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Abstract

Ribosome profiling quantifies translation genome-wide by sequencing ribosome-protected fragments,
or footprints. Its single-codon resolution allows identification of translation regulation, such as ribo-
some stalls or pauses, on individual genes. However, enzyme preferences during library preparation
lead to pervasive sequence artifacts that obscure translation dynamics. Widespread over- and under-
representation of ribosome footprints can dominate local footprint densities and skew estimates of elon-
gation rates by up to five fold. To address these biases and uncover true patterns of translation, we
present choros, a computational method that models ribosome footprint distributions to provide bias-
corrected footprint counts. choros uses negative binomial regression to accurately estimate two sets of
parameters: (i) biological contributions from codon-specific translation elongation rates; and (ii) tech-
nical contributions from nuclease digestion and ligation efficiencies. We use these parameter estimates
to generate bias correction factors that eliminate sequence artifacts. Applying choros to multiple ri-
bosome profiling datasets, we are able to accurately quantify and attenuate ligation biases to provide
more faithful measurements of ribosome distribution. We show that a pattern interpreted as pervasive
ribosome pausing near the beginning of coding regions is likely to arise from technical biases. Incorpo-
rating choros into standard analysis pipelines will improve biological discovery from measurements of
translation.

Introduction

Quantification of gene expression has enabled insights into many aspects of biology, often relying on
mRNA abundances as a proxy for protein levels [1, 2]. Ribosome profiling, or ribo-seq, goes beyond
mRNA quantification to generate a global snapshot of protein production through deep sequencing of
ribosome-protected mRNA fragments (‘footprints’) [3]. In this method, nuclease digestion exposes the
20-30 nucleotides protected by actively translating ribosomes, which are then converted into a library
of DNA molecules suitable for next-generation sequencing. Mapping of these fragments reveals which
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transcripts, and which regions within transcripts, are under active translation and at what levels. Ribo-
some profiling has led to numerous discoveries about translation and its regulation, from the detection
of novel open reading frames to the identification of mechanisms underlying translational control [4, 5].

The quantitative aspect of ribosome profiling has proved a rich source of information from which to
study translation dynamics. Each footprint recovered in a ribosome profiling dataset reflects the position
of an individual ribosome on a transcript, resulting in precise codon-level resolution of the distribution of
ribosomes across a transcript. Ribosomes are distributed unevenly along individual transcripts, reflecting
biologically significant phenomena such as sites of ribosome pausing or stalling and inherent differences
in elongation rate over different sequences. Per-position ribosome abundances can be used to infer
translation elongation rates: the slower the elongation rate, the longer the dwell time and the more likely
a ribosome is observed at that codon position. Analyses of ribosome profiling datasets have revealed
that the largest driver of elongation rate is the identity of the codon being decoded in the aminoacyl (A)
site of the ribosome, with relationships between elongation rate and tRNA availability, wobble base-
pairing, and amino acid properties [6–10]. Elongation rate is also slightly impacted by the identity of
the previous codon to have been decoded, now in the peptidyl (P) site along with its cognate tRNA,
and perhaps by the identity of the tRNA being released in the exit (E) site. Mathematical and data-
driven models of ribosome densities, fit from footprint counts, can capture the effects of synonymous
codon choice to inform the design of transcripts for optimized translation efficiency [10–13]. Beyond
these effects of intrinsic interactions and tRNA abundance, ribosome stalls and pauses can be caused
by interactions of the ribosome with mRNA secondary structures, nascent peptide chains, or proteins
involved in translation regulation, and these effects can also be seen as peaks of ribosome footprint
density. For instance, ribosome profiling analysis has revealed sites of ribosome pausing due to binding
of the fragile X mental retardation protein (FMRP), which mediates localized translation at synapses and
contributes to synaptic plasticity [14]. The codon-level resolution of ribosome profiling therefore makes
it a powerful method for discovering regulatory processes shaping gene expression.

However, experimental artifacts can distort estimates of translation rates, models of translation dy-
namics, and signals of ribosome pausing. A particularly strong distortion arises from sequence-based
biases introduced during certain steps of library preparation protocols, namely, ligation of an adapter to
the 3′ end of the footprint and circularization of the reverse transcription product in order to ligate an
adapter to the 5′ end (Figure 1A). These biases result in over- and under-representation of certain foot-
prints based on the nucleotide content at the fragment ends, leading to spurious sequence dependencies
[13, 15, 16]. Similar sequence biases can arise from differences in ligation efficiency on structured RNA
fragments [17, 18]. Sequence biases can even overshadow the impact of the codon being decoded by
the ribosome, dramatically skewing footprint counts by up to five fold for purely technical reasons and
severely limiting the insights that can be drawn from ribosome profiling data on individual genes.

Sequence preferences have been previously identified in other types of RNA sequencing experiments;
however, in these cases the reads are summed across a full transcript or a wide window of sequence, and
biases are likely to average out across the many different sequence contexts in one transcript [17–22].
When exploiting the codon-level resolution of ribosome profiling data to show variation in translation
speed along a single transcript, the footprints at each position must be counted separately rather than
summed. An explicit correction for sequence biases would improve the fidelity of ribosome profiling
measurements. Slight variations in experimental protocols—for instance, differences in incubation time
in ligation or digestion reactions—mean that the biases must be learned anew for each experiment. Direct
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experimental measurement of biases—for instance, by evaluation of an accompanying library generated
in parallel from fractionated mRNAs—would be costly and add its own distortions [15]. Further, the
over- or under-representation of different end sequences cannot be counted directly due to the confound-
ing effects of the three-nucleotide periodicity in coding regions. To date, no computational method
explicitly models the sequence-dependent biases to provide corrected ribosome footprint counts, but the
rich data generated from ribosome profiling should render computational modeling quite feasible. The
extensive sequence variation across millions of bases of sequence data is enough to reduce collinearity
and make parameters of individual processes identifiable.

To this end, we present choros, a computational method that estimates biological and technical
contributions to ribosome distributions and generates sequence bias-corrected footprint counts. We val-
idate choros on data simulated with realistic sequence biases and demonstrate the method’s ability to
capture underlying parameters. Applied to experimental ribosomal profiling datasets, choros correctly
attenuates ligation biases and provides accurate estimates of relative ligation probabilities and codon-
level ribosome occupancies. The extensible regression framework also enables detection of differential
codon-level translation between experimental conditions. Using choros, we show that bias correction
removes large artifacts that have been interpreted as biological signals and enables detection of biologi-
cal phenomena such as ribosome collisions. choros is implemented as an open-source R package that
can be incorporated into standard ribosome profiling analysis pipelines to provide accurate ribosome
footprint counts for downstream analysis and biological discovery.

Methods

Our software, choros, is provided as an R package for correcting sequence biases in ribosome profiling
datasets and is available on GitHub at https://github.com/lareaulab/choros. simRiboSeq is
an R package for simulating ribosome profiling data, available on GitHub at https://github.com/
lareaulab/simRiboSeq. Code to regenerate figures in this work are available on GitHub at https:
//github.com/lareaulab/choros_paper.

Regression modeling of biological and technical determinants of ribosome profiling datasets

Our method begins with a model of ribosome profiling data that is based on the physical processes that
generate ribosome footprints: (i) a biological component that governs a true distribution of ribosomes,
from which (ii) experimental protocols sample with bias to generate a sequencing library (Figure 1A).
Overall ribosome abundances per gene are driven by mRNA abundances as well as transcript-specific
translation initiation rates. Ribosome distributions along individual transcripts are driven by the speed of
the ribosome as it decodes each codon position and translocates to the next position. The time required
for this process depends on the identities of the codons in the ribosome A, P, and E sites, modeled
by codon-specific terms for each site [13, 16, 24]. Nuclease digestion cleaves at variable positions
around the edges of the ribosome, determining the total footprint length and the position of the 5′ and
3′ footprint ends relative to the codon being decoded in the A site (5′ and 3′ ‘digestion lengths’). This
variable digestion exposes different nucleotides (‘bias sequence’) at the footprint 5′ and 3′ ends, which
are ligated at different efficiencies due to sequence preferences of the enzymes used in library preparation
protocols. Footprint recovery may additionally be impacted by secondary structure of the RNA fragment,
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Figure 1. Overview of data-generating processes and bias correction with choros. (A) Ribosomes are distributed
among transcripts based on transcript-specific mRNA abundances and translation initiation rates. Within a transcript,
ribosome accumulation per codon position is related to the codons present in the ribosome A, P, and E sites, which
largely determine the speed of elongation. Conditioned upon an individual ribosome, nuclease digestion occurs to
differing levels of completion which leads to different nucleotides exposed at each end of the footprint sequence.
Ligase enzymes in the library preparation protocol act upon these end sequences with different efficiencies, leading to
differential recovery of footprint sequences depending on the nucleotides present at the footprint ends. (B) choros
takes three input files: a BAM file of footprint alignments, a FASTA file of transcript sequences (including 5′ and 3′

UTRs), and a GTF annotation file specifying 5′ UTR, CDS, and 3′ UTR lengths. choros will then featurize each
footprint alignment, aggregate footprint counts by transcript, codon position, and footprint length and 5′ frame, and
compute a negative binomial regression model. Bias correction factors are adapted from regression coefficients and
used to generate bias-corrected footprint counts. (C) Footprint counts are best modeled by a negative binomial
distribution. Mean and variance estimates of per-codon-position footprint counts were calculated from a dataset
generated with 14 wild-type replicates [23]. Mean-variance relationships corresponding to the Poisson,
quasi-Poisson, and negative binomial distributions are shown in purple, green, and red, respectively.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529452doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529452
http://creativecommons.org/licenses/by/4.0/


which we model with GC content of the footprint excluding A, P, and E site codons [17].
We fit a generalized linear model (GLM) to estimate the parameters underlying this data-generating

process (Equation 1). The model assumes that the number of footprints Yi, j,d5,d3 mapped to a transcript i
at codon position j with 5′ and 3′ digestion lengths d5 and d3, respectively, follows a negative binomial
distribution with mean µi, j,d5,d3 and dispersion parameter φ . The negative binomial distribution allows
observed extra variability that cannot be accounted for by Poisson or quasi-Poisson regression models
for count data. We denote the codons residing in the footprint’s A, P, and E sites as Ai, j, Pi, j, and Ei, j,
respectively. The bias sequences at the 5′ and 3′ ends of the footprint are denoted f 5

i, j,d5 and f 3
i, j,d3

respectively. The footprint’s overall GC content is denoted as gi, j,d5,d3 and encoded as a continuous
covariate. We can then model the observed footprint counts as:

log(µi, j,d5,d3) = β0 + β
tti︸︷︷︸

transcript

+β
AAi, j +β

PPi, j +β
EEi, j︸ ︷︷ ︸

A, P, E site codons

+β
d5

d5 +β
d3

d3︸ ︷︷ ︸
nuclease digestion

+β
f 5

f 5
i, j,d5 +β

f 3
f 3
i, j,d3 +β

d5: f 5
d5 f 5

i, j,d5 +β
d3: f 3

d3 f 3
i, j,d3︸ ︷︷ ︸

ligation biases

+ β
ggi, j,d5,d3︸ ︷︷ ︸

secondary structure

(1)

where

Yi, j,d5,d3 ∼ Negative Binomial(µi, j,d5,d3 ,φ) (2)

E[Yi, j,d5,d3 ] = µi, j,d5,d3 (3)

var(Yi, j,d5,d3) = µi, j,d5,d3 +
µ2

i, j,d5,d3

φ
(4)

We include interaction terms for digestion length and bias sequence at each end of the footprint
to capture possible sequence preferences of nuclease digestion as well as effects of non-templated nu-
cleotide additions during reverse transcription [25]. The regression framework is extensible and can be
amended to include additional terms, such as an interaction term to estimate differential A-site codon
effect between experimental conditions (Equation 5):

log(µi, j,d5,d3) = β0 + β
tti︸︷︷︸

transcript

+β
AAi, j +β

PPi, j +β
EEi, j︸ ︷︷ ︸

A, P, E site codons

+β
d5

d5 +β
d3

d3︸ ︷︷ ︸
nuclease digestion

+ β
f 5

f 5
i, j,d5 +β

f 3
f 3
i, j,d3 +β

d5: f 5
d5 f 5

i, j,d5 +β
d3: f 3

d3 f 3
i, j,d3︸ ︷︷ ︸

ligation biases

+ β
ggi, j,d5,d3︸ ︷︷ ︸

secondary structure

+ β
A:conditionAi, jI(condition)︸ ︷︷ ︸
differential A-site occupancy

+β
conditionI(condition)︸ ︷︷ ︸

library size

(5)

To reverse the effects of biased footprint recovery, we generate a correction factor for each individual
footprint based on the parameter estimates learned in the regression fit (Equation 6):
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correction factori, j,d5,d3 =
g

exp(β f 5 f 5
i, j,d5 +β f 3 f 3

i, j,d3 +β d5: f 5d5 f 5
i, j,d5 +β d3: f 3 d3 f 3

i, j,d3 +β g)
(6)

where g is the mean GC content of the observed footprint reads. Read counts are then multiplied
by these correction factors and scaled to maintain total library size in order to produce bias-corrected
counts.

Overview of choros

choros has four major modules: data processing (including A-site assignment and bias sequence de-
termination), regression fitting, bias correction, and bias evaluation (Figure 1B). The inputs to choros

are as follows: alignments of ribosome profiling reads (i.e. BAM file), a reference transcriptome (i.e.
FASTA file), and a gene annotation file that defines 5′ UTR, CDS, and 3′ UTR regions within the refer-
ence transcriptome. After fitting the model with glm.nb from the MASS package and performing bias
correction, choros outputs a table of raw and corrected read counts, aggregated by transcript, codon
position, and 5′ and 3′ digestion lengths.

Footprints were assigned to transcript codon positions using an A-site assignment process previ-
ously described in Tunney et al. [13]. In brief, A-site offset rules were determined per footprint length
and frame of the 5′ terminal nucleotide relative to the coding sequence, based on a metagene plot of
alignments near the start codon (Supplementary Figure 1). The canonical 28-nt footprint in frame 0 is
assigned an offset of 15, indicating that the A-site codon starts in the 16th nucleotide position of the read.
Offset rules for other lengths and frames were chosen to be consistent with over- and under-digestion
relative to the 28-nt footprint. We then took the first two or three nucleotides of the footprint as the 5′

bias sequence and the last three nucleotides as the 3′ bias sequence. All sequences were pulled from the
underlying transcript sequence to avoid sequencing errors and mismatches in the read itself.

choros is flexibly designed to fit the regression model on a user-supplied list of transcripts and
codon positions. While the technical biases that arise during library preparation should be universal
to footprints from all transcripts, sparsity in read coverage may lead to unreliable parameter estimates.
Unless otherwise described, all regression models in this work were fit to a random set of 250 of the
top 500 transcripts according to footprint coverage (mean footprint abundance per codon position) after
excluding transcripts that had fewer than 5 mean reads per codon position and fewer than 100 codon
positions with mapped footprints. In addition, the first and last 20 codon positions of transcripts were
excluded from the regression fit to avoid the effects of translation initiation and termination.

Bias correction was performed as described above (Equation 6). Biases before and after correction
were evaluated using a method similar to the feature importance measurements as described in Tunney
et al. [13]. In brief, per-codon-position footprint counts in truncated coding sequences were scaled by
the average footprint count across the coding sequence to control for transcript-specific mRNA abun-
dances and translation initiation rates. Input features were defined as a neighborhood of 13 codons (or
corresponding number of nucleotide positions) centered around that codon position. A series of linear re-
gression models predicting scaled footprint count from the input sequence neighborhood were fit, where
the full model included the entire sequence neighborhood as input features and subsequent leave-one-out
models omitted one codon or nucleotide position at a time. The feature importance of each position was

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529452doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529452
http://creativecommons.org/licenses/by/4.0/


computed as the difference in correlation of the true and predicted footprint counts between the full and
corresponding leave-one-out model. Position importance plots generated from these feature importance
metrics were used to evaluate for the presence of recovery biases.

Data simulation

To test choros, we developed an R package simRiboSeq to simulate ribosome profiling datasets with
realistic parameters for individual steps in the data-generating process (Figure 1A, Supplementary Figure
2). Per-transcript footprint counts are generated by multinomial sampling with user-defined transcript
probabilities. Given a transcript sequence and ribosome count, per-codon-position footprint counts are
generated by multinomial sampling where the probability per codon position is proportional to a user-
defined codon-specific value. Each footprint count generates an individual footprint sequence, where the
5′ and 3′ digestion lengths are sampled with user-defined probabilities. Whether footprint sequences are
retained is simulated as a Bernoulli process, where the probabilities of success are defined by the 5′ and
3′ bias sequences separately. These steps are performed iteratively until the desired library size has been
achieved. Footprint sequences are written to file in FASTQ format.

Values for simulation probabilities were adapted from experimental datasets. Per-transcript proba-
bilities were generated from per-transcript ribosome abundances extrapolated from a loess regression of
per-transcript ribosome abundances on transcript lengths fit to data from Weinberg et al. with additional
Poisson noise [26]. Per-codon values were adapted from the A-site codon weights from a neural network
model of ribosome distributions trained on data generated by Weinberg et al. [13, 26]. 5′ and 3′ recovery
probabilities were adapted from the −5 and +3 codon weights from a neural network model of ribosome
distributions trained on data generated by Schuller et al. [13, 27].

Pre-processing of ribosome profiling datasets

The experimental datasets analyzed in this work are listed in Table 1 [13, 23, 26–30]. Reference ribo-
somal RNA, noncoding RNA, and annotated coding sequence files were previously described, with the
modification that ORF sequences include 20 nt of 5′ UTR and 20 nt of 3′-UTR sequences to accommo-
date all footprint reads at start and stop codons [13].

Raw ribosome profiling reads were downloaded from the NCBI Sequence Read Archive using fasterq-
dump (SRA Toolkit, https://github.com/ncbi/sra-tools). Trimming of 3′ adapters was per-
formed with cutadapt, and trimmed reads longer than 20 nt were retained with options ‘--trimmed-only
-m 20’ [31]. If the 3′ adapter or the reverse-transcription (RT) primer contained random nucleotides,
those were extracted as unique molecular identifiers (UMIs) for deduplication with umi tools extract
[32]. Reads were aligned, allowing two mismatches, to ribosome and noncoding RNAs using bowtie
v.1.0.0 (chosen due to the ability to explicitly specify maximum allowable mismatches) with the options
‘-v 2 -S --un’, and unaligned reads were kept for downstream processing [33].

If UMIs were extracted, deduplication was performed with the following steps. Since UMI-tools
deduplicates reads by alignment coordinate and read length, we aimed to provide the tool a SAM align-
ment file with only one alignment reported per read. However, in the case of multi-mapping reads,
reads derived from the same original molecule (i.e. containing the same UMI) may not necessarily be
assigned the same alignment locus and therefore would not be properly deduplicated. To control for this
scenario, we instructed bowtie to report all best alignments and then manually selected the positionally
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first alignment per sequencing read. Thus, the following procedure was developed. First, reads were
aligned to the transcriptome using bowtie, allowing two mismatches, and all best alignments were re-
ported with the options ‘-v 2 -S --norc -a --best --strata’. The resulting alignment file was then sorted by
read name using samtools sort with options ‘-n -O SAM’ [34]. Per read, the positionally first alignment
was retained and remaining alignments were discarded using a custom R script. The alignment file was
then sorted by alignment coordinate with samtools sort and indexed with samtools index in preparation
for deduplication. Deduplication was performed using UMI-tools using read length in addition to align-
ment coordinates and UMI to identify duplicates, with options ‘--read-length’. Unique reads were then
converted into FASTQ format with samtools fastq.

Finally, we aligned the remaining reads to the transcriptome to quantify translation. Ribosome foot-
prints may not map uniquely to a single transcript due to the short length of the sequencing read and the
presence of multiple transcript isoforms or gene paralogs with high sequence similarity. To address this,
we report all valid alignments and use RSEM to assign each alignment a posterior probability that we
interpret as a fractional read count [35]. De-duplicated, non-rRNA reads were aligned to the transcrip-
tome using bowtie, allowing all alignments with options ‘-v 2 -S --norc -a -l 15’. Mapping weights for
multi-mapping reads were computed using RSEM with options ‘--seed-length 15’. After A-site assign-
ment, for each codon position and combination of 5′ and 3′ digestion lengths, raw footprint counts were
computed by summing the RSEM mapping weights for each corresponding alignment.

Results

choros accurately estimates ligation biases in simulated data

The negative binomial distribution is conventionally used to model count data arising from RNA-seq
experiments because it can account for the observed extra-Poisson variability. We first wanted to confirm
the appropriateness of negative binomial regression for ribosome profiling data, in keeping with previous
applications [36–39]. Using per-codon-position ribosome footprint counts from a published dataset of 12
yeast ribosome profiling replicates [23], we found that a negative binomial distribution with the variance
as a quadratic function of the mean fit the data well, while a Poisson or quasi-Poisson distribution did
not capture the observed variability (Figure 1C).

We next evaluated choros on simulated data to test how well the regression framework quantified
the parameters used to generate the data and how well the computed correction factors were able to
attenuate footprint end sequence biases. Data were simulated with simRiboSeq where per-codon A-
site parameters and biased ligation parameters were adapted from weights learned by models reported
in Tunney et al. [13]. Four simulated datasets were generated to evaluate the following scenarios: (i)
footprint ligation is not biased; (ii) ligation of the 3′ adapter is affected by the footprint 3′ bias sequence;
(iii) ligation at the footprint 5′ end is affected by the footprint 5′ bias sequence; and (iv) footprint recovery
is impacted by both the 3′ and 5′ bias sequences.

We fit the choros regression model to these simulated data and evaluated how well the learned
regression coefficients reflected simulation parameters. Of particular interest were the 5′ and 3′ ligation
bias terms, as they are used to generate bias correction factors. Across all four simulated datasets, the
regression coefficients precisely recapitulated simulation parameters (Figure 2A). The 5′ and 3′ ligation
bias terms were assigned the appropriate values corresponding to their simulation probabilities and took
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Figure 2. choros correctly models theoretical data-generating process. (A) Comparison of simulation parameters
used by simRiboSeq to generate synthetic ribosome profiling data and regression coefficient estimates learned by
choros. Simulation parameters are normalized to the corresponding reference sequence and regression coefficients
are exponentiated for proper comparison. Each point represents one three-nucleotide sequence at the footprint 5′ or 3′

end or in the ribosome A site. The 1:1 line is shown in blue. (B) Position importance plots generated for simulated
data. The height indicates the improvement in correlation between observed and predicted footprint counts for a full
regression model versus one in which the features at a given position is left out of the model. (C) Position importance
plots for bias-corrected simulated data.
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on null values where no ligation biases were simulated. The A-site regression coefficient terms mirrored
codon-level probabilities, supporting their utility in inferring codon-specific translation elongation rates
in experimental data.

To test whether bias correction factors could attenuate the sequence-based signals at the ribosome
boundaries, we applied the bias correction procedure to simulated footprint counts and evaluated both
the raw and corrected counts for the presence of ligation biases. The position importance plots generated
for raw counts demonstrated position contributions only where expected, namely at the ribosome A
site, at the −5 and −6 codon positions (corresponding to biased 5′ ligation), and at the +3 and +4 codon
positions (corresponding to biased 3′ ligation) (Figure 2B). Before correction, the datasets with simulated
ligation biases show a decreased A-site signal relative to the ‘no bias’ dataset, showing that biased
recovery obscures biological signal. After correction, the signal at the footprint boundaries (positions
−6, −5, +3, and +4) is properly lowered to negligible levels for the datasets with simulated ligation
biases, and the A-site contribution increases to match the ‘no bias’ datasets (Figure 2C). No change in
position importance was observed in the ‘no bias’ dataset after bias correction, indicating that the bias
correction procedure does not improperly adjust footprint counts when ligation bias is not present. We
also note that the lack of signal at other codon positions after correction suggests that the bias correction
process does not cause distortions due to properties of natural transcript sequences such as correlations
between adjacent codons. Taken together, choros is able to generate bias correction factors that reverse
the effects of ligation biases in simulated ribosome profiling data.

Bias correction attenuates sequence artifacts in ribosome profiling datasets

Ribosome profiling protocols vary across datasets, from the use of different ligases and adapter sequences
to differences in experimental conditions. The overall structure of the model of ribosome footprint gen-
eration remains the same, with the variation between datasets arising from differing contributions of the
components in the data-generating process (e.g., biological differences in decoding speed due to differ-
ences in tRNA abundance; technical differences in sequence bias due to varying preferences of different
enzymes). choros should therefore be trained separately per dataset to capture these differences and
generate bias correction factors specific to each dataset.

We evaluated choros on three ribosome profiling datasets generated in the budding yeast Saccha-
romyces cerevisiae [13, 26, 27]. We observed strong contributions of the sequence in the ribosome A
site, expected to correspond to tRNA decoding, as well as at the −5 and +3 codon positions, expected
to correspond to sequence biases (Figure 3A). After bias correction, the −5 and +3 position signals
decreased while the A-site signal increased, indicating that the corrected counts show much less im-
pact of ligation biases and more strongly reflect true ribosome distributions (Figure 3B). As expected,
the A-site coefficients estimated by choros correlated with the tRNA adaptation index (tAI), a widely
used measure of codon preference, across all three datasets (Figure 3C). Less adaptive codons should
be translated more slowly and thus correspond to higher ribosome occupancies, leading to the observed
negative correlation. Importantly, choros was able to recover the signatures of known sequence bias.
For the datasets that used CircLigase in the 5′ ligation step, the 5′ bias regression coefficients estimated
by choros correlated strongly with our previous in vitro measurements of CircLigase ligation efficien-
cies (Figure 3D) [13]. As expected, the 5′ bias coefficients calculated for a dataset that used T4 RNA
ligase 1 rather than CircLigase showed no correlation with CircLigase efficiencies.
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Figure 3. choros attenuates ligation biases and learns real-world parameters in yeast ribosome profiling datasets.
(A) Position importance plots for raw footprint counts in three yeast ribosome profiling datasets. Red denotes the
codon positions corresponding to the ribosome boundary that are assumed to be affected by technical, rather than
biological, factors. (B) Position importance plots for bias-corrected footprint counts. (C) choros regression
coefficients for A-site codon occupancies capture translation elongation dynamics as shown by their negative
correlation with tAI. (D) choros regression coefficients match experimental measurements of in vitro ligation
efficiency (data from Tunney et al. [13]). The experiments that used CircLigase in experimental protocols had 5′ bias
regression coefficient estimates that correlated strongly with CircLigase ligation efficiencies. The Weinberg data did
not use CircLigase, and those coefficients did not correlate with CircLigase efficiency measurements.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529452doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529452
http://creativecommons.org/licenses/by/4.0/


We found that our bias correction approach shifted the distribution of ribosome footprint counts over
the individual positions of a transcript, but with no major effect on total footprints per transcript (Sup-
plementary Figure 3A-B). This suggests that the biased ligation of different footprint end sequences is
largely averaged out across the diversity of footprint sequences originating from one gene. This av-
eraging effect is also apparent in codon pause scores, where footprint abundances are aggregated over
all occurrences of a particular codon and therefore also reflect a diversity of footprint end sequences
(Supplementary Figure 3C). Thus, while technical biases in ribosome profiling could have a small ef-
fect on overall measurements of translation or estimates of the relative decoding speed of synonymous
codons, the key contribution of choros is less-distorted estimates of the distribution of ribosomes along
transcripts from a single gene, enabling codon-level resolution for discovery of translation dynamics.

Footprint counts are more concordant after bias correction

To validate the ability of choros to recover estimates of ribosome distribution that are closer to a ground
truth, we applied our method to ribosome profiling data from an experiment in which material was split
and subjected to different protocols for library generation. In this scenario, the underlying distribution
of ribosomes should be consistent between the ribosome profiling datasets, and divergences between
the datasets would be driven by disparate biases from distinct library preparation protocols. Removing
these artifacts with a bias correction procedure should then recover consistency between those datasets.
To test this idea, we applied choros to datasets generated by Lecanda et al. where a single batch of
yeast lysate was digested, footprint fragments were extracted, and then the purified footprint fragments
were split into two batches that were each subjected to a different protocol: (i) 3′ adapter ligation,
reverse transcription, and circularization with no randomized sequences (‘fixed adapter’); and (ii) a dual-
randomization strategy (‘random adapter’) using a 3′ DNA adapter with 4 nt of randomized nucleotides
at its 5′ end and an RT primer with 3 nt of randomized nucleotides at its 5′ end (Figure 4A) [29]. While
the ligase would encounter the same footprint end sequences in either case, preferences for the end
nucleotides on the linker also affect ligation efficiencies, and the ligase may prefer certain pairings of
footprint and linker end sequences [22]. We therefore expect the ligation biases to differ between the
fixed-adapter and random-adapter datasets, and use these datasets as a test case to evaluate concordance
after bias correction with choros.

In keeping with prior results [25, 29], we found that randomization of the 5′ end of the RT primer,
which is ligated by CircLigase to the 3′ end of the reverse-transcribed cDNA (corresponding to the
5′ end of the original footprint), significantly lessened the bias towards certain 5′ footprint sequences.
This effect can be seen as a lesser, albeit still high, contribution of the 5′-most codon position in the
position importance plots for the randomized adapter dataset (Figure 4B). In contrast, randomization
of the 5′ end of the adapter ligated to the 3′ end of the original footprint had a relatively small impact
on overall footprint counts. This effect was reflected in choros regression coefficients. The 5′ bias
parameter estimates for the random-adapter dataset were dampened relative to the fixed-adapter dataset
(Figure 4C), while 3′ bias parameter estimates only varied slightly between the two datasets. Regression
coefficients for A-, P-, and E-site codons correlated strongly between datasets, consistent with the fact
that the libraries were generated from the same pool of ribosome footprints (Supplementary Figure 4).

We then confirmed the ability of choros to attenuate these biases. After bias correction, the position
importance plots showed a decrease in signal at the ribosome boundary positions and an increase in
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Figure 4. Direct comparison of bias-corrected footprint counts demonstrates higher concordance on well-translated
genes. (A) Schematic for the generation and analysis of an experimental dataset generated by Lecanda et al. for
validation of choros [29]. A pool of ribosome footprints was split to undergo separate library preparation protocols:
(i) a standard protocol and (ii) a protocol that involved ligation of the footprint 3′ and 5′ ends onto adapters ending
with several random nucleotides. These libraries separately underwent next-generation sequencing and bias
correction with choros. We compare concordance of the datasets before and after bias correction. (B) Position
importance plots for raw footprint counts. Substantial signal at the ribosome 5′ boundary is observed. Use of an RT
primer with random nucleotides roughly halved the sequence-dependent biases at the footprint 5′ end. (C)
Comparison of regression coefficients between datasets. (D) Position importance plots for bias-corrected footprint
counts. (E) Evaluation of dataset concordance before and after bias correction. Each point represents a single
transcript with average coverage of at least 50 footprints per codon position. Spearman correlation of raw footprint
counts per position between the fixed-adapter and random-adapter datasets was compared to Spearman correlation of
bias-corrected counts between the two datasets.
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signal at the ribosome P and A sites (Figure 4D). The plots for the two datasets became remarkably
similar, indicating that the differences observed in the raw counts were driven by ligation biases that
were correctly reversed by choros. These results indicate that the inclusion of random nucleotides in
the RT primer is an effective method to attenuate some but not all ligation biases, and that choros is
able to correct the remaining sequence artifacts present in these datasets.

Next, to see if bias correction enabled more accurate measurement of footprint distribution along in-
dividual transcripts, we evaluated the concordance in footprint distribution between the fixed-adapter and
random-adapter datasets, before versus after bias correction. Footprints were aggregated by A-site codon
position, and footprint counts were compared between the two datasets. The two datasets were indeed
more consistent after bias correction, with the overall Spearman correlation between datasets increasing
from 0.73 to 0.84. The improvement from bias correction varied by transcript, with a strong dependence
on transcript coverage (Supplementary Figure 5). While the transcripts with the highest average footprint
coverage showed an increase in correlation after bias correction, transcripts with sparse footprint cover-
age actually became more discordant after bias correction. We found that bias correction improved the
correspondence of footprint distributions on transcripts that had an average of 50 or more footprints per
codon (Figure 4E). In all, our results emphasize that high coverage and low sparsity are critical both for
generating reliable ribosome profiles and for estimating ligation biases. For the relatively small number
of transcripts whose high coverage allows biological interpretation of codon-by-codon ribosome distri-
bution along an individual transcript, bias correction can be applied successfully to improve estimates of
ribosome dwell time on individual positions.

Correction of sequence bias removes apparent ribosome pauses

Spikes in footprint counts—whether caused by ligation biases or genuine translational stalls or pauses—
can be visible in ribosome profiling data on individual genes, but these signals are expected to be av-
eraged out in aggregate data such as metagene plots showing the overall distribution of ribosomes over
coding regions. However, some pervasive, position-specific spikes do appear in aggregate data. The
overabundance of footprints on the sixth codon of reading frames, visible in metagene plots, has been
interpreted as an indicator of a pause while the ribosome commits to elongation [40]. We reasoned
that this overabundance could be caused by ligation bias rather than a mechanistic detail of translation.
Most footprints from ribosomes decoding the sixth codon of a reading frame have their 5′ end 15 nu-
cleotides upstream, exactly at the AUG start codon (Figure 5A). If fragments beginning with AUG are a
particularly good substrate for ligation, these footprints will be recovered disproportionately.

We observed a strong peak of ribosome footprints at the sixth codon in all of the analyzed datasets
that were generated with CircLigase protocols (Figure 5B). After bias correction, this signal disappeared
completely. To confirm that AUG was a preferred substrate for ligation, we inspected regression co-
efficients and found that in all three datasets, AUG was among the top three 5′ regression coefficient
estimates. We note that the codons near the beginning of transcripts are ignored in training the models,
so this bias was recovered independently. Thus, computational inference and correction of technical
biases can remove artifacts that have confounded biological interpretations.
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Figure 5. Signal of apparent ribosome pausing at
the sixth codon of open reading frames is removed
by bias correction. (A) A ribosome decoding the
sixth codon of a transcript, with that codon in its A
site, protects a footprint with its 5’ end at the start
codon, as shown by the solid ribosome. For
reference, the outlined ribosome shows the first
ribosome on a reading frame, which begins with
the AUG codon in its P site and decodes the second
codon in its A site. The 28-nt fragments protected
by these ribosomes are shown below. (B) Metagene
plots show the count of footprints with a 5′ end
mapping to each position relative to the start codon,
summed across all genes. Position 0 shows
footprints with their 5′ end aligned with the start
codon, inferred to be decoding the sixth codon.
Footprint counts before choros correction (grey)
show a pronounced peak at the sixth codon that is
absent after choros correction (red). Plots include
the single most common footprint size from
Schuller et al. (28 nt), Tunney et al. (28 nt), and
Lecanda et al. (29 nt).

Detection of differential A-site ribosome occupancy

choros fits a generalized linear model to model the biological and technical processes underlying ribo-
some profiling data. The extensibility of this regression framework allows the inclusion of additional
terms. One such parameter is the detection of differential codon-level ribosome occupancy under two
experimental conditions (Equation 5). The decoding speed of a codon depends on factors including
availability of its cognate tRNA, which can vary between cell types or in different metabolic conditions,
adding a layer of control to translation. Codon-level occupancies or pause scores, which are empirically
computed in various ways, lack statistical properties that allow detection of true versus spurious differ-
ences. In contrast, adding an interaction term to capture sample-specific A-site codon occupancy in the
choros model simultaneously enables the statistical inference of differential codon-level occupancies
that are independent of ligation biases. As quantification of tRNA species remains a technically diffi-
cult task due to complex secondary structures and diverse mRNA modifications, a statistical framework
for differential codon occupancy may serve as an attractive proxy for detecting differences in tRNA
abundances that drive differences in translation output [41, 42].

We assessed this approach on a dataset where yeast cells were treated with 3-amino-1,2,4-triazole
(3-AT), a known inhibitor of histidine biosynthesis [28]. When fitting the choros model to each condi-
tion separately, the A-site regression coefficients for histidine codons, CAC and CAU, had substantially
higher values in the sample treated with 3-AT, consistent with stronger ribosome pausing and slower
decoding at histidine codons (Figure 6A). To evaluate whether these differences were statistically signif-
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Figure 6. Detection of differential codon-level
ribosome occupancy with choros. (A) choros
regression coefficients capture higher ribosome
occupancy at histidine codons (CAU and CAC)
following treatment with 3-AT, an inhibitor of
histidine biosynthesis. The pattern between
untreated and 3-AT A-site regression coefficients
(β A) closely mimics the codon pause scores
originally reported by Wu et al. [28]. Error bars
represent the 95th percentile confidence interval of
regression coefficient estimates; we note that there
are very few CGA and CGG codons in yeast genes
and their coefficient estimates are highly variable.
(B) Volcano plot of differential ribosome A-site
occupancy. choros parameters were estimated
simultaneously for both datasets, incorporating an
interaction term between A-site codon identity and
experimental condition, β A:expt, to capture
differential A-site occupancies.

icant, we next fit footprint counts from both conditions simultaneously under a single choros regression
model with an interaction term corresponding to A-site occupancy in the 3-AT condition. Footprints
containing CAC and CAU codons in the A site were 41 and 70 times more enriched in the 3-AT sample
relative to untreated, respectively (Figure 6B, p < 1e-25). Thus, choros is able to detect and quantify
deviations in codon decoding speeds between experimental conditions.

Bias correction factors learned from monosome data attenuate biases in disome data

Ribosome collisions are widespread throughout the transcriptome, particularly on highly translated tran-
scripts loaded with multiple ribosomes [30, 43–45]. Of much recent interest, disomes (two collided
ribosomes) not only point to sites of endogenous ribosome pausing, but may also reveal the cellular
processes involved in the resolution of ribosome stalls and the impact of collisions on protein output and
cellular stress responses.

Collisions of a 5′ elongating ribosome into a 3′ paused ribosome can result in longer protected frag-
ments, or disome footprints, that can be recovered by ribosome profiling using a broader size selection
(Figure 7A). Analyses of these footprints may reveal dynamics underlying disome formation and colli-
sion resolution, but these footprint counts are subject to the same technical artifacts present in monosome
datasets, obscuring the true sites of ribosome collisions. The more complicated biological process re-
sulting in disomes, as well as the sparsity of disome footprints, makes modeling ligation biases difficult.
However, analysis of the abundant monosome footprints generated in parallel to disome footprints can be
leveraged to generate bias correction terms that can be applied to disome datasets, thus obtaining disome
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counts free of ligation-induced sequence artifacts.
We applied this approach to a dataset of monosome- and disome-protected fragments [30]. Position

importance plots generated for monosome footprints demonstrated the canonical −5 and +3 signals
indicative of the presence of ligation biases, which were attenuated after performing bias correction with
choros (Figure 7B-C). We next approached applying monosome bias correction factors to disome data.
Because these correction factors are specific to digestion lengths as well as bias sequences, we needed to
identify the A-site codon positions of both the leading and lagging ribosome within the disome fragment
in order to correctly determine the 5′ and 3′ digestion lengths (Figure 7A). A-site assignment of the 5′

lagging ribosome was performed as in monosome data, where A-site offsets were individually generated
per read length and 5′ end framing based on start codon metagene plots. A-site assignment of the 3′

leading ribosome used a similar approach, where read length- and frame-specific offsets were generated
based on stop codon metagene plots (Supplementary Figure 6). We then performed bias correction on
disome counts using bias correction factors estimated from monosome counts.

To examine whether bias correction with choros was able to remove sequence artifacts in disome
counts, we generated position importance plots across the span of a disome footprint. We observed
an increase in signal at the positions corresponding to the disome fragment boundaries in raw counts,
indicative of sequence artifacts as also seen in monosome data (Figure 7D).This signal was dampened in
corrected counts, demonstrating that bias correction factors generated from monosome data can indeed
be transferred to disome data to correct ligation biases common to both datasets. We recommend that
monosome profiling be conducted when collecting footprints of two or more ribosomes so that sequence-
based biases may be estimated and properly corrected.

Discussion

Ribosome profiling informs our knowledge of gene expression by quantifying translation of mRNAs.
Beyond this, it also provides a codon-resolution snapshot of ribosome distribution across transcripts,
allowing inference of the decoding time of different codons and providing insight into molecular mech-
anisms of translation. This codon-level information has led to advances in synthetic mRNA design and
discovery of amino acid limitations and tRNA alterations in cancers [13, 46–48]. However, faithful
recovery of ribosome positions by ribosome profiling presents substantial challenges.

Sequence-dependent biases are pervasive across ribosome profiling datasets, even when careful atten-
tion is paid to the library preparation protocol. This arises from the necessary biochemical manipulation
of ribosome-protected footprints to make them amenable to high throughput sequencing. For instance,
most library preparation approaches require ligation of sequencing adapters onto the ends of the foot-
prints. Ligases generally have sequence preferences, likely for both the 5′ and 3′ entities to be ligated,
making these biases unlikely to be completely avoidable. The resulting over- and under-representation
of certain footprints leads to distorted ribosome distributions, which can be detected as artifactual signals
showing an influence of several nucleotides at either end of footprints on footprint recovery [13, 15, 16].
New ligation-free methods such as the template jumping approach used in OTTR ribosome profiling
greatly ameliorate sequence preferences, but cannot completely avoid them [49, 50]. Removing these
sequence signals is thus necessary to reveal accurate and precise patterns from ribosome profiling data
and to uncover mechanisms of translation regulation and their biological functions.

Our method, choros, directly estimates ligase preferences and generates correction factors to pro-
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Figure 7. Bias correction of disome footprint counts with correction factors learned from monosome counts. (A)
Schematic for the featurization of disomes footprints. Rules for assignment of the leading and lagging A-site codon
positions are established by metagene plots of footprint counts near start and stop codons. Enumeration of the 5′ and
3′ digestion lengths and bias sequences enables bias correction with choros. (B) Position importance plot for raw
monosome counts. (C) Position importance plot for bias-corrected monosome counts. The bias correction factors
calculated from monosome data were then applied to disome footprint counts. (D) Position importance plot for raw
and bias-corrected disome counts. The purple, blue, and green bars correspond to the A-, P-, and E-site codons of the
leading (3′) ribosome, respectively.
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duce footprint counts that are free from these sequence-dependent biases. Careful statistical analysis,
use of simulated data, and comparisons with our experimental data on ligation preferences confirm the
validity of our model. choros was able to reverse the effects of ligation biases across many experimental
datasets, including disome footprints, and also simultaneously produced parameter estimates that were
interpretable and comparatively free of sequence biases. Using our correction method, we showed that a
signal often interpreted as a biological phenomenon was potentially the result of biased footprint recov-
ery. Our method will therefore allow more accurate detection of biologically relevant ribosome pauses:
interactions with regulatory proteins; intrinsic pauses due to tRNA abundance, peptide bond formation,
or nascent chain interactions; collisions between ribosomes; and other as-yet-undiscovered phenomena.

The quantitative model stems from a conceptual data-generating process that can be generalized to
multiple library preparation protocols, including dual ligation and template jumping approaches. How-
ever, even with choros-corrected footprint counts, interpretation of codon-level data from ribosome
profiling presents challenges. Ribosome profiling datasets can also suffer from other types of biases.
For instance, translation elongation inhibitors such as cycloheximide, used to stabilize ribosomes on
mRNAs, can lead to ribosome accumulation on certain codons [51, 52].The data-generating process cur-
rently assumed by choros does not account for any distortions of ribosome distribution that might occur
prior to nuclease digestion.

The sparsity of footprint data on all but the most abundant or highly translated transcripts presents a
known limitation in interpreting ribosome profiling data. This limitation extends to our bias correction
method. In fact, when no footprints are recovered at a position, whether because of sparse ribosome
density or poor footprint recover, bias correction is not possible; choros adjusts footprint counts in a
multiplicative manner that cannot add footprint counts to positions where none were originally observed.
In this analysis, we have used only the most highly translated transcripts to learn the biological and
technical parameters governing ribosome distribution. We emphasize that the combination of sparse
data and sequence biases renders many transcripts unsuitable for detailed individual analysis by ribosome
profiling, while aggregate analyses of patterns are highly reliable. As such, we consider choros most
appropriate for analyzing translation of abundant transcripts in high-coverage datasets. To mitigate the
impact of missing data, future work could explore the addition of pseudocounts in order to restore counts
to positions where biased recovery led to no observations, and to increase the reliability of ribosome
distributions on sparse transcripts.

In summary, choros provides a much-needed solution to the problem of sequence-based biases in
ribosome profiling data and should be incorporated into standard analysis pipelines to provide faithful
codon-resolution measurements of translation and enable biological discovery.
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Supplementary Figure 1. Establishing A-site offset rules from a start codon metagene plot. This plot reflects data
generated by Tunney et al. (2018) [13].
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Supplementary Figure 2. Schematic diagram for the generation of simulated ribosome profiling datasets using
simRiboSeq.
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Supplementary Figure 3. Impact of bias correction on ribosome abundances. (A) Per-codon footprint counts, before
and after bias correction. Footprint counts were summed by codon position. (B) Per-transcript footprint counts,
before and after bias correction. (C) Codon pause scores, before and after bias correction. Codon pause scores were
calculated as follows: footprint counts were aggregated by codon position and normalized to the mean read coverage
by transcript (omitting the first and last 20 codons). Normalized footprint counts were averaged by codon identity
across the transcriptome.
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Supplementary Figure 4. Comparison of codon-level choros regression coefficients in an experimental validation
dataset. Comparison of A-, P-, and E-site regression coefficients between two datasets generated from the same pool
of ribosome footprints but using different library preparation protocols. A 1:1 line is shown in blue.
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Supplementary Figure 6. Establishing leading and lagging A-site offset rules for disomes using start and stop codon
metagene plots.
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Experiment Sample name SRR accession 5′ enzyme
Chou et al. (2017) [23] SRR5766382

SRR5766387
SRR5766393
SRR5766396
SRR5766401
SRR5766407
SRR5766410
SRR5766411
SRR5766452
SRR5766453
SRR5766500
SRR5766501
SRR5766502
SRR5766503

CircLigase I

Tunney et al. (2018) [13] SRR6260802
SRR6260803

CircLigase II

Schuller et al. (2017) [27] SRR5008134
SRR5008135

CircLigase I

Weinberg et al. (2016) [26] SRR1049521 T4 RNA Ligase I
Wu et al. (2019) [28] WT CHX TIG SRR7241919

SRR2441920
SRR8093858

CircLigase I

3AT CHX TIG SRR7241918
SRR8093857

CircLigase I

Lecanda et al. (2016) [29] fixed SRR3945925
SRR3945926
SRR3945927
SRR3945928

CircLigase I or II

random SRR3945929
SRR3945930
SRR3945931
SRR3945932

CircLigase I or II

Meydan and Guydosh (2020) [30] monosome SRR10302098
SRR10302100

CircLigase I

disome SRR10302102
SRR10302104
SRR10302108

CircLigase I

Table 1. Experimental ribosome profiling datasets analyzed
Weinberg et al. used T4 RNA Ligase 1 for 3′ adapter ligation; all other datasets used T4 RNA Ligase 2 K227A.
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