lemon sharks is uniquely rich in terms of the proportion of 663 

the population sampled and the decades over which sampling occurred, we applied CKMR to 664 

two different subsets of data: one that reduced sampling intensity each year and one that reduced 665 

the number of years over which sampling occurred. In both cases, the abundance estimates and 666 

trend were similar to the results we obtained using the full dataset, demonstrating the robustness 667 

of CKMR to less exhaustive and extensive sampling efforts. Indeed, one of the more exciting 668 

aspects of CKMR is its potential to generate rapid estimates of adult abundance without 669 

sampling a single adult (see Patterson et al. 2022b for an applied example). Once a reliable 670 

genotyping panel, workflow for assigning kinship, and appropriate CKMR model are developed 671 

for a population (see Appendix S1, Figure S7), contemporary abundance estimates could 672 

conceivably be obtained within weeks of sampling. As such, CKMR can offer a rapid and cost-673 

effective method for population monitoring in real time following an initial investment in the 674 

laboratory and analytical workflows. 675 

  676 

4.5 Implications for sampling design 677 

We have shown that application of CKMR to long-lived species can generate reliable 678 

estimates of abundance from a limited number of cohorts as long as aging is reliable; however, 679 

estimates of all parameters – especially non-abundance parameters – are more reliable when 680 

more cohorts are included in the dataset. We observed this in our simulations as well as the 681 
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lemon shark dataset, where estimates of survival converged as more cohorts were added to the 682 

dataset. A dataset that spans enough cohorts to reliably estimate parameters beyond abundance 683 

can be obtained via intense sampling of multiple age classes over a small number of years, but 684 

this strategy would require reliable aging of all sampled age classes to avoid biased parameter 685 

estimates. Alternatively, long-term non-lethal sampling of nursery areas represents another way 686 

that CKMR can be used to monitor low density highly mobile populations in circumstances 687 

where aging error is likely for older age classes. We are not the first to suggest that CKMR 688 

benefits from focusing sampling efforts on individuals that can be reliably aged (Trenkel et al. 689 

2022), but our results are the first to demonstrate empirically that this approach can mitigate the 690 

bias that accrues when aging is less certain. In cases where sampling of juveniles is focused on 691 

nursery areas, sufficient biological knowledge to determine the scope of inference for CKMR 692 

will be required. 693 

 694 

Conclusion and Future Directions 695 

CKMR is a powerful tool for estimating population abundance of species that have been 696 

historically difficult to assess. However, CKMR is not a panacea, and reliable application of the 697 

method requires careful consideration of the relevant population dynamics matched to an 698 

appropriate sampling scheme. Here, we have shown that abundance estimates derived from 699 

CKMR are robust to a variety of sampling schemes, provided substantial population 700 

growth/decline and intermittent breeding dynamics are accounted for, while estimates of survival 701 

and population growth/decline rate are more sensitive to sampling constraints. When ages are 702 

prone to misassignment, focusing sampling efforts on individuals with known ages (e.g., YOY), 703 

or subsampling for these individuals if the dataset is sufficiently rich, can alleviate bias in 704 
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parameter estimates, particularly abundance. Long-term monitoring of highly mobile species can 705 

be enhanced by CKMR via sampling of nursery areas when one or both sexes are philopatric, 706 

and can provide estimates of present-day abundance and abundance trends for adults that visit 707 

the nursery area without directly sampling a single adult. Overall, this study highlights the 708 

sensitivity of simple base-case CKMR models to assumptions about population dynamics and 709 

sampling, while also demonstrating that the CKMR framework is easily adaptable to 710 

accommodate these factors, making it a promising tool for integration into long-term monitoring 711 

programs. 712 

 713 
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Table 1: Simulation scenarios for data-generating model and estimation model. 960 

Scenario Test 10 year 

mean λ 

10 year 

sd λ 

Model 

equation(s) 

used 

Aging CV on 

aging error 

1 Model validation 1 0.003 Eq. 2 Precise NA 

2.1 Slight population 

decline 

0.99 0.003 Eq. 2, Eq. 3 Precise NA 

2.2 Slight population 

growth 

1.01 0.002 Eq. 2, Eq. 3 Precise NA 

2.3 Severe population 

decline 

0.93 0.01 Eq. 2, Eq. 3 Precise NA 

3.1 100% biennial breeders 1 0.003 Eq. 3, Eq. 4 Precise NA 

3.2 90% biennial breeders 1 0.003 Eq. 3, Eq. 4 Precise NA 

3.3 75% biennial breeders 1 0.003 Eq. 3, Eq. 4 Precise NA 

3.4 50% biennial breeders 1 0.003 Eq. 3, Eq. 4 Precise NA 

3.5 100% triennial breeders 1 0.003 Eq. 3, Eq. 4 Precise NA 

3.6 100% biennial breeders 

w/ stochastic off-cycle 

breeding 

1 0.003 Eq. 3, Eq. 4 Precise NA 

4.1 Minimal age-length 

uncertainty 

1 0.003 Eq. 3, Eq. 4 Imprecise 5% 

4.2 Moderate age-length 

uncertainty 

1 0.003 Eq. 3, Eq. 4 Imprecise 10% 

4.3 Substantial age-length 

uncertainty 

1 0.003 Eq. 3, Eq. 4 Imprecise 20% 

Note: λ is the annual population growth/decline rate. 961 
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Table 2: Priors used in CKMR model for results highlighted in text and figures. 963 

     Objective Ns Φ λ prior ψ 

1: Model 

validation 

NS  ~ Normal(µ, σ) 

µ ~ Uniform(1, 10000) 

σ ~ Uniform(1, 10000) 

Beta(69.175, 

14.673) 
None NA 

2: Population 

change 
Same as 1 Uniform(0.5, 0.95) 

None 

Uniform(0.95, 1.05) 

Uniform(0.80, 1.20) 

NA 

3: Intermittent 

breeding 
Same as 1 Uniform(0.5, 0.95) Uniform(0.95, 1.05) Uniform(0, 1) 

4. Aging 

uncertainty 
Same as 1 Uniform(0.5, 0.95) Uniform(0.95, 1.05) Uniform(0, 1) 

5: Bimini 

lemon shark 

data 

Same as 1 Uniform(0.5, 0.99) Uniform(0.95, 1.05) Uniform(0, 1) 

Note: λ is the annual population growth/decline rate; Ns is sex specific adult abundance; Φ is 964 

annual adult survival (not sex-specific); ψ is the proportion of individuals that breed every a 965 

years. 966 
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Table 3: Relative bias, HSPs, and percent in the 95% HPDI for female abundance (N♀) under 968 

different scenarios using the model that was adapted for each scenario. 969 
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Table 4: Abundance estimates and sampling metrics for Bimini lemon sharks when a CKMR 970 

model adapted for intermittent breeding was fit to the full dataset, a downsampled dataset in 971 

which 30% of samples were retained for each year, and a subset of the full dataset in which five-972 

years of data were used to estimate abundance in each year. 973 

  Full dataset Downsampled dataset Five year intervals 
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M
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1997 15 (10 - 19) 104 105 14 (5 - 28) 33 11 15 (10 - 19) 104 105 

1998 15 (11 - 18) 121 141 12 (4 - 23) 39 15 15 (10 - 19) 115 113 

1999 18 (14 - 22) 157 239 23 (7 - 49) 50 13 18 (12 - 23) 143 180 

2000 19 (15 - 22) 180 306 16 (10 - 24) 57 33 18 (13 - 23) 134 130 

2001 20 (15 - 25) 214 357 26 (13 - 41) 68 30 13 (7 - 22) 146 111 

2002 26 (22 - 31) 251 462 24 (14 - 35) 80 45 32 (24 - 40) 147 100 

2003 29 (24 - 33) 283 564 27 (18 - 38) 90 57 38 (30 - 47) 162 113 

2004 32 (28 - 35) 316 678 27 (19 - 36) 100 74 34 (24 - 43) 159 107 

2005 31 (27 - 35) 374 822 31 (23 - 40) 118 95 36 (26 - 44) 194 158 

2006 36 (32 - 40) 424 1029 29 (19 - 41) 133 99 37 (29 - 44) 210 175 

2007 34 (30 - 38) 470 1248 27 (19 - 37) 147 135 34 (28 - 40) 219 214 

2008 38 (34 - 42) 493 1349 41 (29 - 52) 154 122 35 (25 - 44) 210 165 

2009 36 (33 - 40) 539 1556 33 (23 - 44) 168 158 30 (21 - 39) 223 227 

2010 38 (34 - 42) 559 1665 37 (28 - 48) 174 175 31 (21 - 40) 185 138 

2011 35 (31 - 39) 611 1977 30 (20 - 40) 190 208 31 (25 - 37) 187 210 

2012 37 (32 - 41) 619 1995 23 (16 - 33) 193 159 33 (25 - 42) 149 96 

2013 33 (30 - 37) 657 2240 24 (16 - 32) 205 255 29 (19 - 40) 164 160 

2014 31 (27 - 34) 678 2374 32 (24 - 40) 212 273 23 (19 - 28) 139 113 

2015 27 (24 - 30) 718 2708 31 (21 - 44) 224 239 24 (18 - 29) 159 202 

Note: MHSPs refers to the number of maternal half-sibling pairs identified.  974 
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Figure 1: Schematic of CKMR sensitivity tests, examined via individual-based simulation (see 975 

also Tables 1 and 2; Scenario 1 was model validation, and Scenario 5 involved real genetic data, 976 

so are not included here). Populations with distinct pedigrees were produced and sampled via an 977 

individual-based data-generating model (purple). Population parameters were individually varied 978 

for each of three scenarios. Each population was sampled in three ways, and each set of samples 979 

was used as input to two estimation models (green): one model was naïve to the added 980 

population dynamics of the DGM, and one model was adapted to account for them. The prior on 981 

λ and the year of estimation was varied for Scenario 2; otherwise, simulation results that are 982 

highlighted in the text used the model settings highlighted in bold (narrow prior on λ, estimating 983 

abundance five years in the past). 984 

 985 

Figure 2: Base CKMR model performance and kin pairs detected for three different sampling 986 

schemes at four different sampling intensities over 500 iterations. a) Relative bias of abundance 987 

estimates of adult females and males as a percentage of the truth (i.e. relative bias x 100). Bias 988 

was calculated from the median of each of 500 posterior distributions. b) CV on abundance 989 

estimates with log-scaled Y axis for visualization. c) Number of sex-specific half-sibling pairs 990 

detected by sampling scheme and sampling intensity. For each iteration, the number of half 991 

sibling pairs for each sex was calculated and averaged. d) Number of sex-specific parent-992 

offspring pairs detected for the “sample all ages” sampling scheme. 993 

 994 

Figure 3: Relative bias of CKMR abundance estimates for mature females (N♀) when applied to 995 

populations experiencing variable degrees of population growth or decline. Plots are split by 996 

sampling scheme (column), population growth pattern (row facet) and the year of estimation 997 

(rows within population growth facet). Scenarios assessed had population growth as a) stable 998 

(+/-0% per year), b) slightly increasing (+1% per year), c) slightly declining (-1% per year), or 999 

d) severely declining (-5-10% per year over the final 10 years). Three different models were fit 1000 

to 500 simulated populations for each scenario: a naïve model without a parameter for population 1001 

growth (red), an adapted model with population growth constrained to +/-5% per year (yellow), 1002 

and an adapted model with population growth more loosely constrained to +/- 20% per year 1003 

(blue). Plots were truncated at +/-100% for visualization because there were long tails of positive 1004 

bias for the 10 year past scenarios. 1005 

 1006 

Figure 4: Relative bias of CKMR parameter estimates with intermittent breeding and aging 1007 

error. a) Relative bias of abundance estimates for females (Nf, top facet) and males (Nm, bottom 1008 

facet) in a simulated population with different ratios of biennial vs. annual female breeders. An 1009 

annual CKMR model that was naïve to intermittent breeding dynamics was examined (Eq. 3, 1010 

orange) as was a multiennial model that was adapted to account for these dynamics (Eq. 4, blue). 1011 

On the x-axis, 1* is the case with 10% of biennial breeders that breed off-cycle and 10% of on-1012 

cycle females that fail to breed. b) Relative bias of abundance estimates for females (top facet) 1013 

and survival (bottom facet) when uncertainty was introduced to length-based age assignments. In 1014 

contrast to a, there was no intentional model misspecification in these simulations; rather, annual 1015 

models were fit to populations that bred annually (light blue), while multiennial models were fit 1016 
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to populations that bred biennially (dark blue), thereby isolating the effects of aging error on the 1017 

resulting bias. 1018 

 1019 

Figure 5: Time series of CKMR parameter estimates for mature female lemon sharks at Bimini, 1020 

Bahamas using the full dataset (green; solid trendline), a dataset that was downsampled to 30% 1021 

of the sampling effort for each year of sampling (orange; dotted trendline), and a dataset that 1022 

included five years of samples for each instance of abundance estimation (purple; dashed 1023 

trendline). Points represent the median of the posterior distribution, and error bars reflect the 1024 

95% highest posterior density interval (HPDI). a) Estimates of annual female abundance. b) 1025 

Estimates of survival.   1026 
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Figure 1 1027 

 1028 

  1029 
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Figure 2 1030 

 1031 

  1032 
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Figure 3 1033 

 1034 

  1035 
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Figure 4 1036 
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Figure 5 1047 
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 1049 
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