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Abstract 

Background. Electric field (E-field) modeling is a potent tool to examine the cortical effects of 

transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the 

high variability in efficacy observed in the literature. However, outcome measures used to report 

E-field magnitude vary considerably and have not yet been compared in detail.  

Objectives. The goal of this two-part study, encompassing a systematic review and modeling 

experiment, was to provide an overview of the different outcome measures used to report the 

magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures 

across different stimulation montages. 

Methods. Three electronic databases were searched for tES and/or TMS studies reporting E-

field magnitude. We extracted and discussed outcome measures in studies meeting the 

inclusion criteria. Additionally, outcome measures were compared via models of four common 

tES and two TMS modalities in 100 healthy younger adults. 

Results. In the systematic review, we included 118 studies using 151 outcome measures related 

to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-

based whole-brain analyses were used most often. In the modeling analyses, we found that 

there was an average of only 6% overlap between ROI and percentile-based whole-brain 

analyses in the investigated volumes within the same person. The overlap between ROI and 

whole-brain percentiles was montage- and person-specific, with more focal montages such as 

4x1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap 

between ROI and percentile approaches respectively. However, even in these cases, 27% or 

more of the analyzed volume still differed between outcome measures in every analyses. 

Conclusions. The choice of outcome measures meaningfully alters the interpretation of tES and 

TMS E-field models. Well-considered outcome measure selection is imperative for accurate 

interpretation of results, valid between-study comparisons, and depends on stimulation focality 

and study goals. We formulated four recommendations to increase the quality and rigor of E-

field modeling outcome measures. With these data and recommendations, we hope to guide 

future studies towards informed outcome measure selection, and improve the comparability of 

studies. 
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1. Introduction 

Electric field (E-field) modeling is a computational approach to estimate the amount of 

transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS) that 

reaches the cortex [1, 2]. By segmenting an individual’s structural magnetic resonance imaging 

(MRI) scan into different tissue types such as skin, bone, cerebrospinal fluid (CSF), grey matter, 

and white matter, it is possible to simulate the magnitude of E-fields induced by tES and TMS. 

By doing so, E-field modeling provides a potent tool to individually examine the effects of 

noninvasive brain stimulation and to address the high variability in efficacy that is currently 

observed across individuals. In the past, E-field modeling has already helped researchers derive 

novel tES montages and identify dose-response relationships [3-8], has suggested optimal 

stimulation targets in clinical cohorts [9, 10], and has pinpointed which cortical regions are being 

stimulated by TMS [11]. In recent years, the introduction of software packages such as 

SimNIBS and ROAST has catalyzed the widespread use of E-field modeling [1, 2]. However, 

despite the standardization offered by these software packages, crucial experimental decisions 

made by researchers can vary considerably between studies, affecting study results [12-16]. In 

particular, an often-overlooked determinant of E-field modeling findings is the selected outcome 

measure to quantify E-field magnitude, which may affect interpretation. 

To date, researchers have used numerous outcome measures to quantify the magnitude 

of E-fields produced by tES and TMS. For instance, E-field magnitude has been quantified both 

in a region of interest (ROI) and as a percentile of the total induced E-field magnitude. While 

both metrics pursue a common goal, they do so in a substantially different manner. Whereas the 

ROI focuses on a specific, user-defined brain region (e.g., the left primary motor cortex [M1]) 

[17-22], a percentile whole-brain approach studies E-fields across the entire brain and does not 

restrict the analyses to any region [23-25]. Moreover, even within the same approach, wide 

methodological variations prevail. Some studies have quantified E-field magnitude within 
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spherical ROIs of considerably different radii, ranging between 0.5 and 45 mm, whereas others 

used different geometric shapes such as a cubical ROI [17-22].  

While numerous studies have examined the importance of methodological factors such 

as MRI parameters [12, 14, 26, 27], head model detail [11, 27, 28] and meshing approach [2, 

29], systematic investigation of the impact of modeling outcome measure choice on E-field 

magnitude results has not yet been achieved. Critically, the choice of outcome measure affects 

all modeling approaches even as more advanced segmentation and meshing techniques 

emerge, making it a key consideration both now and into the future. As focus shifts towards 

unraveling dose-response curves associated with E-field magnitude [30-34], it is crucial that we 

are comparing the same brain regions and volumes necessitating a critical evaluation of 

outcome measures. 

Therefore, this two-part study set out to formally examine and compare the breadth and 

frequency of different outcome measures that have previously been used to quantify E-field 

magnitude. In Part 1, we conducted a systematic review of the literature to identify and describe 

all the different outcome measures that researchers have used to quantify tES and TMS 

induced E-field magnitude. While a recent narrative review reported the use of E-field modeling 

within the scope of a specific software package [35], we sought to systematically report which 

outcome measures have been used so far across all software packages and populations. In 

Part 2, to further facilitate the interpretation of previous work and inform future work, we used E-

field modeling and examined the most common approaches extracted from the systematic 

review in a large open-source dataset of 100 healthy adults to elucidate the impact of outcome 

measure choice. As different modalities stimulate varying volumes of brain tissue and focus E-

fields in different ways, we simulated and compared outcome measures across 4 tES and 2 

TMS montages (600 total models). 

 

2. Methods 
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2.1. Systematic Review: Eligibility, Search Strategy and Extracted Information 

This review was conducted according to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) Statement [36]. We consulted three electronic 

databases (PubMed, Scopus and Web of Science) to examine how E-field magnitude is 

quantified. We included studies if they adhered to the following eligibility criteria: (1) full-text 

availability; (2) written in English; (3) modeling of tES and/or TMS in humans; (4) reporting E-

field magnitude. Studies were excluded if insufficient information was provided to reproduce the 

E-field magnitude extraction procedure. Given the significant advances made in the modeling 

field in the past decade, we confined our literature search to 2012–2022, with the final search 

taking place on December 5th, 2022. Our search keys are shown in Supplementary materials 

1. We extracted the approach used to quantify E-field magnitude from each included study. As 

we did not extract the outcome measures of the included studies, but rather the approach to 

obtain E-field magnitude, we did not perform risk of bias analyses. 

 

2.2. Computational modeling 

2.2.1. Head Model Creation Overview 

All simulations were performed in SimNIBS v4.0.0. To disentangle how different 

outcome measures affect E-field magnitude, we retrieved T1w and T2w structural MRI scans 

from 100 participants from the Human Connectome Project dataset (22–35 years, 50 females) 

[37]. Through the SimNIBS – Charm pipeline, these MRI scans were segmented and meshed 

into tetrahedral head models with 10 compartments (air, eyes, skin, muscle, compact bone, 

spongy bone, cerebrospinal fluid, veins, grey matter, and white matter; Figure 1) [1, 29]. All 

head models were visually inspected and we confirmed that there were no segmentation errors 

present. 

 

2.2.2. Electric Field Models 
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Four common tES and two common TMS montages targeting left M1 were modeled. 

Standard conductivity values were used (Supplementary materials 2). We performed all tES 

simulations at an intensity of 1 mA, and all TMS simulations at 50% stimulator output on a 

MagPro R30 machine (dI/dt = 75 x 106 A/s). As the induced E-field magnitude is linearly 

proportional to the stimulation intensity, multiplying and dividing the obtained E-field strengths is 

a simple heuristic to convert the 1 mA and 50% stimulator output results to other intensities. 

For tES, we simulated the following four montages (Figure 1). (1) APPS-tES consisting 

of two rectangular 1 by 1 cm electrodes, with the anode placed over CP3 and the cathode over 

FC3 [4]. (2) Bilateral tES consisting of two rectangular 5 by 5 cm electrodes, with the anode 

placed over C3 and the cathode over C4 [38]. (3) M1-SO tES consisting of two rectangular 5 by 

5 cm electrodes, with the anode placed over C3 and the cathode over Fp2 [39]. (4) 4x1 tES 

consisting of 5 circular electrodes (r = 0.25 cm), with the anode placed over C3 and the four 

cathodes placed over FC3, C1, CP3 and C5 [3]. Here, the current going through each cathode 

was adjusted to -0.25 mA, to let 1 mA flow through the anode.  

For TMS, we modeled two coils placed over C3 with a 45° angle to the midline (Figure 

1). (1) Figure-of-eight TMS consisted of a MagVenture MC-B70 coil [40]. (2) Circular TMS 

consisted of a MagVenture MMC-140-II coil [40]. 

After a formal assessment (Supplementary materials 3), we replaced values exceeding 

the 99.9th percentile E-field magnitude with the 99.9th percentile E-field magnitude. This was 

done as higher values are prone to staircasing errors, and lower values underestimate the peak 

magnitude [41]. 
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Figure 1. Electric field modeling pipeline. Per participant, we simulated four transcranial

electrical stimulation (tES) and two transcranial magnetic stimulation (TMS) modalities. 

 

2.2.3. Qualitative and Quantitative Assessments of Outcome Measures 

Based on the systematic review (Cf., 3.1. Systematic Review Results), we discussed

the spherical, structural, and cubical ROI and whole-brain percentile approaches. Next to a

qualitative discussion, all outcome measures except for the structural ROI were subjected to

quantitative analyses. The structural ROI was not included in quantitative analyses as it is highly

specific, based on the individual’s neuroanatomy, neurophysiology, and/or the atlas used to

define it. Therefore, quantifying this method has limited applicability and generalizability. The

spherical and cubical ROIs were centered at the subject-space transformed cortical projection of

C3 [42].  

For the spherical ROI, we examined how ROI size affects E-field magnitude by

extracting the mean E-field magnitude obtained from ROIs with radii ranging between 0.5 and

45 mm. These radii were selected as outer limits based on our systematic review [21, 22]. We

also extracted the percentile E-field magnitude from within these ROIs, with percentiles ranging

from the 10th to 99.9th percentile. This range was selected to ensure a complete overview, with

the 25th and 100th percentile being the lowest and highest percentiles used in the studies

included in the systematic review [43, 44]. Finally, we correlated mean E-field magnitudes

6

 

ial 

ed 

a 

to 

ly 

to 

he 

of 

by 

nd 

e 

ng 

ith 

es 

es 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.22.529540doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529540


 7

obtained from ROIs with differing sizes against each other per modality through Spearman’s 

correlations.  

For the cubical ROI, we construed ROIs with identical volumes as the spherical ROIs to 

assess whether both approaches result in similar mean E-field magnitudes.  

For the percentile-based whole-brain analyses, we extracted the 10th to 99.9th percentile 

E-field magnitude, the analyzed grey matter volume per percentile (mm3) and the Spearman’s 

correlation between different percentiles within the same montage.  

Due to the computational nature of E-field models, no inferential statistical analyses 

were conducted.  

2.3. Comparison of Different Outcome Measures 

In addition to separate ROI and whole-brain percentile analyses, we directly compared 

common outcome measures per montage to aid interpretation of prior literature and guide future 

study methodologies. Based on the systematic review (Cf., 3.1. Systematic Review Results), 

we compared the spherical ROI approach (radii ranging between 0.5 and 45 mm) against the 

percentile-based whole brain approach (percentiles ranging between the 10th and 99.9th 

percentile). In each modality and radius – percentile combination, we calculated the difference 

and Spearman’s correlation between E-field magnitudes obtained by both approaches, and the 

volumetric overlap. Volumetric overlap was quantified as the grey matter volume (mm3) included 

in both approaches, divided by the grey matter volume included by at least one approach. 

 

3. Results 

3.1. Systematic Review Results 

We included 118 studies after removal of duplicates and title, abstract, and full-text 

screening. In these studies, E-field magnitude was reported 151 times as several studies 

reported more than one outcome measure (Figure 2 and Table 1). Studies either extracted E-
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field magnitude from within a ROI (n=100, 71/29 tES/TMS) or the whole-brain (n=51, 16/35

tES/TMS). 

Figure 2. Extracted systematic review data. A) Flowchart of literature search and data

screening. B) Tree diagram with pie charts displaying the frequency of each E-field magnitude

outcome measure, relative to other outcome measures on the same level.  

 
Table 1. Electric field magnitude outcome measures 
Group Level 1 Level 2 tES TMS Reference 

R
eg

io
n 

of
 In

te
re

st
 Cylinder 

Average  1 1 [10, 20] 
Percentile 1 - [20] 

Cube 
Average  2 - [19, 45] 

Percentile 1 - [46] 

Sphere 
Average  16 13 [4, 6, 11, 17, 18, 22, 26, 30, 44, 47-64] 
Percentile 3 1 [11, 21, 65] 

Structure 
Average  27 6 [7, 9, 25, 66-94] 
Element-wise - 1 [95] 
Percentile 20 7 [15, 43, 73-75, 89-91, 93, 96-112] 

W
ho

le
-

B
ra

in
 

Average   3 1 [19, 113, 114] 

Element-wise  2 3 [8, 115-118] 

Percentile  11 31 [4, 5, 10, 19, 20, 23-25, 30, 44, 47, 49, 61, 
85, 106, 108, 113, 114, 119-140] 
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3.2. Region of Interest Outcome Measures Overview 

ROI outcome measures involve extracting the E-field magnitude from within a ROI. First, 

we discuss spherical ROIs, as insights from these ROIs yield implications for the other ROIs.  

 

3.2.1. Spherical Region of Interest: Qualitative Results 

In total, 33 studies extracted E-field magnitude via a spherical ROI (Figure 2B and 

Table 1). While most studies extracted the mean E-field magnitude from within the spherical 

ROI (n=29), a minority of studies extracted a percentile value from the spherical ROI (n=4). 

A strength of spherical ROIs compared to structural ROIs and whole-brain approaches is 

that approximately the same area can be analyzed in terms of shape and volume across 

different brain regions, individuals, and studies. This facilitates a fairer head-to-head comparison 

of E-field magnitudes. Additionally, a spherical ROI is flexible in that its location can be derived 

from functional data (e.g., a hotspot obtained via TMS). However, a drawback is that spherical 

ROIs do not take cytoarchitectural data or complex neuroimaging data, beyond a single 

coordinate, into account. Also, while the spherical ROI may be identical in volume across 

individuals, the function and/or neurophysiology of the included brain volume can differ 

substantially. Likewise, defining the radius of a sphere is often arbitrary, leading to a wide 

variety in used radii, ranging from 0.5 to 45 mm in the included studies [21, 22]. Since each tES 

and TMS montage stimulates a different volume of grey matter tissue, the varying sizes of radii 

may or may not capture the actually stimulated network. Furthermore, as the grey matter tissue 

receiving the highest E-field magnitude can differ across persons within the same montage (cf.,  

3.3.2. Percentile-Based Whole-Brain Outcome Measures: Quantitative Results), spherical 

ROIs may capture the peak E-field magnitude in different degrees across different persons. 

 

3.2.2. Spherical Region of Interest: Quantitative Results 
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To assess how spherical ROI size impacts the obtained E-field magnitude, and,

therefore, the interpretation of stimulation efficacy across tES and TMS protocols, we extracted

the mean E-field magnitude and 10th to 99.9th percentile E-field magnitude in a percentile

stepwise manner from a spherical ROI with radii ranging between 0.5 and 45 mm (Figure 3).

Within each montage, we also assessed to what extent E-field magnitudes obtained by

spherical ROIs with different sizes correlate to one another via Spearman’s correlations.  
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Figure 3. Effect of spherical region of interest (ROI) (radius in mm) size on E-field magnitude. 

A) Different montages with the induced E-field magnitude in an individual and the different 

spherical ROIs. B) Mean (upper row) and 10th to 99.9th percentile E-field magnitude (lower row) 

obtained by extracting the E-field in a sphere with radii ranging from 0.5 to 45 mm. In the upper 

row, we also show the mean E-field magnitude extracted by cubical ROIs with identical volumes 

to the spherical ROIs per radius size. C) Matrix of Spearman’s correlations between obtained 

mean E-field magnitudes across radii with varying sizes. SD = standard deviation.  

 

ROI size affects the obtained E-field magnitude. This is crucial for future studies aiming 

to disentangle whether there is an optimal E-field magnitude to attain optimal behavioral and/or 

neurophysiological effects, as the answer strongly depends on the ROI size. An E-field 

magnitude obtained via a spherical ROI with a certain radius does not equal the same E-field 

magnitude obtained via a spherical ROI with a different radius. Therefore, the discussion must 

be limited to a particular ROI location and volume when considering the dose-response 

relationship between E-field magnitude and clinical effects. 

 

For tES, larger ROIs resulted in lower E-field magnitudes (Figure 3B). Importantly, the 

effect of ROI size on E-field magnitude was montage-specific. The mean E-field magnitude 

obtained from more focal tES montages (i.e., APPS-tES and 4x1 tES) was most affected by the 

size of the ROI. Conversely, the peak E-field 99.9th percentile remained stable in these 

montages across ROI size. For less focal tES montages, the obtained mean E-field magnitude 

depended less on ROI size. Here, the peak 99.9th percentile value became stable for spheres 

with radii exceeding 10 (bilateral M1 tES) and 20 mm (M1 – SO tES), suggesting that the peak 

E-field magnitude was not situated in the proximity of M1.  

The differential susceptibility of more vs. less focal tES montages to ROI size can lead to 

interpretational pitfalls when comparing both tES classes. To illustrate, using a 5 mm radius 
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sphere placed at the intended stimulation target of M1, APPS-tES induces considerably larger 

E-field magnitudes (mean ± SD = 0.32 ± 0.07 V/m), compared to bilateral M1 tES (0.19 ± 0.03 

V/m). In contrast, when using a 45 mm radius ROI sphere, this difference is strongly attenuated 

(mean E-field magnitude APPS-tES: 0.17 ± 0.03 V/m, bilateral M1-tES: 0.15 ± 0.02 V/m). Thus, 

by varying the ROI size, one could either conclude that APPS-tES induces E-fields that are 

either 68% or 13% stronger than bilateral tES at the same stimulation intensity. 

Reassuringly, within-montage correlation between E-field magnitudes extracted with 

ROIs with differing sizes was high, achieving mean Spearman’s ρ > 0.80 for all tES montages 

(Figure 3C). The lowest correlation was found for a spherical ROI with a 0.5 vs. 45 mm radius 

in the M1-SO montage (ρ = 0.52). This implies that, for within-subject designs, the impact of 

different ROI sizes seems negligible when using tES in most cases. 

 

For TMS, the effect of ROI size on E-field magnitude depends on the coil type (Figure 

3B). The slope of E-field magnitude induced by figure-of-eight TMS over radius resembles that 

of focal tES montages. For circular TMS, we observed an increase in mean E-field magnitude 

with ROI size, when ROI size exceeded 10 mm. This, combined with the observation that peak 

E-field values within the ROI also increase when larger ROIs are used, emphasizes that circular 

TMS does not produce maximal E-field magnitudes at the coil center, resulting in small ROIs not 

capturing the peak E-field magnitude.  

The choice of sphere size affects the comparison of both TMS modalities. Using spheres 

with smaller radii (i.e., ≤ ~20 mm), one would conclude that figure-of-eight TMS induces higher 

E-field magnitudes. Using spheres with larger radii (i.e., ≥ ~30 mm), one would conclude that 

circular TMS induces higher magnitudes. Thus, similar to tES, whether there is a necessary or 

optimal E-field for clinical response is contingent on not only the stimulation parameters and 

location, but also on the specific outcome measure used. 
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The within-montage correlations of E-field magnitudes obtained across different 

spherical ROIs were high for figure-of-eight TMS (ρ > 0.81, for all correlations) (Figure 3C), 

implying that the choice of ROI size will not detrimentally affect between-subject comparisons 

for a given montage. However, correlations were weaker for circular TMS, where a minimal 

correlation coefficient of ρ = 0.14 was found for the correlation between E-field magnitude 

obtained by a 2 mm vs. 35 mm sphere. This implies that, even when measured within the same 

subject, there is barely a relationship between E-field magnitudes obtained by ROIs with 

different sizes.  

Overall, these findings reveal that ROI size and mean- vs. percentile-based ROI 

methods are critical factors to consider in the E-field modeling domain. Particularly in the search 

of an optimal E-field strength, ROI size should be taken into account. Smaller ROIs placed at 

the intended stimulation target tend to result in larger mean E-field magnitudes, but often do not 

encapsulate the peak E-field magnitude as well as larger ROIs, particularly in non-focal 

montages. Lastly, aside from circular TMS, different ROI sizes are generally well-correlated to 

each other, which is reassuring for between-subject comparisons. 

 

3.2.3. Structural Region of Interest: Qualitative Results 

In total, 61 studies extracted the E-field magnitude from a structure, defined as a 

geometrically irregular shape typically construed as an anatomical atlas or via neuroimaging 

data (e.g., Brodmann area or functional MRI activation map). The majority of these studies 

quantified E-field magnitude as the mean value (n=33) or a percentile value within the ROI 

(n=27). 

The major advantage of structural ROIs is their flexibility towards specific research 

hypotheses or data. These ROIs allow to take the brain region’s cytoarchitecture into account 

via atlases such as the Human Connectome multi-modal Parcellation atlas, or can use 

neuroimaging data to define ROIs in a task-, subject- or group-specific manner [141]. Thus, 
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structural ROIs can be tailored to specific research questions and data, whereas other ROIs 

may take different amounts of study-relevant vs. -irrelevant brain volumes into consideration 

across participants. When using structural ROIs, one should be aware that ROI size may 

influence the obtained E-field magnitude, in line with Figure 3B. However, when these ROIs are 

defined based on neuroimaging data, this is not necessarily a drawback.  

Structural ROIs may also pose limitations beyond potentially overlooking other areas where 

relevant E-fields were generated. The uniqueness of structural ROIs in terms of size and shape, 

depending on the used data/atlas and the investigated brain region, undermines between-study 

and -region comparability. For instance, extracting E-field magnitudes via a structural ROI 

defined through a specific atlas will only provide insights with regard to that atlas and brain 

region. Therefore, the obtained E-field magnitude values are limited in terms of transferability to 

other studies, when different data or atlases are used. Moreover, as aforementioned in 2.2.3. 

Qualitative and Quantitative Assessments of Outcome Measures, due to the geometric 

irregularity of structural ROIs, direct comparisons of different volumes, beyond what was 

achieved in Figure 3, are not meaningful due to their limited applicability. 

 

3.2.3. Cubical And Cylindrical Region of Interest Outcome Measures 

 Besides the structural and spherical ROIs, a minority of studies (n = 3 for both 

approaches) used cubical and cylindrical ROIs. While these methods resemble the spherical 

ROI in that they consist of constructing a geometrically regular shape around a given 

coordinate, they introduce an additional sensitivity to angular placement. Still, when combined 

with voxel-based neuroimaging, there can be compelling reasons to use a cubical ROI. For 

instance, Nandi et al. (2022) used a cubical ROI to extract E-field magnitude as this ROI 

matched the shape and size of the voxel they used for their magnetic resonance spectroscopy 

analyses [19].  
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As the cubical ROI can be useful, we compared this ROI to its spherical counterpart. We 

matched the volume of each spherical ROI (e.g., to match the 1 cm radius sphere, which has a 

volume of 4.189 cm3, we established a cube with a length, width and height of 1.612 cm) and 

extracted the mean E-field magnitude from the grey matter volume within our cubical ROIs, 

centered along the X, Y and Z axes. Our results (Figure 3B) indicate that when matched for 

volume, cubical and spherical ROIs result in close-to-identical mean E-field magnitudes. Thus, 

the same principles that we discussed for spherical ROIs should also apply to cubical ROIs. 

  3.3. Whole-Brain Outcome Measures Overview 

 In contrast to the regional specificity inherent to ROI analyses, whole-brain approaches 

remain agnostic to the spatial location receiving stimulation. In doing so, these analyses mitigate 

the risk of overlooking unexpected brain regions that receive relevant amounts of stimulation. 

This is a major strength assuming that the effects of tES and/or TMS are governed by a 

(monotonic) dose-response relationship in which a key factor is the peak E-field magnitude in 

any brain region.  

 

3.3.1. Percentile-Based Whole-Brain Outcome Measures: Qualitative Results 

Most studies (n=42) used a percentile approach to quantify whole-brain E-field 

magnitude. This mitigates the risk of spatially poorly defining a ROI and overlooking the location 

that received the maximal E-field magnitude, potentially increasing the consistency of measured 

effects across participants and studies (Figure 3B). On the other hand, only extracting a 

percentile from E-field simulations introduces regional uncertainty. That is, the percentile 

approach is spatially undefined, resulting in it potentially providing information about unexpected 

regions that are not directly the stimulation target or providing information about different 

regions across participants. 

 

3.3.2. Percentile-Based Whole-Brain Outcome Measures: Quantitative Results 
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To disentangle how different percentile cut-offs affect the obtained E-field magnitude, we 

extracted the 10th to 99.9th percentile in a 10% incremental stepwise manner for all participants 

and montages. We also extracted and visualized the volume analyzed per percentile.  

Although all approaches analyzed nearly identical volumes of grey matter tissue across 

the different percentiles (Figure 4B), visualization of the analyzed regions highlights that 

substantially different brain regions were analyzed by high percentile cut-offs across different 

tES and TMS modalities. For instance, Figure 4A indicates that the region receiving the highest 

E-field magnitude as a result of non-focal tES modalities is not located in M1. Perhaps even 

more concerning is the difference in analyzed regions across participants. Figure 5 shows that 

the regions analyzed particularly by the 99.9th percentile, can differ tremendously across 

persons, particularly in the non-focal tES montages. For instance, participant 88 (S88) shows 

peak E-fields in the proximity of M1 as a result of bilateral tES but not M1-SO tES, whereas 

participant 99 (S99) shows the opposite pattern. Thus, even the same outcome measure and 

threshold value can report E-field magnitudes in substantially different regions in a person-

specific manner. 

For both TMS and tES, there was a steep increase in E-field magnitude from the 90th to 

99.9th percentile (Figure 4B). E-field magnitude more than doubled for focal modalities, and 

increased by over 50% for non-focal modalities.  

Overall for tES, the E-field magnitudes obtained by percentile approaches correlated 

strongly, with the mean correlation exceeding ρ = 0.86 for all modalities (Figure 4C). This is 

reassuring, as it implies that using different percentiles will likely not vastly impact conclusions 

of studies comparing between subjects. The lowest correlation value included the 99.9th 

percentile E-field magnitude across all tES modalities, with 4x1 tES showing the lowest 

correlation (ρ = 0.46) between the 99.9th and 10th percentile. For TMS, the correlation between 

the 99.9th percentile vs. all other percentiles is considerably lower than the correlation between 

the tES 99.9th percentile vs. all other tES percentiles. Likely, this discrepancy stems from the 
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fact that the magnetic field strength is more prone to decay with distance, while tES induced

fields are governed by electro-conductive principles (Figure 4B).  

 

Figure 4. Effect of different percentiles on extracted E-field magnitude on the whole-brain level.

A) Different montages with the induced E-field magnitude in an individual and the regions

included in the different percentiles. B) 10th to 99.9th percentile E-field magnitude (upper row)

and included volume (lower row). C) Matrix of Spearman’s correlations between obtained E-field

magnitudes across varying percentiles.  
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Figure 5. Volumes analyzed by the percentile-based outcome measure across all modalities in

three subjects (S24, S88, and S99). Although the volumes analyzed by the 99.9th percentile

differ considerably for all modalities, this difference is most remarkable for bilateral and M1-SO

tES.  

 

3.3.3. Element-Wise Whole Brain Outcome Measure 

 A minority of studies using a whole-brain approach extracted the element-wise E-field

magnitude (n=5). While this method resembles percentile-based extraction, it is biased towards

the spatial resolution of the head model (i.e., the number of tetrahedra in the case of SimNIBS).

To illustrate, assuming that each grey matter element is identical in volume and the distribution

of E-field magnitudes across elements is uniform, extracting the E-field magnitude of the 100th

highest element will result in a value similar to the 50th percentile in a model with 200 elements

(low spatial resolution) and a value similar to the 90th percentile in a model with 1,000 elements

(high spatial resolution).  

 

3.3.4. Mean Whole Brain Outcome Measure 
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Four studies extracted the mean E-field magnitude in the whole grey matter. Using this 

approach yields the disadvantage that, certainly for focal types of stimulation, it does not 

represent the E-field magnitude to which some regions were exposed. 

  

3.4. Direct Comparison of Different Electric Field Magnitude Outcome Measures 

 To meaningfully inform future work, we directly compared two of the most common 

outcome measures: the mean spherical ROI approach and percentile-based whole-brain 

approach. To do so, we examined the difference and correlation between the obtained E-field 

magnitudes and the overlap between the analyzed brain volumes. For the spherical ROI, we 

used radii ranging between 0.5 and 45 mm. For the percentile-based whole-brain analyses, we 

used percentiles ranging between the 10th and 99.9th percentile. 

 First, we assessed to what extent the ROI and whole-brain approaches retain similar E-

field magnitudes via Spearman’s correlations and E-field magnitude differences (%). While 

correlations inform how E-field magnitudes relate to the effects of stimulation across 

participants, E-field magnitude difference is a key consideration for research investigating 

absolute E-field magnitudes. Overall, correlations were highest for APPS-tES, where the mean 

correlation value was ρ = 0.86 (range = 0.76–0.98) and the lowest correlation value of ρ = 0.76 

was obtained for the correlation between the 10th percentile and a 4 mm spherical ROI. For 

bilateral M1-tES, the mean correlation value was ρ = 0.72 (range = 0.35–0.97). The highest 

correlations were present between the 90th percentile and the larger spheres (i.e., spheres with 

radii ≥ 30 mm). With these comparisons, all correlations exceeded ρ = 0.95. For M1-SO tES, the 

mean Spearman’s value was 0.56 (range = 0.15–0.82); correlations were highest between the 

80th and 90th percentile and spherical ROIs with radii exceeding 15 mm. Here, all correlation 

values exceeded ρ = 0.70. Notably, for M1-SO tES, the correlation between the 99.9th percentile 

E-field magnitude and the spherical ROI was low-to-moderate, irrespective of ROI size (highest 

correlation: ρ = 0.54, lowest correlation: ρ = 0.15). Regarding 4x1 tES, the mean correlation 
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value was ρ = 0.77 (0.42–0.99). The obtained correlation values resembled those of APPS-tES,

although they were generally lower. Regarding circular TMS, the mean correlation value was ρ

= 0.23 (range = -0.13–0.84). The highest correlations for circular TMS were present between

spherical ROIs with radii ≥ 40 mm (lowest correlation: ρ = 0.83) and the 99th percentile. Overall,

circular TMS showed the weakest correlations between spherical E-field magnitudes and

percentile-based E-field magnitudes, further corroborating that this type of TMS does not induce

maximal E-field in the targeted ROI. For figure-of-eight TMS, the mean correlation value was ρ

= 0.33 (range = -0.04–0.96). Here, a similar trend to the other more focal montages was present

(i.e., high correlation values for the 99.9th percentile against spherical ROIs of all sizes, and a

gradual decrease in correlation values along with decreasing percentiles), although the obtained

correlation values were notably lower for TMS vs. tES, pointing to a key consideration in future

study designs depending on stimulation type. 
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Figure 6. Comparison of spherical ROI and percentile-based whole brain E-field magnitude 

approaches in terms of correlation (upper row) and difference (middle row) in obtained E-field 

magnitudes and overlap in analyzed volume (bottom row). 

 

Concerning E-field magnitude difference, the discrepancy was largest between E-field 

magnitudes in the 99.9th percentile against all ROIs. Here, differences of up-to 338% were 

present (circular TMS, 99.9th percentile vs. 10 mm ROI sphere). Although the differences with 

ROI-obtained E-field magnitudes were smaller for the other percentiles, the large overall 

difference between both approaches emphasizes the importance to only interpret and compare 

E-field magnitudes across studies using similar outcome measures.  

 The overlap of analyzed grey matter volumes is shown in Figure 6, bottom row. 

Overlap was generally low, with the mean overlap across all percentiles and ROI spheres not 

exceeding 6%. The highest overlap was present between the 90th percentile and the large 

spherical ROIs with radii exceeding 30 mm. Here, an overlap between analyzed volumes of up 

to 60% (APPS-tES), 73% (4x1 tES) and 42% (Figure-of-eight TMS) was present. Of note, using 

ROIs of 10 mm yielded the greatest volumetric overlap with the 99.9th percentiles, obtaining 

values of ≤ 21% overlap. Figure 7, which visualizes three spherical ROI volumes and two 

percentile whole-brain volumes further adds to this interpretation. Here, we show that the 

volume analyzed by the 90th percentile indeed best resembles that of larger spherical ROIs. 

Moreover, based on the 99.9th percentile, it becomes clear that the less focal types of 

stimulation induce their peak E-field magnitude outside of the intended stimulation target, while 

the spatially defined spherical ROI analyzes the E-field at the user-defined target.  
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Figure 7. The volume analyzed by the spherical ROI approach (yellow), the percentile approach

(red), and both approaches (i.e., the overlap) (black) in a representative participant. 

 

4. Discussion 

 In this combined systematic review and E-field modeling study, we investigated how the

selected outcome measure impacts E-field magnitude. In the 151 experiments reporting E-field

modeling results that fit our systematic review criteria, outcome measures fell into two major

categories: ROI (n = 100) and whole-brain approaches (n = 51). While most tES studies used

the ROI approach (71% of studies), the whole-brain approach was used by the majority of TMS

studies (68.6% of studies). We computed 600 E-field models in 100 healthy younger adults to

further examine how E-field magnitude outcomes alter the interpretation of tES and TMS

models that are more or less focal in stimulation diffusivity. Collectively, we computed 106,800

E-field magnitude related outcome measurements, finding that the selected outcome measure
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significantly impacts the interpretation of within- and between-subjects modeling. Specifically, 

for ROI-based outcomes, the wide range of sphere radii used in the literature examines volumes 

with a resolution level spanning from gyri to close-to-whole hemispheres. ROI size also interacts 

with stimulation focality; whereas the peak stimulation effects of focal forms of tES (APPS-tES 

and 4x1 tES) and TMS (figure-of-eight coil) are captured with focal ROIs placed at the 

stimulation target, the peak effects of less focal forms of tES (bilateral M1 and M1-SO) and TMS 

(circular coil) are better encapsulated with larger ROIs since these modalities do not always 

position the peak E-field at the intended target. 

Regarding whole-brain approaches, we compared the E-field magnitude for each 

stimulation modality using percentiles ranging from the 10th to the 99.9th percentile in 10-

percentile increments, finding high Spearman’s correlation values between each percentile with 

a mean value of at least ρ = 0.74 for all modalities. However, we found that percentile-based 

approaches analyzed different brain regions depending on the participant and the montage, 

introducing spatial uncertainty as a potential pitfall when interpreting the obtained E-field 

magnitudes. Namely, in less focal montages such as M1-SO tES, extracting E-field magnitudes 

through a high percentile threshold can result analyzing entirely different brain regions across 

persons. Therefore, it is important to consider how E-field outcome measure selection can not 

only alter group-level data but also data on the individual level. 

The key question of whether there is an optimal E-field magnitude for dose-response 

relationships must be discussed within the context of each specific measure as we 

demonstrated wide variance of E-field modeling results based on the selected E-field measure. 

For instance, the optimal E-field for the 99.9th percentile almost certainly differs from that at the 

10th percentile due to the volume examined and the consideration of different brain regions 

depending on the ROI size. Thus, more consistency and attention to E-field magnitude reporting 

measures is needed across studies.  
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We computed a percentile volumetric overlap between all 140 possible combinations per 

participant and modality to directly compare the mean ROI and percentile whole-brain approach. 

Strikingly, the mean overlap of percentile and ROI based outcome measures did not exceed 

6%, suggesting that whole-brain percentile and spherical ROIs report the E-field magnitudes 

from fundamentally different brain regions. Overall, the low overlap underscores the critical 

importance of researchers selecting suitable E-field outcome measures to appropriately 

investigate their research questions. As we demonstrated here, selecting a suitable E-field 

outcome measure depends on the focality of the stimulation approach, the targeted region, and 

the volume of the targeted region or network. Crucially, these data directly comment on why it is 

important to be mindful when comparing across E-field modeling studies; even within the same 

person, stimulation parameters, and target, vastly different E-field magnitude findings can be 

extracted with mean ROI vs. percentile ROI vs. whole-brain percentile approaches. A valid 

critique is that the 6% overlap between the ROI and whole-brain percentile outcomes collapses 

across different volumes and therefore this overlap may be expected to be low. However, even 

when considering similar volumes between the ROI and whole-brain percentile approaches 

(e.g., the 90th percentile and large spherical ROIs with radii exceeding 30 mm), the highest 

overlaps between outcome measures were still relatively low (60% for APPS-tES, 73% for 4x1 

tES, and 42% for figure-of-eight TMS). Thus, even in the best case scenario, when comparing 

E-field magnitude results from ROI and whole-brain percentile approaches, analyzed volumes 

from at least 27% of the regions did not overlap.  

 

4.1. Recommendations For Future Research 

It is clear that the selected outcome measures can substantially affect the obtained E-

field magnitude, and therefore, the interpretation of the results of computational simulations. The 

heterogeneity between outcome measures differs not only between ROI and whole brain 

approaches but also within measures such as the radius of a spherical ROI varying between 
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0.5–45 mm or the percentile cutoff varying between the 10th to 99.9th percentile. It is likely that 

these results are also translatable to the subcomponents of E-field magnitude (i.e., normal and 

tangential E-field strength), which use similar outcome measures.  

Although ultimately, an outcome measure is always chosen in the context of specific 

research goals, there are some recommendations that can be made based on our review and 

data analyses that should be taken into account when deciding which outcome measure to use. 

 

Recommendation #1: Use the Study Goal to Select the Most Suitable Outcome Measure 

First, the choice for an outcome measure depends on the goal of the study and the 

available data. If neuroimaging data such as functional MRI is available, defining a structural 

ROI based on this data may be a viable approach. If the study’s goal is to compare E-field 

magnitudes in different neural regions or across persons, a spherical ROI may be best suited 

due to it analyzing nearly-identical grey matter volumes. It is important to weigh the pros and 

cons of the ROI and whole-brain percentile approaches as briefly summarized below and in 

Table 2. 

One characteristic that is inherent to all ROI outcome measures is the spatial 

confinement of these approaches. This is both a strength and weakness. It can be compelling 

when one is interested in a specific brain region. Conversely, this spatial confinement yields the 

danger that it is indifferent to the actual location that received maximal stimulation, which may 

not always coincide with the selected ROI but can play an important role to explain behavioral 

and/or neurophysiological effects. In addition, structural ROIs are highly unique which may 

impede between-region, -subject and/or -study comparisons and when using atlas-based 

structural ROIs, one may not be able to isolate the subregion of interest. On the other hand, 

spherical ROIs are biased towards the size of the sphere, particularly when the mean E-field 

magnitude is extracted, and may incorporate different volumes of task relevant grey matter 

across individuals. 
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Whole-brain percentile approaches may be best suited when researchers are interested 

in knowing the peak E-field magnitude irrespective of whether this coincides with the intended 

stimulation target. An advantage of whole-brain percentile outcome measures is that they 

produce identical outcomes by virtue of the mathematical threshold used, whereas some prior 

studies have used user-defined ROIs that could be prone to low inter-rater reliability. However, 

a limitation of the percentile approach is that it does not confirm target engagement of the 

intended stimulation region. Rather, with more diffuse stimulation methods such as M1-SO tES, 

the peak E-field is induced midway between electrodes. Thus, spherical ROI and whole-brain 

percentile approaches each have pros and cons and the correct choice depends on the 

researcher’s question. 

 

Table 2. Pros and cons of the most common electric field modeling outcome measures 

 Structural ROI Spherical ROI Whole-brain percentile 

Pros 

Confined: Defining a ROI facilitates interpretation of E-field 
magnitudes within a predefined brain area.  

Unconfined: By considering 
the whole-brain, information 
is always given about the 
peak E-field magnitude 
regardless of location 
 
Reproducible: Easy to 
replicate as only a single 
percentile value is required to 
obtain the same results 

Highly flexible: The 
ROI can be tailored 
to available 
neuroimaging data 
and/or specific 
research questions 

Flexible: The center of the ROI can 
position based neuroimaging data 
and/or research questions.  

Transferrable: Similar volumes across 
brain regions, participants or montages 
are analyzed.  

Cons Confined: By focusing on only one ROI, other important E-
fields outside of the ROI may be overlooked. 

Spatially uncertain: Different 
brain volumes and regions 
may be analyzed across 
montages and participants. 
This can also impede 
interpretation of the obtained 
E-field magnitude. 

 Transferrable: 
Uniqueness may 
hinder transferability 
to other brain 
regions, participants 
and/or studies 

Size: Defining ROI size can be 
arbitrary, but can strongly affect the 
obtained E-field magnitude.  

 

Included region: Different 
cytoarchitectural / functional regions 
may be included in the same ROI 
across persons  

E-Field = electric field, ROI = Region of Interest 

 

Recommendation #2: Consider the Noninvasive Brain Stimulation Modality and Focality 
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Second, the optimal choice of outcome measure depends on which noninvasive brain 

stimulation modality is used. While ROI-based outcome measures are an excellent way to 

quantify the E-field magnitude in a specific region, their value is highest when analyzing more 

focal types of stimulation. In contrast, when less focal stimulation types are used, spatially 

confined ROIs placed directly underneath the electrodes or the coil center will often exclude the 

actual region that received the highest E-field magnitudes as the region of peak E-field intensity 

often differs from the target region and may differ across individuals.  

 

Recommendation #3: The Dose-Response Relationship Between E-Field Magnitude and 

Clinical Outcome Must Only Be Compared Within a Singular Outcome Measure 

A primary finding of our systematic review is that researchers have used many different 

approaches to quantify E-field magnitude. With the powerful tool of E-field modeling, a question 

that many of us seek to answer is whether there is a positive dose-response relationship 

between the induced E-field magnitude and clinical response. It is enticing to consider these 

results monolithically and pursue an elegant statement such as, “The optimal E-field is ___ 

V/m.” The simplicity of pursuing a singular value is appealing and would enable easier 

dissemination of individualized E-field dosing such as through dose-controlled tES, 2-Sample 

Prospective E-field Dosing (2-SPED), or applying an individualized TMS dose to induce a 

singular E-field at the cortical level across individuals [49, 51]. However, there are many 

reasons to believe that a singular optimal E-field value does not exist and that more nuance is 

necessary. For instance, a singular optimal E-field value would likely not apply in the same way 

across different brain regions due to varying neuronal populations, white matter tracts, and grey 

matter densities, among other variables [141-144]. Age, sex, diagnosis, and other typical 

demographical considerations likely also impact the optimal E-field dose [39, 64, 133, 145, 146]. 

Furthermore, the dynamic nature of the brain might further complicate things, as time-varying 

changes within a brain region of a single person may further modify the optimal E-field dose 
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[147, 148]. Here, we added outcome measure as a key consideration to take into account in any 

discussion of optimal E-field dose. The E-field magnitudes extracted from the same models 

widely vary depending on the volume and regions considered. Thus, instead of the monolithic 

goal of a singular optimal E-field, we might instead work towards more nuanced goals taking 

many factors into consideration. In the future, we might come to the understanding that, “The 

optimal mean E-field for TMS, in a 5 mm radius spherical ROI centered over the motor hotspot 

as defined by TMS, in 50- to 70-year-old adult patients with ataxia, is ___ V/m.” This value 

would almost certainly be different than an “optimal prefrontal E-field magnitude for TMS, 

measured by the 95th percentile whole-brain approach, and in 20- to 40-year-old adult patients 

with depression.” Of course, additional refinement might further personalize our understanding 

of any “optimal” E-field value between individuals even when they have similar ages or 

diagnoses. 

  

Recommendation #4: Time for Standardized E-Field Outcome Measure Reporting 

Pursuing goals such as better understanding the dose-response relationship between E-

field magnitude and therapeutic outcome necessitates that researchers report more 

standardized outcome measures between studies. As highlighted in Recommendation #3 and 

throughout this study, comparing most ROI and whole-brain percentile measures is akin to 

comparing apples to oranges. Strikingly, it is even dissimilar to compare within some of these 

outcome measures across modalities, and even within the same participant and same E-field 

model when the ROI size has varied or the percentile has changed. Thus, in order to work 

toward more suitable comparisons across studies, it is important to consider how to improve the 

consistency of reporting across studies. 

Notably, this recommendation does not conflict with Recommendation #1 calling for 

researchers to choose the E-field outcome measure that best suits the experimental question. 
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Rather, these reporting standards can apply to specific experimental questions which require 

different modeling outcome measures.  

While deriving a comprehensive list of standard reporting procedures is beyond of the 

scope of this study and warrants a consensus-based approach, we propose a short list of 

preliminary guidelines to adopt across studies: 

1. To state that a specific brain region was stimulated, researchers must use a ROI-based 

method and describe how the ROI was defined in the Methods section. We propose this 

guideline since the peak E-field intensity derived from the whole-brain percentile 

approach does not always coincide with the intended stimulation target, particularly with 

less focal forms of brain stimulation. 

2. When defining a ROI, we recommend that researchers report the MNI coordinate that 

the ROI is centered on. In cases such as structural ROIs in which the researcher might 

individually define the ROI, an average MNI value should be provided when possible to 

aid in the reproducibility of findings and comparisons between studies.  

3. Whether using a ROI or whole-brain percentile approach, the volume of the examined 

tissue should be reported. This recommendation seeks to allow for some degree of 

comparison between ROI and whole-brain percentile approaches since the reader 

should at least be able to determine whether a similar volume was analyzed. 

Researchers should ideally also visualize which regions are analyzed by a certain 

approach, with this being particularly important for percentile-based approaches to 

enable the reader to interpret the regions of the extracted volume. 

4. Finally, we recommend all future studies to measure and report multiple outcome 

measures whenever possible. For instance, research applying M1-SO tES could use 

both the spherical ROI approach if one is interested in a specific region, and the 

percentile-based approach with complementary visualizations, to assess whether peak 

E-fields were induced in the intended region.  
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Table 3. Overview of E-field modeling outcome measure related recommendations  

 Recommendation 

#1 Use the study goal to select the most suitable outcome measure 

#2 Consider the noninvasive brain stimulation modality and focality 

#3 The dose-response relationship between e-field magnitude and clinical outcome must only be 

compared within a singular outcome measure 

#4 Time for standardized E-field outcome measure reporting 

#4.1. Researchers must use a ROI-based method to state that a brain region was stimulated  

#4.2. When defining a ROI, researchers should report a representative MNI coordinate 

#4.3. The volume of the examined brain area should be reported 

#4.4. Studies report multiple outcome measures whenever possible. 

 

4.2 Conclusions 

Outcome measures in the computational noninvasive brain modeling field have received 

minor attention in the past. Based on our systematic review and computational modeling of 

106,800 E-field magnitude outcome measures across 100 participants and 600 tES and TMS E-

field models, we show that different outcome measures substantially affect the obtained E-field 

magnitude and the analyzed brain region in a montage and person-specific manner. Therefore, 

one should only interpret and compare E-field magnitudes across studies when similar outcome 

measures are used. We formulated four recommendations (Table 3) for future research to 

ensure the informed selection of outcome measures. Our hope is that adopting these 

recommendations will enable future studies to avoid interpretational pitfalls and reduce the 

inconsistency of the used E-field outcome measures.  
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