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Abstract	
	
Objectives:	In	healthy	aging,	the	way	people	differently	cope	with	cognitive	and	neural	

decline	 is	 influenced	 by	 the	 exposure	 to	 cognitively	 enriching	 life-experiences.	

Education	 is	 one	 of	 them,	 so	 that	 in	 general	 the	 higher	 the	 education	 the	 better	 the	

expected	cognitive	performance	in	aging.	At	the	neural	level,	it	is	not	clear	yet	whether	

education	 can	 differentiate	 resting	 state	 functional	 connectivity	 profiles	 and	 their	

cognitive	 underpinnings.	 Thus,	 with	 this	 study,	 we	 aimed	 to	 investigate	 whether	 the	

variable	education	allowed	for	a	finer	description	of	age-related	differences	in	cognition	

and	resting	state	FC.	

Methods:	We	analyzed	in	197	healthy	individuals	(137	young	adults	aged	20-35,	and	60	

older	 adults	 aged	 55-80	 from	 the	 publicly	 available	 LEMON	 database),	 a	 pool	 of	

cognitive	and	neural	variables,	derived	from	magnetic	resonance	imaging,	in	relation	to	

education.	Firstly,	we	assessed	age-related	differences,	by	comparing	young	and	older	

adults.	Then,	we	investigated	the	possible	role	of	education	in	outlining	such	differences,	

by	splitting	the	group	of	older	adults	based	on	their	education.		

Results:	 In	 terms	 of	 cognitive	 performance,	 older	 adults	 with	 higher	 education	 and	

young	adults	were	comparable	 in	 language	and	executive	functions.	 Interestingly,	they	

had	 a	 wider	 vocabulary	 compared	 to	 young	 adults	 and	 older	 adults	 with	 lower	

education.	 Concerning	 functional	 connectivity,	 the	 results	 showed	 significant	 age-	 and	

education-related	 differences	 within	 three	 networks:	 the	 Visual-Medial,	 the	 Dorsal	

Attentional	 and	 the	 Default	 Mode	 network	 (DMN).	 For	 the	 DMN,	 we	 also	 found	 a	

relationship	 with	 memory	 performance,	 which	 strengthen	 the	 evidence	 that	 this	

network	has	a	 specific	 role	 in	 linking	 cognitive	maintenance	and	FC	at	 rest	 in	healthy	

aging.	

Discussion:	Our	study	revealed	that	education	contributes	to	differentiate	cognitive	and	

neural	 profiles	 in	 healthy	 older	 adults.	 Also,	 the	DMN	 could	 be	 a	 key	 network	 in	 this	

context,	as	it	may	reflect	some	compensatory	mechanisms	relative	to	memory	capacities	

in	older	adults	with	higher	education.	
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1.	Introduction	

	
Age-related	 changes	 on	 cognitive	 function	 may	 influence	 the	 quality	 of	 life 

(Harada	et	al.,	2013;	Murman,	2015).	For	example,	memory	performance	worsens	with	

age	 and	 well-maintained	 memory	 capacities	 could	 be	 considered	 as	 a	 “tract”	 of	 a	

preserved	cognitive	 function	 in	healthy	aging	 (Harada	et	al.,	 2013;	Nyberg	and	Pudas,	

2019).	Conversely,	some	cognitive	abilities,	such	as	the	capacity	to	retain	words	in	one’s	

own	vocabulary	(Verhaeghen,	2003),	are	resistant	to	aging	and	they	may	even	improve	

across	 life	(Murman,	2015).	 In	this	context,	 the	concept	of	cognitive	reserve	(CR,	Lojo-

Seoane	et	al.,	2018)	may	help	to	explain	differences	in	the	way	people	get	older	and	cope	

with	different	 cognitive	demands,	which	depend	on	 the	 cognitive	 “resources”	 accrued	

during	 life	 (Barulli	 and	 Stern,	 2013).	 Interestingly,	 although	 many	 other	 proxies	 like	

occupational	 attainment	 or	 IQ	 may	 determine	 CR	 (Lojo-Seoane	 et	 al.,	 2018;	

Montemurro,	2022),	education	 is	one	of	 the	mostly	used.	 Indeed,	 it	 influences	 late-life	

cognitive	function	by	contributing	to	individual	differences	in	cognitive	skills	(Lovden	et	

al.,	 2020),	 where	 the	 higher	 the	 education,	 the	 better	 the	 expected	 cognitive	

performance	in	aging	(Elkins	et	al.,	2006;	Montemurro	et	al.,	2019;	Montemurro,	2019).		

This	 is	 also	 in	 line	 with	 recent	 research	 from	 our	 group	 reporting	 that	 education	

represents	 a	 protective	 factor	 against	 age-related	 cognitive	 decline	 (Mondini	 et	 al.,	

2022).	In	addition,	education	is	one	of	the	most	accessible	and	suitable	CR	proxies	(e.g.,	

easy	 to	 collect)	 for	 aging	 populations	 (Chapko	 et	 al.,	 2018;	Montemurro	 et	 al.,	 2021),	

besides	 being	 one	 of	 the	 most	 commonly	 used	 in	 clinical	 and	 experimental	 contexts	

(Meng	and	D'Arcy,	2012;	Anaturk	et	al.,	2021).		

	

Whilst	education	has	been	so	far	mainly	used	to	explain	cognitive	decline	in	aging	

as	a	confound	(i.e.,	nuisance)	or	a	predictor	(i.e.,	proxy),	a	full	comprehension	of	its	role	

in	outlining	brain	 functioning	and	 its	relationship	with	cognitive	 function	still	 remains	

challenging.	 Brain	 aging	 has	 been	 investigated	 through	 magnetic	 resonance	 imaging	

(MRI)	 in	 terms	of	 structural	 changes	 (e.g.,	 atrphy	of	 cortical	 grey	matter	 or	 increased	

cerebrospinal	 fluid	 volume,	 (Reuter-Lorenz,	 2002;	 Raz	 et	 al.,	 2005;	 Fjell	 et	 al.,	 2009;	

Park	and	Reuter-Lorenz,	2009;	 Salthouse,	2011;	Orellana	et	 al.,	 2016;	Oschwald	et	 al.,	

2019),	 and	 functional	 changes	 (Vidal-Pineiro	 et	 al.,	 2014;	 Yoshimura	 et	 al.,	 2020),	

showing	that	some	brain	networks,	like	the	Default	Mode	Network	(DMN),	are	affected	
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by	 aging.	 Functional	 connectivity,	 measured	 with	 functional	 MRI	 (fMRI),	 allows	 to	

investigate	 the	relationship	between	 fluctuations	among	different	brain	areas	(Sporns,	

2013).	 This	 technique	 has	 been	 largely	 used	 to	 study	 brain	 networks	 in	 aging	 (Vidal-

Pineiro	 et	 al.,	 2014;	 Yoshimura	 et	 al.,	 2020)	 and	 their	 behavioral	 correlates	 (Farras-

Permanyer	et	al.,	2019;	Varangis	et	al.,	2019).	For	example,	it	has	been	shown	that	brain	

network	 integrity	 provides	 a	 helpful	 outlook	 on	 the	 preservation	 of	 cognitive	

functioning	(Geerligs	et	al.,	2015;	Jockwitz	and	Caspers,	2021),	and	that	such	integrity	is	

mainly	 investigated	by	resting	state	networks	(RSNs),	whose	topology	recalls	the	ones	

of	 brain	networks	 emerging	during	 active	 tasks	 (Smith	 et	 al.,	 2009).	 Changes	 in	RSNs	

have	been	linked	to	cognitive	decline	in	aging,	but	a	high	heterogeneity	has	limited	the	

understanding	of	the	impact	of	aging	on	brain	function.	

	

In	this	context,	CR	has	gained	relevance	and	has	been	integrated	in	neuroimaging	

research	 (Bastin	 et	 al.,	 2012;	Menardi	 et	 al.,	 2018).	 CR	 should	 be	 ideally	 helpful	 for	 a	

better	comprehension	of	 individual	differences	in	aging,	by	using	proxies	that	allow	to	

estimate	 the	 individuals’	 potential	 resilience.	 However,	 this	 field	 of	 research	 is	 still	

presenting	 challenges.	 Several	 theories	 have	 been	 already	 proposed	 to	 explain	

functional	changes	in	aging,	i.e.,	the	Hemispheric	Asymmetry	Reduction	in	Older	Adults	

model	 (HAROLD,	 Cabeza,	 2002),	 the	 Posterior-Anterior	 Shift	 in	 Aging	 theory	 (PASA,	

Davis	et	al.,	2008)	 the	Compensation-Related	Utilization	of	Neural	Circuits	Hypothesis	

CRUNCH,	 Reuter-Lorenz,	 2008),	 and	 the	 Scaffolding	 Theory	 of	 Aging	 and	 Cognition	

(STAC,	 Park	 and	 Reuter-Lorenz,	 2009).	 Among	 them,	 the	 STAC,	 lately	 revised	 in	 the	

STAC-r	(Reuter-Lorenz	and	Park,	2014),	introduced	education	(and	other	CR	proxies)	as	

a	crucial	variable	to	interpret	the	mechanisms	of	aging	(Nyberg	et	al.,	2012).	In	STAC-r,	a	

high	 level	 of	 education	 is	 conceived	 as	 being	 associated	 with	 an	 enhanced	

neurocognitive	 scaffolding,	 so	 that,	 despite	 neural	 deterioration,	 cognitive	 function	

should	be	maintained	in	older	adults	(Reuter-Lorenz	and	Park,	2014).	Nevertheless,	the	

role	 of	 education	 in	 determining	 cognitive	 and	 brain	 characteristics	 in	 healthy	 aging	

populations	 has	 also	 displayed	 some	 diverging	 findings	 (Nyberg	 et	 al.,	 2012),	 and	

although	education	has	been	much	discussed	such	a	factor	that	may	better	explain	inter-

individual	 differences	 in	 aging,	 it	 is	 still	 unclear	how	neurocognitive	profiles	 could	be	

characterized	based	on	differences	in	such	an	important	variable.		
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In	 the	present	study,	starting	 from	the	premise	 that,	 in	healthy	aging,	cognitive	

performance	is	better	maintained	with	a	higher	education,	we	tested	whether	education	

could	differentiate	healthy	older	adults	in	terms	of	not	only	cognitive	performance	but	

also	fMRI	connectivity,	especially	for	RSNs	involved	in	high-level	cognitive	functions.	To	

this	end,	we	 first	 compared	older	adults	 to	a	more	preserved	population,	 i.e.,	 younger	

adults,	to	identify	age-related	differences.	Then,	by	splitting	the	older	adult	group	in	two	

subgroups	based	on	education	(higher	and	lower),	we	specified	the	effect	of	education	

in	 healthy	 aging.	 Accordingly,	 we	 expected	 that	 cognitive	 and	 neural	 variables	would	

show	 age-related	 differences	 and	 more	 importantly,	 at	 the	 basis	 of	 this	 study,	 that	

education	would	provide	definite	 information	 about	 age-related	differences	 in	 resting	

state	fMRI	connectivity	and	its	relationship	with	cognition.	

	
	

2. Material	and	methods	
	

2.1.	Participants	and	materials	
	

All	 participants	 included	 in	 this	 study	 were	 taken	 from	 the	 publicly	 available	

database	“Leipzig	Study	for	Mind-Body-Emotion	Interactions”	(LEMON)	(Babayan	et	al.,	

2019).	 Data	 collection	was	 performed	 in	 accordance	with	 the	Declaration	 of	Helsinki,	

approved	by	the	local	ethics	committee	and	all	participants	provided	written	informed	

consent	prior	to	data	acquisition	for	the	study	(including	agreement	to	their	data	being	

shared	anonymously).	Following	the	application	of	exclusion	criteria,	which	are	listed	in	

detail	 in	 Babayan	 et	 al.	 2019	 (Babayan	 et	 al.,	 2019),	 the	 total	 sample	 included	 227	

participants.	 Due	 to	 missing	 data	 of	 specific	 cognitive	 variables	 of	 interest,	 30	

participants	were	excluded	from	the	analysis,	thus	the	total	number	of	participants	was	

n=197.	The	subjects	were	separated	into	two	groups,	based	on	their	age,	resulting	in	one	

group	 of	 younger	 adults	 (young,	 Y,	 n	 =	 137,	 range	 20-35	 years)	 and	 in	 one	 of	 older	

adults	(old,	O,	n	=	60,	range	55-80	years).	The	old	group	was	 further	divided	 into	two	

subgroups	 based	 on	 their	 education:	 higher	 education	 (old-high,	 OH,	 n	 =	 30),	 i.e.,	

lyceum/gymnasium	(12	years),	and	lower	education	(old-low,	OL,	n	=	30),	i.e.,	technical	

high	school/realschule	 (10	years).	Notably,	all	younger	adults	had	higher	education,	as	

the	old-high	group.	Five	 cognitive	 tests	addressing	memory,	 language,	 and	vocabulary	

were	 used.	 The	 behavioral	 tasks	 included:	 a)	 Short-	 and	 b)	 Long-term	 Memory	 tests	

(California	Verbal	Learning	Task,	CVLT,	Niemann,	2008),	used	to	assess	verbal	 learning	
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and	memory	capacity,	and	to	provide	information	about	different	learning	strategies	by	

testing	 Immediate	 Memory	 Recall	 and	 Delayed	 Memory	 Recall;	 c)	 Vocabulary	 test	

(Wortschatztest,	WST,	 Schmidt,	 1992),	 used	 to	measure	 verbal	 intelligence,	 and	 assess	

language	 comprehension;	 d)	 Phonemic	 and	 e)	 Semantic	 Fluency	 tests	 (Regensburger	

Wortflüssigkeitstest,	RWT,	Aschenbrenner,	2000),	used	to	assess	verbal	fluency.	Notably,	

higher	scores	correspond	to	a	better	cognitive	performance	in	all	cognitive	tests.	A	full	

description	about	the	cognitive	assessment	can	be	found	in	Babayan	et	al.	(Babayan	et	

al.,	 2019).	 Demographic	 variables,	 such	 as	 sex	 and	 Body	Mass	 Index	 (BMI)	were	 also	

assessed.	 

	

2.2.	MRI	data	acquisition	

	

MRI	 scans	 were	 performed	 on	 a	 Siemens	 3	 Tesla	 (3T)	 MAGNETOM	 Verio	 MR	

scanner	 (Siemens	Healthcare	GmbH,	 Erlangen,	 Germany)	 equipped	with	 a	 32-channel	

receiver	head	coil.	Briefly,	 the	data	used	 in	 this	study	 included	anatomical	and	resting	

state	fMRI	(rs-fMRI)	scans.	The	anatomical	scans	were	acquired	using	a	3D	T1-weighted	

(T1w)	 Magnetization-Prepared	 2	 Rapid	 Acquisition	 Gradient	 Echoes	 sequence	

(MP2RAGE)	(Marques	et	al.,	2010),	with	a	MP2RAGE	block	time	=	5000ms,	a	repetition	

time	 (TR)	 =	 6.9ms,	 an	 echo	 time	 (TE)	 =	 2.92ms,	 inversion	 time	 (TI1)	 =	 700ms,	 TI2	 =	

2500ms,	flip	angle	(FA1)	=	4°,	FA2	=	5°,	voxel	dimension	=	1	mm	isotropic,	acquisition	

time	=	8	min	22s.	The	rs-fMRI	scans	were	acquired	using	a	T2*-weighted	echo	planar	

imaging	(EPI)	sequence	with	a	multiband	factor	MB	=	4,	TR	=	1400ms,	TE	=	30ms,	FA	=	

69°,	 voxel	 dimension	 =	 2.3mm	 isotropic,	 number	 of	 volumes	 (N)	 =	 657	 volumes,	

acquisition	time	=	15min	30s.	The	two	images	acquired	at	TI1	and	TI2	are	fused	into	a	

unique	anatomical	image	with	enhanced	T1	contrast	and	reduced	bias	field.		

	

During	 the	 rs-fMRI	 run,	 participants	 were	 instructed	 to	 remain	 awake	 and	 lie	

down	with	their	eyes	open	while	looking	at	a	low-contrast	fixation	cross.	Spin	echo	EPI	

with	 reversed	 phase	 encoding	 were	 also	 acquired	 and	 used	 for	 rs-fMRI	 distortion	

correction.	These	scans	were	acquired	with	TR	=	2200 ms,	TE	=	50 ms,	FA	=	90°,	voxel	

dimension	 =	 2.3 mm	 isotropic,	 phase	 encoding	 =	 anterior	 to	 posterior	 (AP)	 and	

posterior	 to	 anterior	 (PA),	 acquisition	 time	=	29s	 each.	 Further	details	 about	 the	MRI	

protocol	can	be	found	in	Babayan	et	al.	(Babayan	et	al.,	2019).	To	quantify	eventual	head	
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motion	 artifacts,	 we	 calculated	 the	 framewise	 displacement	 (FD, Power	 et	 al.,	 2012)	

computed	as	the	sum	of	 the	absolute	values	of	 the	derivatives	of	 the	translational	and	

rotational	 realignment	 estimates	 at	 every	 timepoint,	 for	 which	 we	 reported	 values	

below	0.5	for	all	groups	(FDHC	=	0.18	±	0.06,	FDOH	=	0.22	±	0.14,	FDOL	=	0.23	±	0.09).	

	

2.3.	Data	processing	

	

2.3.1.	MRI	data	analysis		

Anatomical	 scans:	 Voxel-Based-Morphometry	 (VBM)	 was	 used	 to	 study	 GM	

differences	between	young	and	older	adult	groups.	Preprocessing	was	carried	out	using	

FSL	 (www.fmrib.ox.ac.uk/fsl)	 and	 included:	 brain	 extraction	 and	 brain	 tissues	

segmentation	(using	FAST),	which	allows	extracting	measures	of	 the	 total	gray	matter	

(GM),	the	white	matter	(WM)	and	the	cerebrospinal	fluid	(CSF).	Brain	structural	imaging	

features,	 including	 total	 brain	 volume	 (TBV)	 and	 segmented	 GM,	WM,	 and	 CSF,	 were	

computed	 for	 each	 participant.	 Whole-brain	 analysis	 was	 carried	 out	 with	 FSL-VBM	

(Douaud	 et	 al.,	 2007),	 using	default	 settings.	 In	 brief,	 brain	 extraction	 and	 tissue-type	

segmentation	were	performed	and	resulting	GM	partial	volume	images	were	aligned	to	

the	 standard	 space	 using	 FMRIB's	 Linear	 Image	 Registration	 Tool	 (FLIRT)	 and	 then	

nonlinear	 (FNIRT)	 registration	 tools.	The	 resulting	 images	were	 averaged,	modulated,	

and	 smoothed	 with	 an	 isotropic	 Gaussian	 kernel	 of	 3	 mm	 to	 create	 a	 study-specific	

template.	Finally,	voxel-wise	GLM	was	applied	using	permutation	nonparametric	testing	

(5,000	permutations),	correcting	for	multiple	comparisons	across	space.		

	

rs-fMRI	scans:	Motion	correction	was	performed	using	MCFLIRT,	included	in	the	

fMRI	 Expert	 Analysis	 Tool	 (FEAT)	 toolbox	 (Woolrich	 et	 al.,	 2001).	 Then,	 distortion	

correction	 was	 performed	 using	 the	 fMRI	 datasets	 acquired	 with	 AP	 and	 PA	 phase-

encoding	directions.	These	were	used	to	estimate	a	susceptibility	induced	off-resonance	

distortion	 field	 (Smith	 et	 al.,	 2004).	 The	 computed	 field	 was	 used	 to	 correct	 the,	

previously	 motion-corrected,	 time-averaged	 fMRI	 dataset.	 Following	 this,	 rigid	

registration	 of	 the	motion	 and	 distortion	 corrected	 time-averaged	 fMRI	 data	 onto	 the	

individual	 structural	 T1w	 data	 was	 performed.	 After	 linear	 registration	 to	 the	 T1w	

image	 was	 performed	 to	 register	 the	 rs-fMRI	 data	 from	 the	 individual	 space	 to	 the	

Montreal	Neurological	Institute	(MNI)	standard	space,	a	non-linear	transformation	was	
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computed	by	processing	the	anatomical	T1w	image	alone.	In	particular,	the	T1w	image	

was	registered	to	the	MNI	space	in	two	sequential	steps.	First,	an	affine	transformation	

(12	degrees	of	 freedom)	was	computed.	Then,	 a	 further	non-rigid	 transformation	was	

employed	 to	 reach	 fine-grained	 alignment.	 Note	 that,	 in	 this	 context,	 the	 affine	

transformation	 was	 employed	 as	 seed	 for	 the	 minimization	 of	 the	 non-linear	

registration	 step.	 After	 all	 these	 steps	 were	 performed,	 the	 off-resonance	 distortion	

field,	the	linear	transformation	mapping	the	fMRI	data	onto	the	T1w	image,	and	the	non-

linear	transformation	mapping	the	T1w	data	onto	the	MNI	space,	were	combined	into	an	

unique	warping	field,	which	was	applied	at	once	to	the	motion	and	distortion	corrected	

fMRI	 time-series.	 After	 alignment	was	 achieved,	 the	 fMRI	 data	 on	 the	MNI	 space	was	

finally	 spatially	 smoothed	 using	 a	 Gaussian	 kernel	 of	 full-width	 at	 half-maximum	

(FWHM)	of	5	mm,	and	a	high-pass	temporal	filtering	equivalent	to	100	s	applied.	fMRI	

connectivity	analysis	at	rest	was	carried	out	using	the	Multivariate	Exploratory	Linear	

Optimized	 Decomposition	 into	 Independent	 Components	 (MELODIC)	 (Beckmann	 and	

Smith,	2004).	Preprocessed	functional	data	containing	N	=	657	volumes	for	each	subject	

were	 temporally	 concatenated	 across	 subjects	 to	 create	 a	 single	 4D	 dataset.	 The	

between-subject	analysis	of	the	rs-fMRI	data	was	carried	out	using	the	“dual	regression”	

approach	(Filippini	et	al.,	2009)	that	allows	for	voxel-wise	comparisons	of	resting	state	

functional	 connectivity.	 In	 this	 analysis,	 the	 dataset	 was	 decomposed	 into	 25	

components,	in	which	the	model	order	was	estimated	using	the	Laplace	approximation	

to	 the	Bayesian	evidence	 for	a	probabilistic	principal	 component	model.	The	resulting	

group-ICA	(Independent	Component	Analysis)	components	were	visually	inspected	and	

then	 labelled	 as	 resting	 state	 networks	 (RSNs)	 based	 on	 the	 topology	 of	 their	

thresholded	spatial	maps.	Thirty	subjects	for	each	of	the	three	groups	were	considered	

to	 create	 the	 group-components.	 The	 mean	 connectivity	 values	 associated	 with	 each	

subject	 RSN	 maps	 were	 extracted	 and	 used	 as	 a	 measure	 of	 connectivity	 strength,	

referring	 to	 the	 spontaneous	 and	 synchronous	 activity	 within	 a	 given	 network	 for	 a	

specific	 subject.	 Statistical	 analysis,	 described	 in	 more	 detail	 in	 the	 following	 section	

(2.3.2),	consisted	of	an	Analysis	of	Covariance	(ANCOVA),	including	TBV,	BMI	and	sex	as	

nuisances,	 which	 was	 run	 to	 test	 for	 differences	 in	 neural	 variables	 between	 the	

different	groups.	
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2.3.2.	Statistical	Analyses		

	

Statistical	 analyses	 on	 continuous	 variables	 (i.e.,	 socio-demographic,	 cognitive	

scores	and	brain	measures)	and	dichotomic	variables	(i.e.,	sex)	were	carried	out	using	

SPSS	 software	 (SPSS,	 Inc.).	 A	 t-test	 was	 used	 to	 compare	 those	 variables	 between	

younger	and	older	participants,	whereas	the	Analysis	of	Variance	(ANOVA)	was	used	to	

compare	 socio-demographic	 variables	 and	 structural	 brain	 measures	 between	 the	

young,	old-high,	and	old-low	groups.	The	ANCOVA	was	then	used	to	compare	cognitive	

scores	and	RSN	measures	among	all	 groups.	The	ANCOVA	analysis	 included	TBV,	BMI	

and	 sex	 as	 nuisances	 (Table	 1).	 Both	 ANOVA	 and	 ANCOVA	 post-hoc	 analyses	 were	

Bonferroni-corrected.	 Pearson’s	 correlation	 coefficients	 between	 cognitive	 scores	 and	

connectivity	 strength	 of	 RSNs	 that	 revealed	 significant	 group	 differences	 were	

calculated	 through	 a	 partial	 correlation	 analysis	 including	 TBV,	 BMI	 and	 sex	 as	

nuisances.	The	Fisher’s-r-to-Z	 transformation	of	 the	Pearson’s	correlation	was	used	 to	

compare	the	partial	correlation	coefficients.	

	

	

3.	Results	
	
3.1.	Age-related	and	education-related	differences	of	socio-demographic	variables	
and	brain	measures		
	
The	 analysis	 of	 socio-demographic	 variables	 revealed	 that	 the	 young	 group	 differed	

from	the	old	group	in	terms	of	BMI	and	sex	(Table	1).	VBM	analysis	showed	widespread	

reduction	 in	GM	volume	 in	 the	old	group	compared	to	 the	young	group.	Brain	regions	

with	group	differences	included	the	anterior	cingulate,	precuneus,	superior,	middle	and	

inferior	frontal	gyri,	supramarginal	gyrus,	 insular	cortex,	temporal,	parietal	and	lateral	

occipital	regions	bilaterally	(Figure	S1	in	Supplementary	Material).	These	results	are	in	

line	with	previously	reported	findings	for	this	type	of	comparison	(Filippini	et	al.,	2012).	

No	 voxel-wise	 structural	 differences	 were	 observed	 between	 old-high	 and	 old-low	

participants.	 For	 completeness	 and	 descriptive	 purposes,	 we	 presented	 further	

structural	MRI	 data	 analysis	 showing	 that	 the	 young	 group	 had	 higher	 TBV,	 GM,	 and	

WM,	and	lower	CSF	values,	compared	to	the	old	group	(Table	1).	Differences	were	found	

between	the	old-high	and	the	old-low	groups	in	terms	of	TBV	and	CSF.		
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Y 

(N=137) 
 

O 
(N=60) 

 

Y vs O 
p-val 

OH 
(N=30) 

 

OL 
(N=30) 

 

p-ANOVA 
 

 
Post-Hoc comparisons 
(Bonferroni-corrected) 

Y vs OH 
 

Y vs OL 
 

OH vs OL 
 

Socio-Demographic variables 

Age 22.83±3.42 64.50±4.84 <0.001* 64.16±5.88 64.83±3.59 <0.001* <0.001* <0.001* 1 

Sex 93 M 
44 F 

30 M 
30 F 0.02* 18 M 

12 F 
12 M 
18 F 0.006 - - - 

BMI 23.01±2.92 26.31±4.12 <0.001* 26.51±4.08 26.10±4.22 <0.001* <0.001* <0.001* 1 

Brain Measures 

Total 
Brain 

Volume 
1.57±0.01 1.49±0.02 <0.01* 1.55±0.03 1.44±0.03 

 
<0.001* 1 <0.001* 0.02* 

GM 
volume 0.46±0.01 0.41±0.01 <0.001* 0.41±0.01 0.42±0.01 <0.001* <0.001* <0.001* 0.07 

WM 
volume 0.35±0.01 0.34±0.01 <0.001* 0.34±0.01 0.35±0.01 <0.001* <0.001* 0.01* 1 

CSF 
volume 0.18±0.01 0.23±0.01 <0.001* 0.24±0.01 0.23±0.01 <0.001* <0.001* <0.001* 0.02* 

Table	1.	Descriptive	analyses	and	Analysis	of	Variance	(ANOVA)	of	socio-demographic	variables,	and	brain	measures	for	all	
the	groups,	 i.e.	younger	(Y),	older	(O),	older	with	higher	level	of	education	(OH),	and	older	with	lower	level	of	education	
(OL).	 The	 table	 shows	 for	 each	 variable	 mean	 and	 standard	 deviation	 or	 number	 of	 subjects.	 Columns	 show	 the	 values	 of	 the	
descriptive	statistics	for	each	group	separately,	i.e.,	young,	old,	old-high,	and	old-low,	and	for	each	comparison	between	groups,	i.e.	
young	vs	old	(third	column),	young	vs	old-high	(seventh	column),	young	vs	old-low	(eighth	column),	and	old-high	vs	old-low	(ninth	
column)	 contrasts.	 The	Bonferroni-corrected	 p-values	 associated	with	 the	 one-way	ANOVA	 (sixth	 column)	 are	 reported	 for	 each	
contrast.	Asterisks	indicate	significant	results.	

	

3.2.	Age-related	and	education-related	differences	 in	cognitive	performance	and	
functional	connectivity	
	

The	analysis	of	cognitive	scores	showed	that	the	young	group	performed	better	

than	 the	old	group	 in	all	 the	cognitive	 tests,	 apart	 from	vocabulary	 (Table	2).	For	 this	

variable,	the	old	group	did	not	differ	from	the	young	group.	However,	when	splitting	the	

older	 participants	 according	 to	 their	 educational	 level,	 the	 old-high,	 who	 had	 both	

higher	 word	 knowledge	 and	 higher	 education,	 showed	 the	 largest	 vocabulary	 size	

(p<0.01).	 Overall,	 the	 old-high	 group	 showed	 lower	 scores	 on	 cognitive	 tests	 as	

compared	to	the	young	group,	but	higher	scores	as	compared	to	the	old-low	group,	see	

Table	2.	Moreover,	the	old-high	participants	did	not	differ	from	the	young	participants	

in	 two	 cognitive	 tests	 requiring	 the	 use	 of	 high-level	 cognitive	 function	 (i.e.,	 verbal	

fluency),	 see	 Table	 2.	 The	 rs-fMRI	 analysis	 revealed	 both	 age-	 and	 education-related	

differences	 in	 functional	 connectivity	 values.	 From	 the	 derived	 25	 components	
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representing	temporally	correlated	fMRI	signals	in	different	brain	regions,	we	were	able	

to	identify	eight	spatial	maps	showing	topological	patterns	associated	with	well-known	

RSNs	 (Figure	 1).	 The	 RSNs	 included	 Somatomotor	 network	 (SMN),	 Visual-Medial	

network	 (VMN),	 Visual-Peripheral	 network	 (VPN),	 Salience	 network	 (SN),	 Dorsal	

Attention	network	(DAN),	Default	Mode	network	(DMN),	right	Fronto-Parietal	network	

(rFPN),	and	left	Fronto-Parietal	network	(lFPN).	

	

Overall,	 t-tests	showed	significant	differences	 in	connectivity	strength,	between	

the	young	and	the	old	group	for	the	VMN,	the	SN,	the	DAN,	the	DMN,	and	the	lFPN	(Table	

2).	 By	 splitting	 the	 old	 group	 based	 on	 education,	 in	 ANCOVA,	 we	 identified	 some	

specific	findings.	In	particular,	the	VMN	showed	that	the	old-high	group	had	significantly	

lower	 network	 connectivity	 strength	 compared	 to	 the	 young	 group	 (p	 =	 0.03),	which	

was	not	 reported	 in	 the	case	of	 the	old-low	group.	Similarly,	 in	 the	DMN,	 the	old-high	

group	showed	significantly	lower	connectivity	strength	compared	to	the	young	group	(p	

=	0.02),	which	was	not	reported	 in	 the	case	of	 the	old-low	group.	Differently	 from	the	

above	 reported	 RSNs	 showing	 significant	 differences	 between	 the	 young	 and	 the	 old	

group,	 the	 DAN	 showed	 significant	 differences	 for	 both	 the	 old-high	 and	 the	 old-low	

groups	compared	to	the	young	group	(old-high	vs	young	p	=	0.04;	old-low	vs	young	p	=	

0.001)	also	in	the	post-hoc	comparisons.	
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Figure	1.	Large-scale	brain	networks	reconstructed	using	rs-fMRI	data	considering	all	the	subjects.	RSNs	were	
selected	and	labeled	following	visual	check	as:	Somatomotor	network	(SMN),	Visual-Medial	network	(VMN),	Visual-
Peripheral	network	 (VPN),	Salience	network	 (SN),	Dorsal	Attention	network	 (DAN),	Default	Mode	network	 (DMN),	
right	Fronto-Parietal	network	(rFPN),	and	left	Fronto-Parietal	network	(lFPN).	Group-level	RSN	maps	(N = 197)	are	
thresholded	at	z	=	3.	Red	to	yellow	colors	represent	z-scores	>3.	
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Y 

(N=137) 
 

O 
(N=60) 

 

Y vs O 
p-val 

OH 
(N=30) 

 

OL 
(N=30) 

 

p-ANCOVA 
 

 
Post-Hoc comparisons 
(Bonferroni-corrected) 

Y vs OH 
 

Y vs OL 
 

OH vs 
OL 

 

 Cognitive Performance 

Immediate 
Memory 
Recall 

13.43±2.39 10.90±2.90 <0.001* 10.66±3.16 11.13±2.66 <0.001* <0.001* <0.001
* 1 

Delayed 
Memory 
Recall 

13.14±2.43 10.13±2.67 <0.001* 9.77±2.94 10.50±2.35 <0.001* <0.001* <0.001
* 1 

Phonemic 
Fluency 24.70±6.40 21.28±5.23 <0.001* 21.97±5.89 20.60±4.46 <0.01* 0.10 <0.01* 0.85 

Semantic 
Fluency 41.19±9.04 35.90±9.65 <0.001* 37.70±8.38 34.10±10.61 <0.01* 0.41 <0.01* 0.41 

Vocabulary 33.26±2.68 33.63±2.57 0.37 34.83±2.40 32.43±2.17 0.001* <0.01* 1 <0.01* 

 Resting State Networks - connectivity strength 

SMN 17.23±8.28 17.75±9.84 0.69 18.92±11.27 16.58±8.20 0.84 1 1 1 

VMN 27.62±9.12 24.01±9.01 0.01* 23.63±10.30 24.39±7.66 0.03* 0.03* 0.17 1 

VPN 11.40±6.97 13.38±5.51 0.05 12.75±4.12 14.03±6.64 0.38 1 0.52 0.90 

SN 14.63±4.75 16.65±5.73 0.009* 17.05±7.01 16.26±4.14 0.09 0.23 0.11 1 

DAN 12.73±2.90 10.62±3.25 <0.001* 11.32±3.44 9.92±2.94 <0.001* 0.04* 0.001* 0.77 

DMN 18.03±3.56 16.16±4.28 0.002* 15.75±5.06 16.56±3.37 0.04* 0.02* 0.52 0.88 

rFPN 12.95±3.34 12.46±5.86 0.39 13.05±4.70 11.86±2.71 0.64 1 1 1 

lFPN 12.45±3.29 11.26±4.51 0.04* 11.42±5.30 11.11±6.63 0.36 0.42 1 1 

Table	2.	Descriptive	analyses	and	Analysis	of	Covariance	(ANCOVA)	of	Cognitive	performance	and	Resting	State	Networks	
connectivity	strength	for	all	the	groups,	i.e.,	younger	(Y),	older	(O),	older	with	higher	level	of	education	(OH),	and	older	with	
lower	level	of	education	(OL).	The	table	shows	for	each	variable	mean	and	standard	deviation.	Columns	show	the	values	of	 the	
descriptive	statistics	for	each	group	separately,	i.e.	young,	old,	old-high,	and	old-low,	and	for	each	comparison	between	groups,	i.e.	
young	vs	old	(third	column),	young	vs	old-high	(seventh	column),	young	vs	old-low	(eighth	column),	and	old-high	vs	old-low	(ninth	
column)	 contrasts.	The	Bonferroni-corrected	p-values	associated	with	 the	one-way	ANCOVA	 (sixth	 column)	are	also	 reported	 for	
each	 contrast.	 The	 results	 of	 the	 ANCOVA	 and	 post-hoc	 comparisons	 are	 corrected	 for	 the	 effect	 of	 TBV	BMI,	 and	 sex.	 Asterisks	
indicate	significant	results.	
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3.3	 Association	 between	 cognitive	 performance	 and	 resting	 state	 network	

connectivity	strength:	an	exploratory	correlation	analysis	

	

An	exploratory	correlation	analysis	between	network	connectivity	strength	and	

cognitive	 scores	 was	 performed	 for	 those	 RSNs	 revealing	 significant	 differences	

between	groups,	i.e.,	the	VMN,	the	DAN,	and	the	DMN	(Table	2).	The	correlation	analysis	

showed	a	significant	negative	relationship	between	the	DMN	connectivity	strength	and	

the	 memory	 scores	 (Table	 S1	 in	 Supplementary	 Material).	 The	 Fisher’s-r-to-Z	

transformation	of	 the	Pearson’s	 correlation	 relative	 to	 the	DMN-memory	 showed	 that	

the	 correlation	 slopes	 of	 the	 young	 and	 the	 old	 groups	 were	 significantly	 different	

between	 each	 other,	 in	 both	 Immediate	 Memory	 (two-tailed	 p	 =	 0.02)	 and	 Delayed	

Memory	recall	(two-tailed	p	=	0.02).	Such	differences	were	substantially	carried	out	by	

the	old-high	group,	which	showed	preserved	significance	 (two-tailed	 p	=	0.04)	 for	 the	

Delayed	 Memory	 recall	 and	 approached	 significance	 (two-tailed	 p	 =	 0.06)	 for	 the	

Immediate	 Memory.	 The	 relationship	 between	 both	 memory	 scores	 and	 the	 DMN	

connectivity	 strength	 were	 clearly	 not	 significant	 in	 the	 old-low	 group	 Indeed,	 the	

differences	 between	 correlation	 slopes	 approached	 a	 significant	 result	 in	 the	

comparison	between	the	old-high	and	the	young	groups	(two-tailed	p	=	0.05),	while	they	

were	 clearly	 non-significant	 in	 the	 comparison	 between	 the	 old-high	 and	 the	 old-low	

groups	(two-tailed	p	=	0.20),	see	Figure	2.	

	
Figure	 2.	 Correlation	 Analysis	 (Pearson’s	 Correlation)	 between	 DMN	 connectivity	 strength	 and	 Delayed	 Memory	
recall.	 The	 panel	 on	 the	 left-hand	 side	 shows	 the	 slopes,	 the	 residuals	 and	 the	 Pearson’s	 r	 associated	 with	 the	 partial	
correlation	analyses	between	DMN	connectivity	strength	and	the	Memory	score,	in	the	young	and	the	old	groups.	The	panel	
on	 the	right-hand	side	shows	the	slopes,	 the	residuals	and	the	Pearson’s	r	associated	with	 the	partial	correlation	analyses	
between	DMN	connectivity	strength	and	the	Memory	score	in	the	young,	the	old-high,	and	the	old-low	groups.	The	asterisk	
indicates	the	result	of	significant	two-tailed	differences	between	slopes.	
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	4.	Discussion	
	

In	 this	 study,	 we	 investigated	 whether	 education	 differentiates	 cognitive	

performance	 and	 resting	 state	 fMRI	 connectivity	 in	 healthy	 aging.	 To	 this	 end,	 we	

analyzed	cognitive,	structural	and	functional	brain	imaging	variables	and	we	considered	

education	like	a	crucial	socio-demographic	aspect.	Older	adults	typically	show	cognitive,	

structural,	 and	 functional	 age-related	 differences	 compared	 to	 younger	 adults	 (e.g.,	

lower	accuracy	and	slower	 response	 times	 in	 cognitive	 tasks,	 as	also	 cortical	 thinning	

and	 brain	 atrophy)	 as	 the	 possible	 result	 of	 a	 reduced	 neural	 activity	 (see	 in	 Festini,	

2018).	 However,	 this	 is	 not	 always	 the	 case,	 as	 brain	 overactivation	 has	 also	 been	

reported	in	healthy	aging,	in	response	to	a	compensatory	necessity	(e.g.,	Cabeza,	2002).	

Accordingly,	age-related	differences	at	the	cognitive	level	are	not	always	associated	with	

the	differences	at	brain	structural	and	functional	level.	These	differences	might	also	be	

linked	 to	 education,	 which	 has	 been	 used	 in	 previous	 literature	 as	 a	 predictor	 of	

cognitive	performance	 in	healthy	 aging	 (Montemurro	 et	 al.,	 2021).	Notably,	 education	

helps	 to	 estimate	 resources	 possibly	 accumulated	 from	 early	 life,	 that	 may	 support	

cognition	also	 in	 later	 life	(Mondini	et	al.,	2022),	although	some	studies	have	reported	

different	findings	(Nyberg	et	al.,	2012).	For	this	reason,	we	wanted	to	analyze	whether	

cognitive	and	neural	variables	in	aging	could	be	further	specified	whereby	a	difference	

at	the	level	of	education	is	taken	int	account.	In	this	study,	the	variable	education	did	not	

vary	within	the	young	adults,	who	were	all	highly	educated	(i.e.,	gymnasium),	but	varied	

within	 the	 older	 adults,	 who	 were	 divided	 in	 two	 subgroups	 based	 on	 their	 level	 of	

education	(i.e.,	gymnasium	and	realschule	for	old-high	and	old-low	groups,	respectively).	

With	this	procedure,	we	first	examined	whether	there	were	any	age-related	differences	

between	 young	 adults	 and	 older	 adults.	 Then,	 we	 investigated	 whether	 education-

specific	 features	were	 identified	 in	 the	 old-high	 and	 the	 old-low	 groups,	which	 is	 the	

core	novelty	of	this	study.	

	

In	 line	 with	 previous	 literature,	 younger	 adults	 performed	 better	 than	 older	

adults	in	all	cognitive	tests,	except	for	the	vocabulary	in	which	older	adults	performed	

better	 than	younger	adults	(Bettio	et	al.,	2017;	Nyberg	and	Pudas,	2019).	 Importantly,	

the	 young	 and	 the	 old-high	 groups	 did	 not	 differ	 between	 each	 other	 in	 terms	 of	

language	performance	(i.e.,	verbal	fluency	tests)	as	a	possible	effect	of	education	(Barulli	

and	 Stern,	 2013)	 but	 the	 old-high	 group	 had	 a	 significantly	 higher	 vocabulary	 score	
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compared	 to	 the	 other	 two	 groups.	 Overall,	 these	 results	 confirmed	 that	 higher	

education	may	provide	for	a	more	“youth-like”	performance	on	language	tasks	requiring	

flexibility	and	cognitive	control.	In	addition,	vocabulary	may	have	increased	both	along	

the	 lifespan	 and	 through	 the	 education	 level,	 which	 may	 have	 played	 as	 a	 sort	 of	

reserve/storage	 of	 verbal	 capacities	 too	 (see	 also	 the	 DACHA	 theoretical	 model	 in	

(Verhaeghen,	2003;	Spreng	and	Turner,	2019).		

	

We	found	between-group	differences	in	terms	of	brain	structure,	with	the	older	

adults	showing	signs	of	deterioration,	i.e.,	reduced	gray	and	white	matter,	increased	CSF,	

compared	 to	 young	 adults	 (Fjell	 et	 al.,	 2009;	 Salthouse,	 2011;	 Orellana	 et	 al.,	 2016;	

Oschwald	et	al.,	2019),	regardless	the	level	of	their	education.	From	a	functional	point	of	

view,	the	derived	RSNs	(i.e.,	SMN,	VMN,	VPN,	SN,	DAN,	DMN,	rFPN	and	lFPN)	presented	

a	more	 heterogeneous	 scenario.	 A	 significantly	 higher	 RSN	 connectivity	 strength	was	

found	in	the	young	group	compared	to	the	old	group	in	the	VMN,	the	DAN,	and	the	DMN,	

which	notably	may	be	affected	by	aging	(Onoda	et	al.,	2012;	Jockwitz	et	al.,	2017;	Farras-

Permanyer	 et	 al.,	 2019),	while	 the	 SN	 showed	 an	 opposite	 trend	 (higher	 connectivity	

strength	for	the	older	adults,	especially	for	those	with	a	high	level	of	education).	When	

accounting	 for	 education,	 the	 results	 significantly	 differed	 in	 the	 RSN	 connectivity	

strength	for	the	VMN,	the	DAN,	and	the	DMN	(Table	2).	In	the	DAN,	the	highest	level	of	

network	connectivity	strength	was	found	for	the	young	group,	followed	by	the	old-high,	

and	then	the	by	the	old-low	group.	Interestingly,	in	the	DAN,	both	the	old-high	and	the	

old-low	groups	significantly	differed	from	the	young	group,	which	suggested	a	clear	age-

related	effect	for	this	network	(Jockwitz	and	Caspers,	2021).	For	both	the	VMN	and	the	

DMN,	 the	 old-high	 group	 had	 the	 lowest	 network	 connectivity	 strength	 in	 line	 with	

previous	 research	 that	 showed	 an	 age-related	 decreased	 connectivity	 of	 these	 RSNs	

(Farras-Permanyer	et	al.,	2019;	 Jockwitz	and	Caspers,	2021)	which	 in	turn	display	the	

potential	compensatory	effects	carried	out	by	education.	These	findings	are	also	in	line	

with	the	STAC-r	model	(Reuter-Lorenz	and	Park,	2014),	which	highlighted	education	for	

explaining	compensation	processes	in	aging.		

	

The	results	of	 this	study	suggest	 that	higher	education	makes	older	 individuals	

possibly	more	cognitively	specialized	in	terms	of	verbal	abilities,	which	is	shown	by	the	

highest	vocabulary	skills	 in	the	old-high	group	compared	to	the	other	two	groups,	and	
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by	the	non-significant	differences	between	the	old-high	and	the	young	group	on	verbal	

fluency	 (which	 also	 requires	 executive	 control).	 This	 suggests	 that	 a	higher	 education	

defines	 specific	 neural	 patterns	 in	 the	 brain	 at	 rest.	 Critically,	 the	 old-high	 group	 not	

only	displayed	the	lowest	connectivity	strength	in	the	DMN,	but,	in	this	group,	the	DMN	

was	the	only	network	showing	a	selective,	negative,	association	with	memory	capacities	

(Table	3).	Although	 the	 correlation	analyses	were	only	observational	and	exploratory,	

we	 may	 explain	 these	 results	 by	 underlining	 that	 the	 DMN,	 which	 is	 known	 to	

“deactivate”	 proportionally	 with	 the	 increasing	 cognitive	 demand	 (Anticevic	 et	 al.,	

2012),	may	reflect	a	peculiar	compensatory	effect	carried	out	by	education	at	the	level	

of	memory	capacities,	which	are	typically	vulnerable	to	aging	(Farras-Permanyer	et	al.,	

2019).	 Age-related	 dysregulation	 in	 the	 connectivity	 of	 the	 DMN	 has	 been	 previously	

found	in	association	with	compensatory	mechanisms,	expressed	in	terms	of	recruitment	

of	 alternative	 brain	 areas	 (Park	 and	 Reuter-Lorenz,	 2009;	 Reuter-Lorenz	 and	 Park,	

2010).	 Moreover,	 our	 findings	 fit	 with	 the	 DECHA	 theoretical	 model	 (i.e.,	 Default-

Executive	 Coupling	 Hypothesis	 of	 Aging,	 (Spreng	 and	 Turner,	 2019),	which	 has	more	

recently	been	developed	for	investigating	complex	compensatory	mechanisms	in	aging.	

According	 to	DECHA,	 education	might	 help	 in	 the	 shift	 toward	 a	more	 “semanticized”	

cognition	 (Spreng	 and	 Turner,	 2019),	 which	 in	 turn	 would	 explain	 how	 the	 old-high	

group	 in	 this	 study	 have	 also	 better	 coped	 with	 cognitive	 demands	 in	 the	 semantic	

verbal	fluency	tasks	compared	with	the	old-low	group	.	

	

The	 cross-sectional	 nature	 of	 this	 dataset	 represents	 a	 limitation	 in	 this	 study.	

Longitudinal	 studies	would	be	warranted	 to	properly	 study	age-related	differences	by	

detecting	 changes	 in	 brain	 structure	 and	 function	 over	 time	 (Damoiseaux,	 2017).	

Furthermore,	criteria	used	to	define	the	level	of	education	might	be	considered	to	some	

extent	suboptimal,	as	we	could	not	use	the	continuous	education	values	but	two	broad	

classes.	 However,	 such	 limitations	 were	 not	 specifically	 linked	 to	 the	 experimental	

choices	of	this	study	but	represent	intrinsic	features	of	the	database	(LEMON).	

	

5.	Conclusion	

Education	maintains	its	modulatory	role	in	neurocognitive	functioning.	It	is	able	

to	differentiate	cognitive	and	neural	profiles	of	healthy	older	adults,	based	on	their	high-

order	 verbal	 proficiency	 and	 resting-state	 connectivity	 of	 neural	 networks	 typically	
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employed	in	high-order	cognitive	functioning.	A	key	network	in	this	context	is	the	DMN	

as	 it	 might	 reflect	 memory	 compensatory	 mechanisms	 in	 older	 adults	 with	 higher	

education,	who	may	have,	at	the	cognitive	level,	a	higher	potential	amount	of	resources	

to	employ	in	their	every-day	lives.	
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