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ABSTRACT

Behavioral tests are currently the gold standard in measuring speech intelligibility.

However, these tests can be difficult to administer in young children due to factors

such as motivation, linguistic knowledge and cognitive skills. It has been shown that

measures of neural envelope tracking can be used to predict speech intelligibility

and overcome these issues. However, its potential as an objective measure for

speech intelligibility in noise remains to be investigated in preschool children. Here,

we evaluated neural envelope tracking as a function of signal-to-noise ratio (SNR) in

14 5-year-old children. We examined EEG responses to natural, continuous speech

presented at different SNRs ranging from -8 (very difficult) to 8 dB SNR (very easy).

As expected delta band (0.5-4 Hz) tracking increased with increasing stimulus SNR.

However, this increase was not strictly monotonic as neural tracking reached a

plateau between 0 and 4 dB SNR, similarly to the behavioral speech intelligibility

outcomes. These findings indicate that neural tracking in the delta band remains

stable, as long as the acoustical degradation of the speech signal does not reflect

significant changes in speech intelligibility. Theta band tracking (4-8 Hz), on the

other hand, was found to be drastically reduced and more easily affected by noise

in children, making it less reliable as a measure of speech intelligibility. By contrast,

neural envelope tracking in the delta band was directly associated with behavioral

measures of speech intelligibility. This suggests that neural envelope tracking

in the delta band is a valuable tool for evaluating speech-in-noise intelligibility

in preschoolers, highlighting its potential as an objective measure of speech in

difficult-to-test populations.
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1 INTRODUCTION

Globally, 34 million children (∼0.2% of all children aged 0 to 18 years) have disabling1

hearing loss, i.e., hearing loss greater than 30 decibels (dB) in the better ear (report of2

World Health Organization, 2021). The prevalence rises to 5% when mild and unilateral3

hearing losses are also considered (Wang et al., 2019). Unaddressed hearing loss has been4

proven to affect children’s speech and language development, educational attainments5

and social skills. Through early detection and interventions many of these impacts can be6

mitigated, highlighting the importance of accurate hearing diagnostics (O’Donoghue, 2013).7

Evaluation of speech intelligibility is a fundamental component of hearing loss assessment8

and rehabilitation. It can determine speech intelligibility and discrimination of speech9

features, and provides insight into the perceptual abilities of an individual (Eggermont,10

2017). The current gold standard in measuring speech intelligibility relies heavily on11

behavioral tests. While these tests are reliable and fast in healthy adults, it can be difficult12

to assess speech intelligibility in children. A child’s abilities and limitations in the language13

domain as well as their cognitive abilities strongly affect the results of a behavioral test.14

Moreover, the type of response task, the speech material, and children’s motivation and15

involvement should also be considered (Mendel, 2008). In addition, measures of speech16

intelligibility are often restricted to testing in quiet, due to a lack of appropriate and reliable17

speech in noise tasks (van Wieringen & Wouters, 2022). However, the high prevalence of18

noise in children’s natural listening environments, especially in settings where children learn19

and play (e.g., clamorous classrooms and rowdy playgrounds), poses serious challenges20

for a still immature auditory system (e.g., Ambrose et al., 2014; Neuman et al., 2010).21

Therefore it is essential that we can measure the ability to understand speech in these noisy,22

everyday environments.23

An objective approach, using EEG to measure neural tracking in response to natural24

running speech, could overcome the current challenges in pediatric hearing assessment25

and provide a more reliable measure of a child’s speech intelligibility (for a review see26
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Gillis et al., 2022b). Neural tracking refers to the process by which neural responses in a27

listener’s brain time-lock to dynamic patterns of the presented speech, such as the speech28

envelope. The speech envelope contains acoustical information (Rosen, 1992) and reflects29

phoneme, syllable and word boundaries (Peelle et al., 2013), which are critical for speech30

intelligibility (Shannon et al., 1995).31

Indeed, a rich literature has found that during speech perception, auditory neural activity32

tracks the temporal fluctuations of the speech envelope in frequency bands matching the33

important occurrences of speech information, i.e., phrases/sentences (below 2 Hz) and34

syllables (2-8 Hz) (Vander Ghinst et al., 2019; Ding et al., 2016; Bourguignon et al., 2013;35

Ahissar et al., 2001; Gross et al., 2013; Meyer et al., 2017; Molinaro & Lizarazu, 2017).36

More importantly regarding diagnostic purposes, many researchers have shown that neural37

envelope tracking is affected by the intelligibility of the presented speech (Peelle et al., 2013;38

Gross et al., 2013; Di Liberto et al., 2018) and is significantly correlated with behavioral39

measures of speech intelligibility (Ding et al., 2014; Vanthornhout et al., 2018; Lesenfants40

et al., 2019a; Verschueren et al., 2021).41

Most of the above-mentioned studies have been conducted in adults. Research on neural42

envelope tracking in children is scarce, despite the functional relevance that neural tracking43

might have for objectively measuring children’s speech intelligibility. Moreover, cross-44

sectional evidence shows that auditory neural activity changes drastically during childhood45

(e.g., Cragg et al., 2011; Vander Ghinst et al., 2019; Schneider & Maguire, 2019; Panda46

et al., 2020), which makes it difficult to extrapolate outcomes from neural tracking research47

in adults to children. Furthermore, previous research in children mostly involved older48

children (> 10 years) with dyslexia, focusing on the relation between neural tracking and49

reading development/experience. These studies show consistent coherence in the delta50

frequency range (0.5-4 Hz) (Molinaro et al., 2016) and theta (4-8 Hz) (Abrams et al., 2009;51

Molinaro et al., 2016) using natural speech. In addition, they found that dyslexic children52

have impaired tracking at low frequencies (< 2 Hz) compared to typically developing53
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children (Molinaro et al., 2016; Power et al., 2013, 2016; Di Liberto et al., 2018; Destoky54

et al., 2022).55

Although evidence of the neural tracking mechanisms in typically developing children is56

limited, more recent studies have been able to show successful neural tracking of continuous57

natural speech in both infants (<1 year) (Kalashnikova et al., 2018; Tan et al., 2022; Attaheri58

et al., 2022) and young children between 4 and 9 years old (Vander Ghinst et al., 2019;59

Rı́os-López et al., 2020; Tan et al., 2022). For example, Rı́os-López et al. (2020) showed60

that speech-brain coupling already occurs at 4 years of age in the delta-band frequency61

range, but not at theta frequencies. Similarly, Vander Ghinst et al. (2019) found significant62

speech tracking in children aged 6-9 at < 1 Hz frequencies, while neural envelope tracking63

was reduced or even absent in the theta band.64

Furthermore, neural envelope tracking in children has typically been evaluated under65

optimal, noiseless listening conditions. Findings from multiple, behavioral studies provided66

evidence that mature performance on a wide range of speech-in-noise measures is67

established by about 9-10 years of age, while younger children require a higher signal-to-68

noise ratio (SNR) to achieve adult-like performance (for a review see Leibold 2017). Thus,69

children seem more susceptible to the detrimental effects of noise on speech intelligibility.70

Only one study to our knowledge has studied neural tracking of speech-in-noise in typically71

developing children using magnetoencephalography (MEG). In accordance to behavioral72

measures, Vander Ghinst et al. (2019) found that neural tracking differs between typically73

developing children and adults and, that noise differentially corrupts neural tracking in74

children. In adults, their results showed a clear effect of noise at delta frequencies (<1 Hz),75

that is, a decrease in coherence as SNR decreased and speech is less intelligible. However,76

in children increasing noise decreased coherence more strongly than in adults. Additionally,77

children’s coherence was drastically reduced or even absent in comparison with adults in the78

theta band regardless of SNR. Generally, these results are in line with previous behavioral79

studies showing children’s poorer speech intelligibility in adverse listening conditions80
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(Johnson, 2000; Talarico et al., 2007; Neuman et al., 2010; Leibold, 2017). However, we81

cannot conclude from this study that delta and/or theta coherence is directly related to82

speech-in-noise intelligibility, since only indirect behavioral measures (e.g., intelligibility83

rating) were included. In addition, MEG-based recordings were used and various practical84

aspects of MEG in its current form (e.g., cost) pose a limitation to its large-scale usability85

in clinical practice, compared to electroencephalography (EEG) (Destoky et al., 2019).86

Our recent research provides a framework for investigating neural tracking of different87

speech features, including the speech envelope (Lesenfants et al., 2019b; Verschueren88

et al., 2021; Gillis et al., 2022b), using EEG. The approach combines both linear89

decoding (backward-modelling) and encoding (forward-modelling) models, providing90

complementary information about neural tracking. The backward model is a model to91

reconstruct the speech envelope from the associated EEG recording, whereas the forward92

model predicts the EEG responses to speech and can be used to study the spatio-temporal93

dynamics of the response similarly to event related potentials (ERPs). This is the first study94

to use this method in preschoolers and we aim to investigate the validity of a measure95

that has previously been used only with adults (e.g., Vanthornhout et al., 2018). More96

specifically, in this study, we investigate (i) the effect of SNR on neural envelope tracking97

in preschoolers, and (ii) whether neural envelope tracking reflects speech intelligibility by98

evaluating the correspondence between neural envelope tracking and behavioral measures of99

speech intelligibility in noise. We have two specific hypotheses. First, we predicted that as100

SNR increases, neural envelope tracking increases, given that previous research has shown101

that stronger neural responses are associated with better speech intelligibility (Ahissar102

et al., 2001; Peelle et al., 2013; Ding et al., 2014; Vanthornhout et al., 2018). Secondly, we103

hypothesize that, similar to studies in adults (Vanthornhout et al., 2018; Lesenfants et al.,104

2019a), behaviorally measured speech intelligibility in noise is significantly correlated with105

our neural, objective measure.106
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2 MATERIALS AND METHODS

2.1 Participants107

Fourteen 5-year-old children, recruited from the third year of kindergarten, participated in108

the experiment (6 female). All children were native Dutch speakers, had normal peripheral109

hearing (hearing thresholds ≤ 30 dB HL for frequencies from 0.5 to 4 kHz) and had normal110

or corrected to normal vision. None of the children were at risk for a cognitive or language111

delay nor had a family history of developmental disorders, as reported by the parents. The112

study protocol was approved by the local Medical Ethics Committee (reference no. S57102)113

and all parents provided written informed consent before the experiment. All children114

received a gift voucher for participating.115

2.2 Behavioral measurements116

2.2.1 Speech-in-noise intelligibility117

Speech intelligibility in noise was assessed using the Leuven Intelligibility Peuter Test118

(Lilliput; van Wieringen & Wouters, 2022). This test consist of 20 lists of 11 three-phoneme119

consonant-vowel-consonant words (e.g., “bus”) uttered by a female speaker. All lists were120

presented in a stationary speech-weighted noise, matching the long-term average spectrum121

of the speaker. The noise level was fixed at 65 dB SPL, whereas the speech level was122

adjusted to obtain the targeted SNRs. Each child started with 1 training list at 0 dB SNR.123

Thereafter, different lists were presented monaurally to the right ear at four fixed SNRs:124

0, -3, -6 and -9 dB SNR. If necessary, additional lists at -12 dB SNR (i.e., if scores at125

-9 dB SNR >50%) were presented. Two lists were presented per SNR. Children were126

instructed to recall each word as accurately as possible. The result of the Lilliput test is a127

phoneme score, i.e. the number of phonemes correctly repeated by the child. The average128

phoneme score per SNR was used for further analysis. Words were played through Peltor129
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H7A headphones using the software platform APEX (Francart et al., 2008) on a Samsung130

Galaxy Tab A tablet.131

2.2.2 Receptive language132

Children’s receptive language skills were examined using the Peabody Picture Vocabulary133

Test-III-NL (PPVT-III-NL; Dunn & Dunn, 1997). The PPVT-III-NL was administered in134

order to confirm the absence of a language impairment. It is a norm-referenced test that135

consists of selecting 1 of 4 pictures corresponding to a given word, at increasing levels136

of difficulty. Raw scores were calculated as the total responses correct and converted to137

age-adjusted standard scores (100 ± 15; mean ± SD) according to the standard values138

included in the test manual. The mean of the PPVT-III scores was 114 (SD = 12.82), ranging139

from 86 to 127 showing that all children performed well within age norms.140

2.3 EEG experimental procedure141

2.3.1 Speech material and procedure142

During the EEG recordings, children listened to four different stories of “Little Polar Bear”,143

the children’s series by Hans de Beer, narrated by the same native Flemish speaker as the144

Lilliput. Each story was 10 to 12 minutes long and segmented in two-minute fragments145

taking sentence boundaries into account. The stories were presented in a stationary speech-146

weighted noise, obtained by the long-term average spectrum of all stories together. For all147

stories the speech level was fixed at 60 dB A, while the noise level was adjusted to obtain148

five SNR conditions: 8, 4, 0, -4 and -8 dB SNR. Every two-minute segment was presented149

randomly at a different SNR. In total, every SNR was presented three times (i.e., 6 minutes),150

with the exception of the easiest SNR condition (8 dB SNR). The 8 dB SNR condition was151

presented for an additional 6 minutes at the end of the recording session.152
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2.3.2 Data acquisition153

EEG signals were recorded using a Biosemi ActiveTwo System at a sample rate of 8192154

Hz. This system uses 64 Ag/AgCl electrodes, distributed over the scalp according to the155

international 10-20 system. The electrode offsets were kept between -30mV and 30mV to156

ensure stable recording.157

All recordings were carried out in a soundproof and electrically shielded room, using a158

child-friendly and age-appropriate protocol. Children were comfortably seated in a chair159

approximately 1 m from a sound-permeable screen. Speech stimuli were presented at a160

sample rate of 48000 Hz through a GENELEC (8020A) loudspeaker positioned at head-161

height of the seated child using the software platform APEX (Francart et al., 2008) and an162

RME Fireface UC soundcard (Haimhausen, Germany). To mimic a storytelling scenario163

children watched images of the corresponding “Little Polar Bear” books projected on the164

screen in front of them while listening to the stories.165

Children were instructed to attend to the stories and to avoid moving as much as possible.166

Additionally, children were accompanied by an experienced test leader in the EEG cabin to167

monitor alertness and movement. During each story, each child was asked 3 multiple-choice168

comprehension questions to improve attention. Short recesses between each two-minute169

segment and each different story were also used to motivate the children and, if necessary,170

allow them to rest or move before resuming the story.171

2.4 EEG data analysis172

We measured neural tracking of the speech envelope as a function of stimulus SNR using173

an envelope reconstruction approach (backward-modelling) and temporal response function174

estimation (forward-modelling). All signal processing was performed offline using Matlab175

R2016b (The MathWorks Inc, 2016).176
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2.4.1 Envelope reconstruction177

To measure neural envelope tracking, we used the envelope reconstruction approach178

described in detail by Vanthornhout et al. (2018) and Verschueren et al. (2020). In summary,179

the speech envelope was extracted according to Biesmans et al. (2017) who showed good180

reconstruction accuracy using a gammatone filter bank followed by a power law. The181

acoustic envelope was then downsampled from 48000 to 256 Hz in order to decrease182

computation time. Next, the speech envelope was band-pass filtered between 0.5-4 Hz183

(delta band) and 4-8 Hz (theta band) using a Chebyshev filter (with 80 dB attenuation184

and 10% outside the passband) and further downsampled to 128 Hz. Similarly to the185

speech envelope, the EEG data was first downsampled from 8192 Hz to 256 Hz. Next, a186

multi-channel Wiener filter (Somers et al., 2018) was applied to the EEG data to remove187

common EEG artifacts such as eye blinks and muscle artifacts. Bad EEG channels were188

interpolated from their 5 neighbouring channels using Fieldtrip (Oostenveld et al., 2011).189

We then re-referenced each EEG signal to a common-average reference. Finally, the EEG190

data was band-pass filtered similarly to the speech envelope and further downsampled to191

128 Hz.192

For each SNR condition, the reconstructed envelope is obtained by applying a condition-193

specific linear decoder, calculated using ridge regression as implemented in the mTRF194

toolbox (Lalor et al., 2006). Each decoder is basically a spatiotemporal filter that combines195

the 64 EEG channels and their time-shifted versions from 0 to 250 ms (the integration196

window) into a reconstruction of the envelope. After normalization, envelope decoders197

were trained using a leave-one-out 6-fold cross-validation scheme: for each SNR condition,198

containing 6 minutes of EEG data, 5 minutes were used to train the decoder, which199

was then applied on the EEG of the remaining minute to obtain a 1-minute envelope200

reconstruction. This was repeated 6 times to obtain envelope reconstructions for all folds.201

All reconstructions within a SNR condition were concatenated and compared to the original202

envelope using a bootstrapped Spearman correlation, resulting in an envelope tracking203

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.22.529509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529509
http://creativecommons.org/licenses/by-nc-nd/4.0/


value for that SNR condition. The significance level of this correlation value is calculated204

by constructing a null distribution by correlating 1000 random permutations of the real and205

reconstructed envelopes with each other, and taking the 2.5 and 97.5 percentiles to obtain a206

95% confidence interval.207

2.4.2 Temporal response function (TRF) estimation208

The envelope reconstruction approach is a powerful analysis tool, which integrates209

information of multiple EEG channels and their time-shifted versions to reconstruct the210

envelope. However, this type of analysis does not allow an interpretation of the spatial211

pattern of the response (Haufe et al., 2014). We therefore conducted a linear forward212

modelling approach, in addition to the envelope reconstruction approach. This forward213

modelling approach predicts EEG given a speech representation and results in a temporal214

response function (TRF) for each channel. A TRF represents an impulse response function215

of how the brain responds to the stimulus envelope. The main advantage of estimating TRFs216

is that their morphology provides valuable insights concerning the neural response latency,217

amplitude and topology across the scalp. The first signal processing steps are identical to218

the envelope reconstruction approach. Only the band-pass filtering was carried out within219

a broader frequency band (0.5-25 Hz), after which the EEG data is normalized. As with220

the backward-modelling approach, TRFs are computed using 6-fold cross-validation for221

every SNR condition, where 5 minutes are used for training and 1 minute for validation.222

TRFs are computed for every channel using the boosting algorithm as described by David223

et al. (2007), implemented in the python Eelbrain toolbox (Brodbeck, 2020). In short, this224

TRF estimation algorithm works by starting from an all-zero TRF model and iteratively225

improving this model by adding a weight at a latency that causes the largest improvement226

in the response prediction. The iterations terminate when no significant improvements to227

the model can be made anymore for a given step size by which the weights are changed.228

The advantage of this method is that the resulting TRF is sparse, i.e., for a well-chosen step229

size, only the peaks that contribute most to the response prediction are included in the TRF230
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while other TRF weights are zero. TRFs were computed over a latency range (integration231

window) between -200 and 500 ms with an adaptively decreasing stepsize. For further232

analysis and visualisation, the estimated TRFs were convolved with a Gaussian kernel of 9233

samples long (SD=2) to smooth over the time lags. Next, smoothed TRFs were averaged234

across all folds.235

2.4.3 Reliability of envelope reconstruction scores236

To investigate potential changes in neural tracking over the course of the recording session,237

we calculated a measure of reliability. In particular, test-retest reliability can be used238

to reflect the variation in multiple measurements on the same subject under the same239

conditions. Here we quantified test-rest reliability by means of intraclass correlation (ICC)240

(Shrout PE, 1979), which is one of the most commonly used reliability measures in the241

neuroimaging field (Bennett & Miller, 2010). In this study, every SNR was presented three242

times (i.e., 6 minutes), with the exception of the easiest SNR condition. For the 8 dB243

SNR condition, an additional 6 minutes were presented at the end of each measurement.244

Test-retest reliability was estimated between the envelope reconstructions scores for the245

first and last 6 minutes, under the assumption of a single-measurement, absolute-agreement,246

two-way mixed model, i.e., ICC(A,1) (Koo & Li, 2016). ICC estimates and their 95%247

confidence intervals were calculated using the irr package (Gamer et al., 2019).248

2.5 Statistical analysis249

Statistical analysis were carried out in R (version 4.0.3; R Core Team, 2020). All tests were250

performed with a significance level of α = 0.05 unless otherwise stated.251

To investigate behavioral speech intelligibility in noise, the speech reception threshold252

(SRT; the SNR corresponding to a 50% percentage-correct score) and slope were determined.253

For each child individually a sigmoid function was fitted to their average phoneme scores254

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.22.529509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529509
http://creativecommons.org/licenses/by-nc-nd/4.0/


using the following formula:255

score(SNR) =
1

1 + e−
SNR−SRT

slope

(1)

To assess the relation between stimulus SNR and neural envelope tracking, we fitted a linear256

mixed effect model (LME) per filterband using maximum likelihood criteria with the nlme257

package (Pinheiro et al., 2022). The following general formula was used:258

neuralTracking ∼ SNR + random = participant (2)

where “neuralTracking” represents the Spearman correlation between the real and the259

reconstructed envelope, TRF amplitude or latency depending on the outcome measure260

being investigated. In addition, a random intercept per participant was included to account261

for dependencies between measures from the same child. Residual plots of the selected262

model were analyzed to assess the assumption of normality and did not reveal any violations.263

All significant effects are discussed in the results section by reporting the β estimates, with264

the corresponding standard error (SE), degrees of freedom (df) and test statistics (t-value and265

p-value). Where applicable, post-hoc comparisons were carried out using a non-parametric266

Wilcoxon signed-rank test (2-tailed, p < 0.01), with Bonferroni correction for multiple267

comparisons.268

Finally, the Spearman correlation between the envelope reconstruction scores and269

behaviorally measured speech intelligibility was computed to examine the relation between270

neural envelope tracking and speech intelligibility. Since different SNR conditions271

were used for the behavioral experiment, we estimated the percentage-correct scores272

corresponding to the SNR conditions (i.e. -8, -4, 0, 4 and 8 dB SNR) used for the EEG273

measurement from the individually fitted performance intensity functions.274
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3 RESULTS

3.1 Behavioral speech intelligibility275

For each child, we fitted a psychometric curve through their average percentage correct276

scores per SNR from which the SRT and slope were derived. The mean of the individual277

behavioral SRTs was -5.52 dB SNR (SD = 0.94 dB), with an average slope of 7.99%/dB278

(SD = 2.39%/dB). Individual speech intelligibility scores evaluated at the different SNR279

conditions are shown in in Figure 1 together with the fitted performance intensity function280

on the group average and individual SRT estimates.281

3.2 Envelope reconstruction282

3.2.1 Effect of SNR on envelope reconstruction283

Figure 2 shows neural tracking of the speech envelope as a function of the SNR using a284

0-250 ms integration window in the delta (0.5-4 Hz) and theta band (4-8 Hz). These results285

were obtained by a leave-one-out cross-validation approach within each 6-minute SNR286

block.287

In the delta band, an increase of neural envelope tracking with increasing SNR was288

found (b = 0.005, SE = 0.0006, p < 0.001). However, we observed that neural tracking did289

not show a strictly monotonic increase with SNR. To investigate in more detail if neural290

tracking differed significantly between adjacent SNR conditions in the delta band, post-hoc291

comparisons were carried out using a non-parametric Wilcoxon signed-rank test (2-tailed,292

p < 0.01), with Bonferroni correction for multiple comparisons. Comparisons between293

increasing SNR conditions demonstrated that neural tracking increased significantly from -8294

to -4 dB SNR (p = 0.003; r = -0.792) and from -4 to 0 dB SNR (p = 0.007; r = -0.724), but295

not in the two conditions with the lowest noise (0 to 4 dB SNR: p = 0.216, 4 to 8 dB SNR:296

p = 0.808). Therefore, a sigmoid function was fitted on the data across all subjects. Its297
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Figure 1. Behavioral speech intelligibility. Individual’s speech intelligibility (percentage
correct) as a function of stimulus SNR and the fitted performance intensity function of the
group average. Black dots represent the individual scores. The grey line shows the sigmoid
fitted to the data ± the error of the fit of the model. The orange boxplot on top shows the
distribution of the SRT. Individual SRT estimates are presented as black diamonds to show
variation.

midpoint was determined at -6.98 dB SNR and, convergence of the function (as calculated298

by the 95th%-value of the fit) was found around 1.5 dB SNR suggesting that neural tracking299

indeed increases with SNR until reaching a plateau between 0 and 4 dB SNR.300

In the theta band, neural tracking again increased with SNR (b = 0.002, SE = 0.0006,301

p < 0.001). However, statistically significant responses were limited. Statistically significant302

neural tracking was observed at 8 dB SNR in 11 out of 14 children, at 4 and 0 dB SNR in 5303

out of 14 children, and at -4 and -8 dB SNR in only 3 out of 14 children. Whereas in the304

delta band, statistically significant neural tracking was found in 14 of 14 children down to305
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0 dB SNR, at 13 of 14 children at -4 dB SNR, and at 9 of 14 children at -8 dB SNR. For306

further analysis, our frequency range of interest was therefore restricted to the delta band.307

3.2.2 Test-retest reliability of envelope reconstruction scores308

Test-retest reliability of neural tracking over the course of the recording session was309

determined by means of ICC(A,1) for the first and last 6 minutes of speech presented at310

8 dB SNR. ICC estimates were calculated based on a single-measure, absolute-agreement,311

2-way mixed-effects model. We found a high degree of test-retest reliability of the envelope312

reconstruction values in the delta band. The average measure ICC was 0.876, with a 95%313

confidence interval from 0.629 to 0.96 (F(13,10.2) = 18.3, p < 0.001).314

3.2.3 Effect of speech intelligibility on envelope reconstruction315

In order to assess the relation between speech intelligibility and neural envelope tracking,316

we calculated the percentage-correct scores for each SNR condition used in the EEG317

experiment using the individual psychometric curves. Figure 3 shows that neural tracking318

in the delta band increased with increasing speech intelligibility (r = 0.498; p < 0.001,319

Spearman rank correlation), suggesting that the better a child can understand speech, the320

higher the neural envelope tracking for that child.321

3.3 Effect of SNR on TRFs322

The envelope reconstruction analysis showed an S-shape tendency of neural tracking as323

a function of SNR. That is, a monotonic increase in envelope tracking over SNR, until324

saturating between 0 and 4 dB SNR. To better understand the spatio-temporal properties325

of this effect, we calculated TRFs of every 6-minute segment (i.e., each SNR condition).326

Based on visual inspection of the topographies, 12 frontocentral channels were selected327

(presented by the black dots in Figure 4B) and averaged per subject, resulting in one TRF328

per SNR for each subject. Figure 4A shows a prominent peak appearing around ∼83 ms.329
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Figure 2. Neural envelope tracking as a function of stimulus SNR. A In the delta band,
neural envelope tracking increases with increasing SNR until reaching a plateau around
0 dB SNR. The individual data points in each boxplot represent individual envelope
reconstruction scores (i.e., correlation) to show variation. The solid line (dark grey) shows
the sigmoid fitted to the data. The dashed line (light grey) shows the significance level of the
envelope reconstruction scores. B In the theta band, neural envelope tracking monotonically
increases with increasing SNR. However, limited statistically significant correlations were
found below 8 dB SNR.
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Figure 3. Relation between behavioral speech intelligibility and envelope tracking across
all SNRs in the delta band. Envelope tracking increases with increasing speech intelligibility.
The color gradient was used for illustrative purposes to mark SNR. The grey line shows the
linear model fit. The shaded area represents the 95% confidence interval for the predictions
of the linear model.

The topography of this peak (70-90 ms) is shown in Figure 4B. To investigate the influence330

of stimulus SNR on the peak latency and amplitude in more detail, the maximum TRF331

amplitude for every subject per SNR was calculated between 0 and 150 ms. As shown in332

Figure 4C and confirmed by statistical analysis, with increasing SNR, the peak amplitude333

increases (b = 4.71 × 10-4 , SE = 1.27 × 10-4, p < 0.001). In contrast, the latency of334

this peak decreases with increasing SNR (b = -1.22, SE = 0.32, p < 0.001). Post-hoc335

comparisons between the adjacent SNR conditions demonstrated that amplitude increased336

significantly from -4 to 0 dB SNR (p = 0.029; r = -0.582) , whereas latency decreased from337

-4 to 0 dB SNR (p = 0.002; r = -0.808). We did not find significant differences between the338
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two noisiest (-8 to -4 dB SNR: p > 0.05) nor the two conditions with the lowest noise (0 to339

4 dB SNR: p > 0.05, 4 to 8 dB SNR: p > 0.05)340

4 DISCUSSION

We examined the influence of stimulus SNR on neural envelope tracking of natural,341

continuous speech in young children. We recorded EEG in 14 normal-hearing pre-schoolers342

while they listened to age-appropriate stories at different stimulus SNRs. Neural tracking343

was investigated using both envelope reconstruction and TRF analysis. Our findings344

demonstrated that neural tracking of the speech envelope in the delta band (0.5-4 Hz)345

increased monotonically with increasing SNR, until stabilizing between 0 and 4 dB SNR,346

suggesting that neural envelope tracking remains stable as long as speech is intelligible.347

By contrast, neural tracking in the theta band (4-8 Hz) appeared to be more sensitive to348

noise. As SNR increased, neural tracking increased. However it is important to note that349

our results in the theta band did not fully indicate the presence of significant envelope350

reconstruction scores below 8 dB SNR. Lastly, we found that neural envelope tracking351

in the delta band was related to behavioral speech-in-noise performance, suggesting its352

potential for a realistic and objective measure of speech intelligibility in clinical practice.353

We hypothesized that neural tracking of the speech envelope would increase as SNR, and354

thus speech intelligibility, increases. We demonstrated that this is indeed the case. However,355

in the delta band, we did not find a strictly monotonic increase of neural envelope tracking356

with SNR. As the SNR decreased, envelope reconstruction scores remained stable until357

<0 dB SNR, showing a S-shape correlation over SNRs (i.e., flat, followed by a decrease as358

SNR further decreases). Our finding aligns with previous results reported by Ding & Simon359

(2013) in which the effect of noise on neural entrainment to slow temporal modulations360

(<4 Hz) was investigated. Based on MEG recordings, they found that neural responses in361

the delta band remained stable as the SNR decreased, until the noise background is more362

than twice as strong as the speech. In accordance, a more recent MEG study including363

children aged 6-9 (Vander Ghinst et al., 2019) found no difference in coherence to speech in364
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Figure 4. TRFs as a function of stimulus SNR. A Mean TRF activity over participants
per SNR. B Topographies showing the associated peak topographies in the mean TRF
(∼70-90 ms) per SNR. Black dots represent the centro-frontal channels selected to calculate
the TRFs in the time-domain in panel A. C The effect of SNR on peak amplitude (left)
and latency (right) of the TRF. Every diamond (blue) represents an individual participant.
The grey line shows the linear model fit. The shaded area represents the 95% confidence
interval for the predictions of the linear model.
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different levels of background noise (SNR ranging from +5 to -5 dB) at 1-4 Hz. Additionally,365

these results are consistent with the previous EEG work (Iotzov & Parra, 2019), including366

our own (Vanthornhout et al., 2018; Lesenfants et al., 2019a; Decruy et al., 2019), yielding367

an increase in neural tracking with SNR. However, Lesenfants et al. (2019a) reported368

a monotonic increase in the delta band, with neural tracking further increasing from -369

1 dB SNR to noiseless conditions, thus only reaching a maximum in quiet. The discrepancy370

with our current results could be attributed to the differences in experimental paradigm.371

Previous studies (e.g., Vanthornhout et al., 2018) used a 15-minute-long recording of a372

story presented without noise to train a linear decoder. Then, this decoder was applied to373

shorter 2-minute-long segments presented at different SNRs. A recent study (Verschueren374

et al., 2021), however, demonstrated that reconstruction accuracy changes when using375

different stimulus intensities to train and test the decoder on. This suggests that a decoder376

is optimized to decode brain responses presented at the intensity it was trained on. Thus,377

when training and testing on the same stimulus parameters, neural tracking seems robust to378

stimulus intensity.379

Taken together, we hypothesize that acoustically degrading the speech signal, such as by380

adding background noise, does not influence neural tracking provided that speech remains381

intelligible. It is well known that speech intelligibility and SNR are highly correlated.382

Therefore, it can be challenging to disentangle to what extent a difference in neural tracking383

arises from a change in the acoustics, such as different levels of background noise, or384

changes in speech intelligibility itself. However, our results revealed that changes in auditory385

stimulus characteristics (i.e., SNR) did not necessarily alter neural tracking, supporting this386

hypothesis. Similarly to our electrophysiological measures, behaviorally measured speech387

intelligibility starts to decrease significantly below 0 dB SNR, whereas average scores at388

0 dB SNR exceeded 75%, reflecting good speech intelligibility for these young children389

(van Wieringen & Wouters, 2022). Thus, when acoustical degradation of the speech signal390

does not reflect a significant change in speech intelligibility, neural tracking in the delta391

band seems insensitive to stimulus SNR.392
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In contrast, neural envelope tracking in the theta band was influenced by stimulus SNR393

even though speech intelligibility remained high, replicating studies performed in adults394

(Ding & Simon, 2013; Verschueren et al., 2021). Furthermore, the number of children395

with significant tracking decreased with increasing noise level, suggesting that theta band396

tracking was more sensitive to SNR compared to the delta band. With limited noise present397

(i.e., 8 dB SNR), 11 of 14 children (delta band: 14 of 14 children) showed significant neural398

tracking of the speech envelope, whereas only 3 of 14 children (delta band: 9 of 14 children)399

still had significant neural responses when more noise was added (i.e., -4 dB SNR). This400

finding seems inconsistent with previous studies reporting significant theta tracking in adults401

(Bourguignon et al., 2013; Ding & Simon, 2013; Molinaro et al., 2016; Vanthornhout et al.,402

2018; Vander Ghinst et al., 2019; Lesenfants et al., 2019a). Yet, more recent results in young403

children also failed to demonstrate significant responses in the theta range (Vander Ghinst404

et al., 2019; Rı́os-López et al., 2020).405

The discrepancy between frequency bands could be rooted in developmental reasons such406

as the language acquisition stage of pre-school children. Previous behavioral results show407

that children’s sensitivity to phonological units progresses from larger to smaller units,408

thus slow to fast information in the speech signal, as linguistic and reading skills improve409

(Ziegler & Goswami, 2005). However, several studies found evidence of an early-developed410

ability to discriminate syllables already in preterm infants (Mahmoudzadeh et al., 2013;411

Nittrouer, 2006). Therefore, this hypothesis is at odds with the view that tracking at theta412

frequencies correspond to the processing of syllabic units (e.g. Ding & Simon, 2012b; Gross413

et al., 2013; Ding et al., 2016). Additionally, theta responses are generally lower compared414

to delta tracking (e.g. Vander Ghinst et al., 2019; Verschueren et al., 2021), supporting415

an alternative hypothesis that delta and theta tracking reflect different speech perception416

mechanisms. That is, delta band neural tracking involves more higher-order speech specific417

processing, whereas theta band activity is more sensitive to acoustic processing of the418

speech signal (Molinaro & Lizarazu, 2017; Ding et al., 2016)419
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This explanation can be further strengthened by the fact that we found a significant420

correlation between speech intelligibility and neural envelope tracking in the delta band.421

This is in line with previous studies (Meyer et al., 2017; Vanthornhout et al., 2018;422

Verschueren et al., 2021, 2019; Etard & Reichenbach, 2019) consistently reporting that423

increased neural envelope tracking reflects better speech intelligibility. This is especially424

promising for clinical applications in hearing loss assessment and rehabilitation.425

In addition to the envelope reconstruction analysis, our TRF analysis revealed one426

prominent positive TRF peak around 70–90 ms. In contrast, the TRF in adults typically427

contains two distinct peaks (e.g., Ding & Simon, 2012a, 2013; Vanthornhout et al., 2019;428

Verschueren et al., 2021, 2022). The first peak, here called the P1, occurs relatively429

fast with latencies around ∼50 ms and is thought to reflect mainly acoustic processing,430

whereas the second peak occurs at longer latencies (∼100–150 ms; N1), and might be431

influenced by top–down processing related to speech intelligibility and attention (Brodbeck432

& Simon, 2020). In line with observations of cortical auditory evoked potentials (CAEP),433

we believe the positive peak in this study could be related to the P1 as reported in adults. In434

general, CAEP traces in young children can be characterized by a large positive peak (P1),435

emerging between 100–150 ms, whereas components N1 and P2 emerge more gradually436

with maturation and might not be reliably evoked until the age of 7–9 years old Albrecht437

et al. (2000); Ponton et al. (2000); Ceponien et al. (1998). Besides the change in temporal438

pattern of the CAEP (e.g., peaks emerging with increasing age), peak latency decreases439

with age (Wunderlich et al., 2006). Therefore, age–related changes reflecting maturation of440

auditory neural processing might explain why our results did not reveal a clear N1 or P2441

component.442

To further investigate how SNR affects the TRFs, we compared the individual peak443

amplitudes and latencies at the different stimulus SNRs. Our findings demonstrated that444

with increasing SNR, the amplitude of P1 increased. Furthermore, the latency of P1445

decreased as the SNR increased. These results dovetail with previous research with adult446
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participants showing that the amplitude of the early TRF peak (∼50 ms) decreases, while447

the latency increases continuously with SNR (Ding & Simon, 2013; Jan et al., 2022). A448

delay in neural responses has been hypothesized to reflect a decrease in neural processing449

efficiency (Bidelman et al., 2019; Gillis et al., 2022a). In addition, increased latencies450

have previously been related to increasing task demand such as lower stimulus intensity,451

increasing background noise or vocoded speech both for neural processing of continuous452

speech (Mirkovic et al., 2019; Verschueren et al., 2021; Kraus et al., 2021) as well as simple453

sounds (Billings et al., 2015; Van Dun et al., 2016; Maamor & Billings, 2017; McClannahan454

et al., 2019). In the current study, we observed the same effect of background noise in455

pre-school children. However, the results in this study only showed significant differences456

in peak amplitude and/or latency from -4 to 0 dB SNR and not between the lower noise457

conditions, similar to the previously discussed envelope reconstruction results. This, again,458

suggests that decreasing the stimulus SNRs only influences the amplitude and latency459

of the neural response if speech intelligibility is affected. This aligns with the finding of460

Verschueren et al. (2021) that the P1 latency increased when audibility of the stimulus461

decreased, but only when audibility affected speech intelligibility and listening effort.462

4.1 Limitations and future directions463

It is important to note that, in this study particular emphasis has been placed on neural464

tracking of the speech envelope. Even though the envelope is essential for speech465

intelligibility (Shannon et al., 1995), only taking into account basic acoustic properties466

as a measure of speech intelligibility might be an oversimplification. As reviewed in467

detail by Brodbeck & Simon (2020), neural responses can be predicted more accurately468

when not only considering other acoustic features, but also higher-level linguistic speech469

representations. Therefore, neural envelope tracking should be considered a measure to470

assess whether the pre-conditions for speech intelligibility are met, rather than a direct471
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measurement of speech intelligibility. Nevertheless, neural envelope tracking is shown to472

be quite robust, therefore remaining a good candidate for use in a clinical setting.473

A second caveat of this study is that we included normal-hearing children as a first474

cohort, since speech intelligibility in noise had never been evaluated in such young children.475

However, for clinical applications of our measure, future research should study the impact476

of parameters such as hearing loss and hearing aid fitting. A number of studies have already477

demonstrated the use of CAEPs for validation of hearing aid fitting in hearing-impaired478

children (e.g., Chang et al., 2012; Glista et al., 2012; Baydan et al., 2019). Overall, their479

findings showed that aided behavioral thresholds were strongly correlated with CAEP480

responses to short non-speech as well as speech sounds. However, we believe that the use481

of continuous speech is more ecologically relevant compared to speech sounds and could482

potentially provide more information concerning the functionality of the hearing aid in483

daily life.484

5 CONCLUSION

To summarize, the results of the present study showed that neural envelope tracking485

increases with increasing SNR. However, this increase is not strictly monotic as delta486

band tracking converges between 0 and 4 dB SNR, similarly to the behavioral outcomes.487

Moreover, these results were confirmed by the TRF analysis, suggesting that neural tracking488

correlates with speech intelligibility rather than stimulus SNR. In contrast, the ability of489

children’s brain to track the speech envelope in the theta band was drastically reduced and490

more easily corrupted by increasing noise in comparison to the delta band. Lastly, we found491

that neural envelope tracking in the delta band was directly associated with behavioral492

measures of speech intelligibility. Altogether, our findings provide a unique basis for a493

behavior-free evaluation of speech intelligibility in difficult-to-test populations, such as494

young children.495
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