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Abstract Consciousness is thought to be regulated by bidirectional information transfer
between the cortex and thalamus, but the nature of this bidirectional communication - and its
possible disruption in unconsciousness - remains poorly understood. Here, we present two main
findings elucidating mechanisms of corticothalamic information transfer during conscious states.
First, we identify a highly preserved spectral channel of cortical-thalamic communication which is
present during conscious states but which is diminished during the loss of consciousness and
enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats,
information sent from either the cortex or thalamus via 6/6/a waves (~1.5-13 Hz) is consistently
encoded by the other brain region by high y waves (~50-100 Hz); moroever, unconsciousness
induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this
cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine
(5-MeO-DMT) enhances this interregional communication. Second, we leverage numerical
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simulations and neural electrophysiology recordings from the thalamus and cortex of human
patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic
information transfer are mediated by excursions of low-frequency thalamocortical
electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability
to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and
further offer a novel, mathematically well-defined framework to explain the disruption to
thalamic-cortical information transfer during unconscious states.

Introduction

Mounting evidence suggests that the maintenance of cortical information processing during con-
scious states requires preserved communication between the cortex and several key subcortical
structures (Koch et al., 2016). Among the subcortical structures that have been implicated in large-
scale neural information processing during normal waking states, the thalamus stands out as per-
haps the mostimportant(Shine, 20217). This is most clearly suggested by its anatomy: the first-order
nuclei of thalamus are the major anatomical bridges across which sensory information is trans-
ferred from peripheral sources to the cortex, and the presence of extensive connections between
higher-order thalamic nuclei and diverse cortical regions suggests that these nuclei are among the
key bridges through which information is transferred from one part of the cortex to another (Sher-
man, 2007, 2016; Shine, 2021) - a hypothesis which has found support from diverse neuroimaging
studies (Saalmann et al., 2012; Theyel et al., 2010; Hwang et al., 2017; Miiller et al., 2020). It is
therefore unsurprising that unconsciousness, which consistently coincides with reduced cortical
information flow (Imas et al., 2005; Toker et al., 2022; Sanjari et al., 2021; Schroeder et al., 2016;
Hudetz et al., 2020; Ku et al., 2011; Lee et al., 2013; Mdki-Marttunen et al., 2013; Chen et al., 2020),
also appears to consistently coincide with disrupted communication between the cortex and tha-
lamus (Zheng et al., 2017; White and Alkire, 2003; Malekmohammadi et al., 2019; Redinbaugh
et al., 2020; Bastos et al., 2021; Afrasiabi et al., 2021). ldentifying the mechanisms supporting
cortical-thalamic communication, and how this communication may be disrupted during uncon-
scious states, is therefore crucial both to our basic understanding of large-scale neural information
processing, as well as our clinical grasp on conditions in which cortical-subcortical communication
appears to be disrupted, such as in coma and vegetative states (Monti et al., 2010).

One unexplored mechanism which may support bidirectional communication between the cor-
tex and thalamus during conscious states is criticality. Criticality, or a critical point, refers to the
transition between different phases of a system, such as different phases of matter (e.g. solid
versus liquid) or different phases of temporal dynamics (e.g. asynchronous versus synchronous
dynamics, or laminar versus turbulent airflow). It is by now well-established that critical and near-
critical systems tend to have a high capacity for transmitting and encoding information (Langton,
1990; Crutchfield and Young, 1988; Boedecker et al., 2012; Bertschinger and Natschliger, 2004). It
is thus unsurprising that a diverse array of analytical tools, applied to a diverse array of neurophys-
iological data recorded from a diverse array of brain states, overwhelmingly support the hypothe-
sis that the dynamics of the waking, healthy brain operate near one or several such critical points
(O’Byrne and Jerbi, 2022). In line with this broad evidence of neural criticality during waking states,
our recent work (Toker et al., 2022) showed that slow cortical electrodynamics during conscious
states specifically operate near a phase transition known as the edge-of-chaos critical point, or the
transition between periodicity and chaos, and that this form of criticality supports the information-
richness of waking cortical electrodynamics. We also showed that slow cortical electrodynamics
transition away from this critical point during anesthesia, generalized seizures, and coma, which
diminishes the information-richness of cortical activity, and transitions closer to this critical point
following the administration of the serotonergic hallucinogen lysergic acid diethylamide, which
enhances the information-richness of cortical activity (Toker et al., 2022). These results accord
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Figure 1. We hypothesize that the strength of bidirectional information transfer between the cortex and
thalamus should be highest during waking brain states, owing to the proximity of slow neural
electrodynamics to edge-of-chaos criticality during these states. We also predict that as slow neural
electrodynamics transition away from this critical point during unconscious states, either into the chaotic
phase or into the periodic phase, the strength of cortical-thalamic information transfer should be diminished.
Adapted from (Toker et al., 2022).

with the broad empirical evidence suggesting that cortical activity transitions away from criticality
during unconscious states and transition closer to criticality during psychedelic states (Zimmern,
2020). Therefore, it is straightforward to predict that the proximity of slow neural electrodynamics
to the edge-of-chaos critical point might similarly modulate the strength of bidirectional commu-
nication between the cortex and thalamus during normal waking states, unconscious states, and
psychedelic states (Fig. 1).

Here, in order to better characterize the mechanisms of cortical-thalamic communication and
how those mechanisms might be modulated by the proximity of neural electrodynamics to edge-
of-chaos criticality, we first applied a novel information-theoretic measure of spectrally resolved
information transfer to concurrent thalamic and cortical electric field recordings across species, in-
cluding human essential tremor (ET) patients, Long-Evans rats, Genetic Absence Epilepsy Rats from
Strasbourg (GAERS rats), and ¢57/bl6 mice. We identified a highly preserved pattern of low-to-high
frequency bidirectional cortical-thalamic information transfer present across nearly all patients
and animals during conscious states. Specifically, we found that information transmitted at low
frequencies (1.625-13 Hz) from one brain structure is consistently encoded by the other brain struc-
ture at high frequencies (~50-100 Hz). We also present evidence that this cross-frequency cortical-
thalamicinformation transfer is disrupted during unconsciousness induced by both y-Aminobutyric
acid mediated (GABAergic) anesthetics and generalized spike-and-wave seizures, and enhanced by
the serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine, or 5-MeO-DMT, a potent dual
agonist of 5-HT,, and 5-HT,, receptors. Finally, drawing both on our analysis of our electrophysiol-
ogy recordings and on numerical simulations using a novel mean-field model of the basal ganglia-
thalamo-cortical system, we found that the strength of this cross-frequency cortical-thalamic infor-
mation transfer across brain states is likely mediated by transitions of low-frequency thalamocorti-
cal electrodynamics toward or away from edge-of-chaos criticality, as predicted. To our knowledge,
this work is the first to show that this precise form of criticality supports interregional communica-
tion in the brain.
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Results

Low-to-high-frequency information transfer between the thalamus and cortex is
highly preserved across humans, rats, and mice in waking states

Because long-range neural communication is likely frequency-multiplexed, with distinct long-range
information streams encoded by distinct (and interacting) frequencies of oscillatry neural electro-
dynamics (Akam and Kullmann, 2014; Panzeri et al., 2010; Chao et al., 2018; Fontolan et al., 2014;
Malekmohammadi et al., 2015), we first evaluated patterns of thalamic-cortical communication
during conscious states using a recently developed, spectrally resolved measure of directed infor-
mation transfer which is both model-free and sensitive to delayed interactions (Pinzuti et al., 2020).
The measure evaluates the strength and significance of frequency-specific information transfer us-
ing surrogate time-series, which enable the estimation of how many bits of transfer entropy are lost
when dynamics only within certain frequency ranges are randomized (see Methods). We applied
this spectral information transfer measure to neural extracellular electric fields recorded simulta-
neously from the ventral intermediate (Vim) thalamic nucleus and ipsilateral sensorimotor cortex
of human essential (ET) patients; the ventral posterior thalamic nucleus and ipsilateral somatosen-
sory cortex of Long-Evans rats; the mediodorsal thalamic nucleus and the medial prefrontal cortex
of C57/BL6 mice; and the ventral posterior thalamic nucleus and contralateral somatosensory cor-
tex of GAERS rats. Note that with the exception of the recording locations in the GAERS rats, all of
these thalamic nuclei share direct reciprocal anatomical connections with the cortical areas from
which signals were simultaneously recorded. Although the recording sites in the GAERS rats are
not directly connected, the ventral posterior thalamic nucleus communicates indirectly with the
contralateral somatosensory cortex via its reciprocal connectivity with the ipsilateral somatosen-
sory cortex, which directly projects to the contralateral somatosesory cortex (Petreanu et al., 2007;
Wise and Jones, 1976; Olavarria et al., 1984).

After an initial exploratory sweep of all possible spectral patterns of information transfer be-
tween the cortex and thalamus across all patients/animals, channels, and recording windows,
which did not use sufficient surrogate time-series data to evaluate statistical significance of infor-
mation transfer across any given pair of frequency bands (owing to the prohibitive computational
cost of doing so for all possible spectral patterns of information transfer) (Fig. 2), we identified
a possible spectral channel of cortical-thalamic communication present across all species and ge-
netic strains during conscious states: namely, information sent from either the cortex or thalamus
in the low-frequency range (1.625-13 Hz) seemed to be consistently encoded by the other brain
region in the high y range (52-104 Hz Hz) (note that these exact frequency ranges are determined
by successive halves of the sampling frequency, as this method is based on wavelet decomposition
- see Methods). To confirm this finding, we re-ran this spectral information transfer analysis along
just these frequency bands, but using sufficient surrogates (100) to evaluate statistical significance,
and found that there was indeed significant low-to-high frequency bidirectional cortical-thalamic
information transfer across nearly all subjects during conscious states (Table 1).

Bidirectional cross-frequency cortical-thalamic information transfer is disrupted
in unconsciosuness and enhanced during psychedelic states

To test whether this low-to-high frequency cortical-thalamic communication is disrupted during
unconscious states and enhanced during psychedelic states (see Introduction), we calculated the
strength of low-to-high-frequency bidirectional information intransfer following intravenous ad-
ministration of propofol anesthesia in human ET patients (varying doses - see Methods) and Long-
Evans rats (plasma propofol concentration of 12 ug/ml); during spontaneous generalized spike-
and-wave seizures in GAERS rats; and following subcutaneous injection of saline + 5-MeO-DMT (5
mg/kg) in C57/BL6 mice. As predicted, we found that cross-frequency information transfer from the
cortex to the thalamus was disrupted during unconscious states and enhanced during psychedelic
states. Specifically, propofol diminished low-frequency to high-frequency information transfer
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Table 1. Following our initial exploratory sweep of all possible spectral patterns of cortical-thalamic
communication (Fig. 2), we used surrogate testing to evaluate whether there was significant information
transfer from slow (1.625-13 Hz) to fast (52-104 Hz) electrodynamics between anatomically connected
sub-regions of the thalamus and cortex (see Methods). For each 10-second window of activity, surrogate
testing produced a single p-value reflecting the significance of cross-frequency information transfer in each
direction (cortico-thalamic and thalamo-cortical). Overall statistical significance, across 10-second windows
within each subject, was assessed by evaluating the harmonic mean p (Wilson, 2019) of all single-trial p-values.
In line with our initial exploratory sweep (Fig. 2), we found that there was significant low-to-high frequency
bidirectional information transfer between the thalamus and cortex in nearly every species, strain, and

subject.
Cortex to Thalamus  Thalamus to Cortex

Human ET Patient 1 p=0.0371 p=0.0099
Human ET Patient 2 p=0.0099 p=0.0099
Human ET Patient 3 p=0.0152 p=0.0099
Human ET Patient 4 p=0.0099 p$=0.0099
Human ET Patient 5 p=0.0099 p=0.0099
Human ET Patient 6 p=0.0099 p=0.0099
Human ET Patient 7 p=0.0099 p=0.0099
Human ET Patient 8 p=0.0099 p=0.0099
Human ET Patient 9 p=0.0099 p=0.0099
Human ET Patient 10 | 5=0.0099 p=0.0099
Long-Evans Rat 1 p=0.0542 p=0.0179
Long-Evans Rat 2 p=0.0278 p=0.0328
Long-Evans Rat 3 p=0.024 p=0.0338
Long-Evans Rat 4 p=0.0375 p=0.0396
Long-Evans Rat 5 p=0.0257 p=0.0338
Long-Evans Rat 6 p=0.0407 p=0.0318
Long-Evans Rat 7 p=0.0234 p=0.0316
Long-Evans Rat 8 p=0.0225 p=0.0151
Long-Evans Rat 9 p=0.0792 p=0.1683
GAERS Rat 1 p=0.031 p=0.0238
GAERS Rat 2 p=0.0349 p=0.0207
GAERS Rat 3 p=0.0352 p=0.0237
GAERS Rat 4 p=0.0313 p=0.0274
GAERS Rat 5 p=0.0364 p=0.0319
GAERS Rat 6 p=0.0526 p=0.0309
GAERS Rat 7 p=0.0304 p=0.0266
C57/BL6 Mouse 1 p=0.0265 p=0.023

C57/BL6 Mouse 2 p=0.0262 p=0.0217
C57/BL6 Mouse 3 p=0.0281 p=0.0214
C57/BL6 Mouse 4 $=0.0461 p=0.0357
C57/BL6 Mouse 5 p=0.0356 p=0.0303
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Figure 2. In our initial exploratory sweep of spectral patterns of directed cortical-thalamic information
transfer during conscious states, we identified a prominent motif of low-to-high frequency bidirectional
communication that was present during waking states in nearly all subjects and species. We first estimated
the (z-scored) strengths of information transfer across every possible pair of frequency bands, for every
10-second trial, and for every subject during waking states. We then took the average cross-trial result for
every subject. Here, we plotted the mode across subjects’ cross-trial averages in order to reveal the spectral
patterns of information transfer that occurred most frequently across subjects during conscious states. For
cortico-thalamic information transfer (left), we found that information sent from the cortex across all
frequencies is frequently received by the thalamus in the high y range. For thalamo-cortical information
transfer (middle), we observed a prominent pattern of low-to-high frequency information transfer. When
looking at the mode across all cross-trial averages of both cortico-thalamic and thalamo-cortical information
transfer during conscious states (right), there seems to be a consistent channel of communication from the
low-frequency range (1.625-13 Hz) to the high-frequency range (~50-100 Hz) in both directions
(cortico-thalamic and thalamo-cortical). We therefore chose to study this cross-frequency pattern of
information transfer in our subsequent analyses of waking, GABAergic anesthesia, generalized
spike-and-wave seizure, and psychedelic states.

from the cortex to the thalamus in both human ET patients (p=0.002, one-tailed Wilcoxon signed-
rank test comparing patients' cross-trial medians during waking states versus propofol states) (Fig.
3A) and Long-Evans rats (p=0.002) (Fig. 3B). Similarly, cross-frequency corticothalamic information
transfer was reduced during generalized spike-and-wave seizures in GAERS rats (p=0.0078) (Fig. 3C).
Conversely, 5-MeO-DMT significantly increased the strength of low-to-high frequency corticothala-
mic information transfer in C57/BL6 mice (p=0.0312) (Fig. 3D), despite the fact that this brain state,
similar to anesthesia, is marked by reduced high-frequency activity and increased low-frequency
activity in both thalamus and cortex (Fig. 4); this suggests that these observed changes to cross-
frequency communication are independent of the spectral content of thalamocortical activity. The
same overall pattern was seen with low-to-high frequency information transfer from the thalamus
to the cortex. Specifically, we found that the strength cross-frequency communication from the
thalamus to the cortex was significantly diminished during propofol anesthesia in both human
ET patients (p=0.002) (Fig. 5A) and Long-Evans rats (p=0.0098) (Fig. 5B). Similarly, the strength of
cross-frequency thalamocortical information transfer was significantly reduced in GAERS rats dur-
ing generalized spike-and-wave seizures (p=0.0078) (Fig. 5C), but did not change during psychedelic
states in C57/BL6 mice (p=0.3125) (Fig. 5D).

To confirm that the observed results reflect a breakdown in thalamic-cortical communication
rather than changes in the spectral content of thalamocortical electrodynamics, we performed
a permutation-based nonparametric analysis of covariance, which revealed significant variance
across brain states in the strength of both cross-frequency cortico-thalamic (p=0.0001) and thalamo-
cortical (p=0.0007) information transfer, which could not be explained by spectral changes at ei-
ther low (1.625-13 Hz) or high (52-104 Hz) frequencies (Supplementary File 1). We also confirmed
that these observed changes to cross-frequency communication were not driven by changes in
non-spectrally resolved information transfer between the thalamus and cortex. Specifically, we
found that (non-spectrally resolved) transfer entropy between these two brain regions did not vary
consistently across different brain states, instead decreasing significantly during unconsciousness
only in human ET patients, and increasing significantly during propofol anesthesia in Long-Evans
Rats, generalized spike-and-wave seizures in GAERS rats, and psychedelic states in C57/BL6 mice
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Figure 3. Using a spectrally resolved measure of directed information transfer (see Methods), we found that
the strength of information transferred from cortical §/6/a waves (~1.5-13 Hz) to thalamic high y waves
(~50-100 Hz) is significantly reduced during unconsciousness induced by propofol anesthesia (A-B) and
generalized spike-and-wave seizures (C). Conversely, the strength of this low-to-high frequency
corticothalamic information transfer is significantly increased during psychedelic states induced by
5-MeO-DMT (D). *=p<0.05, **p<0.01, significance assessed using a one-tailed Wilcoxon signed-rank test.

103 from both cortex to thalamus (Figure 3-figure supplement 1) and thalamus to cortex (Figure 5-
10a  figure supplement 1). We also found that the observed results were not driven by changes to the
105 strength of phase-amplitude coupling between these regions. Specifically, we found that coupling
106 between the phase of low-frequency (1.625-13 Hz) activity in one brain region and the amplitude
107 Of high-frequency (52-104 Hz) activity in the other, as assessed using the Modulation Index (Tort
s etal., 2008), increased during propofol anesthesia in Long-Evans Rats, generalized spike-and-wave
100 Seizures in GAERS rats, and psychedelic states in C57/BL6 mice, with no change during propo-
200 fol anesthesia in human ET patients from both cortex to thalamus (Figure 3-figure supplement 2)
201 and thalamus to cortex (Figure 5-figure supplement 2). These results suggest that low-to-high fre-
202 quency cortical-thalamic information transfer is distinct from both conventional, non-spectral mea-
203 sures of directed information transfer, as well as from conventional measures of cross-frequency
204 coupling, which only take into account linear and same-time interactions. As such, the strength
205 Of low-to-high frequency bidirectional cortical-thalamic information transfer is a specific and novel
206 hallmark of conscious brain states.

207 Cross-frequency information transfer between the cortex and thalamus is supported
20s by edge-of-chaos criticality: mean-field modeling results

200 Based on our prior work indicating that the brain’s information processing capacity during con-
210 SCious states is supported by the proximity of slow cortical dynamics to edge-of-chaos criticality
a1 (Toker et al., 2022), we hypothesized that these changes in cross-frequency cortical-thalamic in-
212 formation transfer across brain states might be mediated by transitions of slow thalamocortical
213 electrodynamics away from or closer to the edge-of-chaos critical point, or the phase transition
212 from stable to chaotic dynamics. To test this hypothesis, we first developed a mean-field model of
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Figure 4. We here plot the cross-subject median power spectral densities (estimated using Welch's method)
for all brain states. Note that both propofol and 5-MeO-DMT increased spectral power in the slow/delta range
(<4 Hz) and decreased spectral power above 80 Hz in both cortex and thalamus, despite opposing effects on
cross-frequency corticothalamic information transfer (Fig. 3).
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Figure 5. Similar to the results we observed for communication from the cortex to the thalamus (Fig. 3), we
found that strength of information transferred from thalamic 6/6/a waves (~1.5-13 Hz) to cortical high y
waves (~50-100 Hz) is significantly reduced during unconsciousness induced by propofol anesthesia (A-B) and
generalized spike-and-wave seizures (C). Unlike corticothalamic information transfer (Fig. 3), however, the
strength of this low-to-high frequency information transfer from the thalamus to cortex does not change
significantly during psychedelic states induced by 5-MeO-DMT (D). *=p<0.05, **p<0.01, significance assessed
using a one-tailed Wilcoxon signed-rank test.
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the electrodynamics of the brain which could replicate these spectral patterns of cortical-thalamic
information transfer observed in nearly all subjects/animals during waking states, and which could
moreover replicate diverse, known features of neural electrodynamics. The reason we must first
construct a mean-field model is because the presence and degree of chaos in any system can
only be calculated with (some) certainty in a simulation, where noise and initial conditions can be
precisely controlled in the estimation of the system'’s largest Lyapunov exponent (LLE) - a mathe-
matically formal measure of chaoticity which quantifies how quickly initially similar system states
diverge. It is for this reason that the study of chaos in biology should in general be paired with re-
alistic simulations of the biological system of interest (Glass and Mackey, 1988; Toker et al., 2020).
Accordingly, we used Bayesian-genetic optimization to tune the parameters of a mean-field model
of the basal ganglia-thalamo-cortical system (Fig. 6) such that it generated biologically realistic
large-scale neural electrodynamics across waking, anesthesia, and spike-and-wave seizure states
(see Methods and Fig. 6-figure supplements 1-3 for details).

The resulting simulations exhibited a broad range of biologically realistic features (Fig. 7). First,
our simulated cortical LFPs for the waking state exhibited spectral peaks at all canonical frequency
bands, with the strongest peak in the a (8-13 Hz) range (Fig. 7-figure supplement 1). Moreover,
mean firing rates for each brain region in the model closely matched known region-specific firing
rates in mammals (Supplementary File 2). Furthermore, as in the real brain (Ray et al., 2008), there
was a significant, positive correlation between fluctuations in our model’s cortical firing rate and
fluctuations in the amplitude of high-frequency (60-200 Hz) simulated cortical LFP activity (r=0.175,
p=1.1e-35). Finally, recapitulating our novel empirical results (Table 1), our simulated cortical and
thalamic LFPs exhibited significant, cross-frequency information transfer from thalamus to cortex
(harmonic mean across 10 runs with different initial conditions p=0.0112) and from cortex to tha-
lamus (5=0.011).

Beyond our simulation of the waking state, our anesthesia simulation likewise exhibited a broad
range of biologically realistic features. First, in line with empirical results (Fig. 4), at a 100% anes-
thetic “dose," our simulated cortical LFPs exhibited increased low-frequency power and decreased
high-frequency power relative to the simulated LFPs corresponding to the waking state (Fig. 7-
figure supplement 2). Moreover, increasing simulated “doses" of simulated anesthesia effect re-
capitulated well-established dose-response trajectories of GABAergic anesthetics, including a con-
tinual decline in cortical firing rates (Bastos et al., 2021) (Fig. 7-figure supplement 3A) and LFP
information-richness (Frohlich et al., 2021) (Fig. 7-figure supplement 3B), a continual rise in the
power of low-frequency activity (Billard et al., 1997) (Fig. 7-figure supplement 3C), and a transition
to burst suppression followed by isoelectricity and cessation of firing at very high doses (Ching
and Brown, 2014) (Fig. 7). Moreover, in line with both prior modeling (Steyn-Ross et al., 2013) and
empirical (Toker et al., 2022) work, our simulated LFPs in the anesthesia state were more strongly
chaotic than simulated cortical LFPs in the waking state (Fig. 7-figure supplement 3D). Furthermore,
though these features were not explicitly selected for in our parameter optimization, our simulated
anesthesia effect yielded several additional biologically realistic features, including the generation
of LFPs with increasingly steep spectral slopes (Colombo et al., 2019; Lendner et al., 2020) (Fig. 7-
figure supplement 3E), as well as prolonged inhibitory postsynaptic potentials (IPSPs) at excitatory
cortical and thalamic relay cells relative to our waking simulation (Kitamura et al., 2003; Hindriks
and van Putten, 2012; Hutt and Longtin, 2010; Noroozbabaee et al., 2021) (Fig. 7-figure supplement
4).

Finally, our generalized spike-and-wave seizure simulation likewise recapitulated several estab-
lished biological features of seizures, including a large rise in cortical firing rates (Fig. 7-figure
supplement 5A) (though cortical firing rates in our seizure simulation were considerably higher
than in empirical data from GAERS rats (Jarre et al., 2017)) and a loss in the information-richness
of cortical LFPs (Mateos et al., 2018) (Fig. 7-figure supplement 5B). In addition, following both prior
empirical (Toker et al., 2022) and modeling (Steyn-Ross et al., 2013; Breakspear et al., 2006) results,
our simulated LFPs in the seizure state were periodic, i.e., were insensitive to small perturbations
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266 (Fig. 7-figure supplement 5C). Example traces of cortical LFPs from our simulations are plotted in
267 Fig. 7. Parameters for the three simulated brain states are listed in Supplementary File 3.

268 With these sufficiently realistic simulations of large-scale neural electrodynamics in hand, we
260 Used our mean-field model to assess, in silico, the relationship between edge-of-chaos criticality
270 and bidirectional, cross-frequency information transfer between the cortex and thalamic relay nu-
2711 Clei. To do so, we generated LFPs at 50 increasing “doses" of simulated anesthetic effect and 50
272 increasing strengths of seizure effect, relative to our normal waking simulation (see Methods). The
273 resulting parameter sweep yielded simulated cortical LFPs with a wide range of LLEs, including sev-
27a  eral near-critical LFPs (i.e., simulated LFPs with an estimated LLE near zero, indicating neither expo-
275 nential divergence nor convergence of initially similar system states). Consistent with our predic-
276 tions, we found that there was a clear peak of bidirectional, cross-frequency information transfer
277 between our simulated cortical and thalamic LFPs when our simulated thalamocortical electrody-
278 Namics were poised near the edge-of-chaos critical point (Fig. 8A-B). We found that bidirectional
270 Cross-frequency information transfer decayed as the (simulated) anesthetic effect was increased,
280 Which generated increasingly chaotic thalamocortical LFPs; likewise, cross-frequency information
21 transfer decayed as the (simulated) seizure effect was increased, which generated increasingly
282 periodic LFPs, as shown in Fig. 8A-B. Though these results offer compelling theoretical evidence
2e3  for a relationship between edge-of-chaos criticality and the strength of cross-frequency informa-
2sa  tion transfer between the thalamus and cortex, LLEs cannot be accurately estimated in empirical
2ss  data, and therefore alternative chaos detection algorithms are required in order to empirically test
286 this relationship between chaoticity and cross-frequency cortical-thalamic communication in real
287 brains. Because the K-statistic of the modified 0-1 chaos test has previously been demonstrated to
28s  accurately estimate chaoticity from empirical time-series recordings (Toker et al., 2020), we tested
280 Whether the K-statistic could accurately track chaoticity in our mean-field simulation. Indeed, when
200 applied to simulated thalamocortical LFPs bandpass filtered between 1.625-13 Hz (matching the
201 Slow frequencies of cortical-thalamic information transfer identified here), the K-statistic was sig-
202 hificantly correlated with the estimated largest Lyapunov exponent of our simulated LFPs (p=0.74,
203 p=0), and could moreover recapitulate the observed relationship between thalamocortical chaotic-
204 ity and cross-frequency cortical-thalamic information transfer in our mean-field model, as shown
20s iN Fig. 8C-D. This indicates that the K-statistic of the modified 0-1 chaos test can be used to test
206 the predicted relationship between proximity to edge-of-chaos criticality and the strength of cross-
207 frequency cortical-thalamic information transfer in real brain data.

28  Cross-frequency information transfer between the cortexand thalamus is supported
20 by edge-of-chaos criticality: empirical results

300 Because the K-statistic of the 0-1 chaos test can be calculated from empirical neural data, we ap-
so1  plied the test to our electrophysiology recordings. Confirming our predicitions, the empirical re-
302 sults recapitulated the relationship between thalamocortical chaoticity and cortical-thalamic cross-
303 frequency information transfer observed in our mean-field model (Fig. 8), with maximal informa-
s0a tion transfer occurring for intermediary levels of estimated chaoticity (presumably reflecting prox-
305 imity to edge-of-chaos criticality) (Fig. 9). Importantly, replicating both prior simulation and empir-
306 ical results (Toker et al., 2022) as well as the novel simulation results presented above (Figure 8,
307 Fig. 7-figure supplement 3D), we found that GABAergic anesthesia destabilized slow thalamocor-
s0s  tical electrodynamics in both humans (p=0.002, one-tailed Wilcoxon signed-rank test comparing
300 patients’ cross-trial median K-statistic during waking states versus propofol anesthesia states) and
s10  rats (p=0.002, one-tailed Wilcoxon signed-rank test). Conversely, slow thalamocortical activity be-
s came periodic or hyper-stable during generalized spike-and-wave seizures (p=0.0078, one-tailed
s12 Wilcoxon signed-rank test). Finally, 5-MeO-DMT moderately stabilized cortical electrodynamics
a1z (p=0.03, one-tailed Wilcoxon signed-rank test), which is consistent with prior results showing that
s1a  psychedelics tune slow neural electrodynamics closer to edge-of-chaos criticality, and do so by ap-
a5 proaching the critical point from the chaotic side of the edge (Toker et al., 2022). Finally, while the
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Figure 6. Connections included in our mean-field model of the macro-scale electrodynamics of the basal
ganglia-thalamo-cortical system. Note that the internal globus pallidus and the substantia nigra pars
reticulata, which are both inhibitory output nuclei of the basal ganglia, are treated as a single structure. See
Supplementary File 2 for the mean firing rates for each neural population in the model, alongside known
region-specific firing rates in multiple mammalian species. See Supplementary File 3 for parameters
describing the properties of each neural population, as well as parameters describing the propagation of
electric fields along each anatomical connection.

estimated chaoticity of low-frequency (1.625-13 Hz) thalamocortical electrodynamics varied signif-
icantly across brain states (p=0.0001, permutation-based nonparametric ANCOVA), this variance
could not be explained by changes to spectral power in this frequency range in the thalamocorti-
cal system across brain states (Supplementary File 4).

Discussion

We here identified a highly preserved spectral pattern of cross-frequency information transfer be-
tween the cortex and thalamus across species during waking states, wherein information sent from
one brain structure at low frequencies (1.625-13 Hz) is encoded by the other at high frequencies
(~50-100 Hz). We moreover showed that this pattern of information transfer is disrupted dur-
ing unconscious states, possibly because low-frequency thalamocortical electrodynamics diverge
from edge-of-chaos criticality during these states. Conversely, we showed that this low-to-high fre-
quency information transfer from the cortex to the thalamus is enhanced during psychedelic states,
possibly because slow thalamocortical electrodynamics are tuned closer to edge-of-chaos critical-
ity during these states (and approach this critical point from the chaotic side of the edge, where
our evidence suggests normal waking slow thalamocortical electrodynamics lie). Note that we did
not observe a significant increase in cross-frequency information transfer from the thalamus to
cortex during psychedelic states, though this may be due to our small sample size of animals in
this condition (n=5).

To provide theoretical evidence for this relationship between edge-of-chaos criticality and cross-
frequency cortical-thalamic information transfer, we used Bayesian-genetic optimization to tune a
mean-field model of the electrodynamics of the full basal ganglia-thalamo-cortical system, so that
it could recapitulate diverse aspects of real neural electrodynamics while using biologically realistic
parameters (see Methods). Given the broad biological realism of our model of the basal ganglia-
thalamo-cortical system, we believe that the model - or perhaps future versions of it, which are
even more closely matched to empirical results from multiple brain states - may be a fruitful tool
for future in silico studies of possible interventions to modulate consciousness.
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Figure 7. Simulated cortical local field potentials (LFPs) as a function of increasing anesthetic or seizure
"dose." Note that all data plotted here are on the same scale. For our awake simulation (top), the mean-field
model generates near-critical, weakly chaotic, low-amplitude oscillations dominated by a« waves (8-13 Hz),
with significant bidirectional cross-frequency information transfer between the cortex and thalamus (as
observed in our empirical data). With increasing anesthetic dose (left), the simulated cortical LFP transitions
to chaotic, high-amplitude 5 waves (1-4 Hz) and « waves. At a higher dose, the simulated cortical LFP
transitions to burst suppression-like dynamics, which are characterized by stochastic switching between
isoelectricity and high-amplitude bursts. Finally, at the highest anesthetic doses, the simulated cortical LFP
transitions to isoelectricity. This simulated anesthetic dose-response trajectory closely mirrors
well-established empirical dose-response trajectories. For our seizure simulation (right), increasing "doses"
first push the cortical LFP into a 3-4 Hz spike-and-wave seizure (which is characteristic of human epilepsy
patients), followed by a 6-8 Hz spike-and-wave seizure (which is characteristic of rodent models of epilepsy,
including the GAERS rats studied here).
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Figure 8. We performed parameter sweeps for different "doses" of simulated anesthetic (red square) and
seizure (blue triangle) effects. For each "dose," we calculated the median estimated largest Lyapunov
exponent (LLE) of simulated thalamocortical LFPs across 10 runs, and plotted the median strength of
cross-frequency thalamocortical (A) and corticothalamic (B) information transfer as a function of those
median LLEs. We found a clear peak in the strength of bidirectional cross-frequency cortical-thalamic
information transfer when our simulated thalamocortical electrodynamics were poised near edge-of-chaos
criticality (the vertical lines at LLE=0). We further found that the strength of this bidirectional, cross-frequency
information transfer decayed in both the periodic phase (negative LLEs) with increasing seizure effect and the
chaotic phase (positive LLEs) with increasing anesthetic effect. However, because this decay was
exponentially faster in the periodic phase, we here plotted the bi-symmetric log-transform (Webber, 2012) of
our results for the sake of visualization. Because LLEs can only be estimated with some accuracy in
simulations, we also calculated the estimated the median chaoticity of the low-frequency (1.625-13 Hz)
component of our simulated cortical and thalamic LFPs using the K-statistic of the modified 0-1 chaos (which
can be measured from real neural recordings). We plotted those results against the (bi-symmetric
log-transformed) median strength of cross-frequency thalamocortical (C) and corticothalamic (D) information
transfer, and observed the same overall relationship between chaoticity and bidirectional cross-frequency
information transfer, suggesting that this relationship can be evaluated in real neural recordings.
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Figure 9. We here plot the median strength of cross-frequency thalamocortical (A) and corticothalamic (B)
information transfer across brain states (normalized to each patient’s or animal's waking baseline, and
bi-symmetrically log-transformed) as a function of the median estimated chaoticity of the low-frequency
(1.625-13 Hz) component of thalamic and cortical electric field recordings (also normalized to waking
baselines). We found the same trend as in our mean-field model (Fig. 8), with bidirectional cross-frequency
information transfer exhibiting the most pronounced decay as thalamocortical electrodynamics
hyper-stabilize in the generalized spike-and-wave seizure state. The strength of bidirectional cross-frequency
information transfer also decays, though not as quickly, as thalamocortical electrodynamics become
increasingly chaotic in the GABAergic anesthesia state. Conversely, the strength of cross-frequency
information transfer from the cortex to the thalamus, but not from the thalamus to the cortex, increases as
thalamocortical electrodynamics moderately stabilize in the 5-MeO-DMT psychedelic state, presumably
reflecting a transition closer to edge-of-chaos criticality relative to normal waking states, which are
near-critical but weakly chaotic.

Although both our empirical and simulated thalamocortical electrodynamics show clear evi-
dence of cross-frequency cortical-thalamic information transfer, and that the strength of this cross-
frequency information transfer is supported by the proximity of thalamocortical electrodynamics
to edge-of-chaos criticality, much work remains to be done to explain this frequency-specific com-
munication pattern during conscious states. In other words, the precise code of cross-frequency
communication remains to be determined. It is possible, for example, that this code will be related
to mechanisms that are by now well-established in the neuroscience literature, such as the mod-
ulation of the amplitude of high-frequency activity by the phase of low-frequency activity (Canolty
and Knight, 2010). Indeed, our observation of cross-frequency information transfer between tha-
lamus and cortex is, at least conceptually, consistent with prior evidence of low-to-high frequency
phase-amplitude coupling between these regions during waking states (FitzGerald et al., 2013;
Malekmohammadi et al., 2019; Opri et al., 2019; Malekmohammadi et al., 2015); however, it is
important to note that, unlike the strength of directed cross-frequency information transfer, the
strength of phase-amplitude coupling did not consistently vary as a function of brain state (Fig. 3-
figure supplement 2, Fig. 5-figure supplement 2), which suggests that these are somewhat distinct
phenomena. It may also be that cross-frequency cortical-thalamic information transfer could rely
on coding mechanisms which have not yet been explored in the neuroscience literature, but which
have been explored in the communications engineering literature, such as low-to-high-frequency
information transfer using the harmonic backscattering of low-frequency signals (An et al., 2018).

We note several limitations to the work done here, and fruitful areas for further investigation.
First, we stress that currently, varying degrees of chaoticity - and therefore proximity to edge-of-
chaos criticality - can only be detected with some certainty in simulations. The modified 0-1 chaos
test, which we used here as an empirical test of chaoticity, is a relatively robust method for chaos
detection (Toker et al., 2020), correlates well with ground-truth chaoticity in our mean-field model,
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and reproduces the relationship between chaoticity and cross-frequency cortical-thalamic infor-
mation transfer observed in our simulations; but, the test's results may be affected by features of
a signal, such as noise, which are unrelated to ground-truth chaoticity. For this reason, it will be
imperative to develop additional methods for assessing the chaoticity of thalamocortical electro-
dynamics in order to confirm or falsify the observations reported here. It will moreover be impor-
tant to study how generalized seizures, anesthesia, and psychedelics affect information transfer
between the cortex and other subcortical regions which have been implicated in the loss and re-
covery of consciousness, such as the basal ganglia (Miyamoto et al., 2019; Deransart et al., 2000;
Chen et al., 2015b; DiCesare et al., 2020; Crone et al., 2017; Lutkenhoff et al., 2015, 2020; Lazarus
etal., 2012; Qiu et al., 2016a; Vetrivelan et al., 2010; Qiu et al., 2016b, 2010), and how that in turn
relates to the proximity of thalamocortical electrodynamics to edge-of-chaos criticality. In a similar
vein, it will also be important to test whether the observed phenomena extend to other states of
unconsciousness (e.g. coma and vegetative states) and other psychedelic states (e.g. induced by
lysergic acid diethylamide or psilocybin).

Methods and Materials

Mean-field model of the electrodynamics of the basal ganglia-thalamocortical sys-
tem.

To study the relationship between edge-of-chaos criticality and cross-frequency cortical-thalamic
information transfer, and how that might change during GABAergic anesthesia and generalized
spike-and-wave seizures, we developed a modified version of the mean-field model of the basal
ganglia-thalamocortical system described by van Albada and Robinson (van Albada and Robinson,
2009). Although our empirical analysis focuses on thalamo-cortical interactions, we chose a model
which includes the basal ganglia because of recent evidence that the basal ganglia (perhaps via
their influence on the thalamus and cortex) are involved in the loss and recovery of conscious-
ness from generalized seizures (Miyamoto et al., 2019; Deransart et al., 2000; Chen et al., 2015b),
anesthesia (DiCesare et al., 2020; Crone et al., 2017), vegetative and minimally conscious states
(Lutkenhoff et al., 2015, 2020), and sleep (Lazarus et al., 2012; Qiu et al., 2016a; Vetrivelan et al.,
2010; Qiu et al., 2016b, 2010).

The model simulates the average firing rate of several populations of neurons, which is esti-
mated as the proportion of neurons within a population whose membrane potential is greater
than their reversal potential, multiplied by the maximum possible firing rate for that population.
Specifically, the average population activity Q, at location r and time ¢ is modeled as a sigmoidal
function of the number of cells whose potential V, is above the mean threshold potential 6 of that

population:
Q;ﬂaX

T T+ expl—(V,() — 0,)/0]
where Q7 is the maximum possible firing rate of that population and ¢’ is the standard deviation
of cell body potentials relative to the threshold potential. The change in mean cell potential V, is
modeled as:

Q,(r,n (M

DOV, (1) = Y byt = 7,) )
b

where v, is the number of synapses between the axons of population b and dendrites of population
a multiplied by the typical change in the membrane potential of a cell in a with each incoming
electric pulse from b. ¢,(t — z,,) is the rate of incoming pulses from b to q, 7, is the time delay for
signals traveling across axons from b to a, and D, is the differential operator

1@ (1.1\d
Daﬂ(l‘)—a—ﬁﬁ+(;+ﬁ>a+l (3)

where « is the decay rate of the cell membrane potential and g is the rise rate of the neural mem-
brane potential. In the original Robinson mean-field model, not only the duration, but also the
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peak n of synaptic responses is scaled by a« and g:

na,p) = 22 [exp( _ “)) - exP< _ ﬁln(ﬂ/a)>] “
p—a f—a f—a

However, since we are interested in modeling GABAergic anesthesia, which prolongs the duration
of postsynaptic inhibition - an effect that can be simulated by modulating the synaptic decay rate
a (Hindriks and van Putten, 2012; Hutt and Longtin, 2010) or potentially the rise rate g - without
altering the maximal postsynaptic chloride current (Kitamura et al., 2003), we followed prior mod-
eling studies of anesthesia (Hindriks and van Putten, 2012; Hutt and Longtin, 2010; Bojak and Liley,
2005; Noroozbabaee et al., 2027) and modified the synaptic response A, such that its duration but
not its peak is modulated by « and g:

H —
h 5
o ® )

where h(t) is the original synaptic response, and, following Hindriks and van Putten (Hindriks and
van Putten, 2012), H=31.5 s~!. Finally, the outgoing mean electric field ¢, from population b to
population a is modeled with the widely used damped wave equation

h@) =

Dy (r, 1) = Qp(r, 1) (6)
with
1 9% 2 0 P
==L 29,1 2y 7
ab 2oy, + Fab (7)

where r,, is the spatial axonal range, 7,, is the temporal damping coefficient and equals v, /r,,, and
V2 is the Laplacian operator.

Importantly, apart from circuit connectivity described in the original van Albada and Robinson
model, we included several additional known afferent projections from the globus pallidus externa
(GPe) (Fig. 6), given the recent evidence for the importance of the GPe in particular in regulating
the loss and recovery of consciousness (Lazarus et al., 2012; Qiu et al., 2016a; Vetrivelan et al.,
2010; Qiu et al., 2016b, 2010; Zheng and Monti, 2019). Specifically, in light of recent tracing stud-
ies in mice showing direct GABAergic projections from GPe to GABAergic cortical interneurons
(Saunders et al., 2015; Chen et al., 2015a), as well as recent high angular resolution diffusion imag-
ing showing direct projections from GPe to cortex in humans (Zheng and Monti, 2019), we added
inhibitory connections from GPe to inhibitory cortical neurons. We also added direct inhibitory
projections from GPe to thalamic relay nuclei, following recent human high angular resolution dif-
fusion imaging results (Zheng and Monti, 2019). Moreover, following results from tracing studies
in squirrel monkeys (Hazrati et al., 19917), we additionally added direct inhibitory projections from
GPe to the thalamic reticular nucleus. We furthermore added inhibitory connections from GPe to
both D1 and D2 striatal populations, based on extensive prior tracing studies showing pallidostri-
atal projections in rats (Kuo and Chang, 1992; Staines et al., 1981; Kuo and Chang, 1992; Staines
and Fibiger, 1984; Rajakumar et al., 1994), cats (Beckstead, 1983), and monkeys (Beckstead, 1983;
Kita et al., 1999; Sato et al., 2000).

The model thus constructed contains 185 free parameters. In the original model, van Albada
and Robinson identified a parameter configuration within physiologically realistic bounds that pro-
duced stable fixed points of neuronal firing rates for each brain region, which can be analytically
identified using well-known mathematical tools. Under this approach, fluctuations of neuronal
firing rates are generated via noise perturbations away from and back toward these stable fixed
points. However, this approach assumes that macroscale neural electrodynamics are perfectly
stable unless perturbed, which is contradicted by some empirical evidence: low-frequency electro-
dynamic oscillations have been observed in the absence of any sensory inputs or perturbations in
isolated, deafferented cortex (Timofeev et al., 2000; Lemieux et al., 2014) and in deafferented tha-
lamic reticular nucleus (Steriade et al., 1987), as well as in unperturbed cerebral organoids (Trujillo
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et al., 2019; Samarasinghe et al., 2019). Moreover, this modeling approach assumes that neural
electrodynamic oscillations are predominantly stochastic, which our current (Supplementary File
5) and past (Toker et al., 2022) work suggest is not the case. In line with this broad empirical evi-
dence for intrinsic low-frequency, nonlinear oscillatory electrical activity in the brain, other mean-
field modeling approaches have sought instead to understand slow neural electrodynamics (in
both waking and non-waking states) in terms of (often chaotic) nonlinear oscillations, rather than
in terms of noise perturbations of stable fixed points (Dafilis et al., 2001; Steyn-Ross et al., 2013;
Freeman, 1987). In accordance with this approach, we sought a physiologically realistic parameter
configuration for waking brain states that would yield low-amplitude, oscillatory, weakly chaotic
oscillations of local field potentials (LFPs), where the LFPs of a given neural population were simu-
lated by taking the superposition of synaptic currents (Buzsdki et al., 2012), estimated as the sum
of the absolute value of dendritic potentials of that population (Mazzoni et al., 2075). In addition
to meeting this criterion of generating low-amplitude, weakly chaotic LFPs, we sought a parameter
configuration for waking states which yields mean firing rates for all brain regions that match em-
pirical data, which generates fluctuations in cortical firing rates that are correlated with fluctuations
in the amplitude of high gamma (60-200 Hz) cortical LFP oscillations, and which additionally reca-
pitulates the spectral patterns of bidirectional cortico-thalamic information transfer we identified
in our empirical data. Because there are no methods for deriving such a parameter configuration
analytically, and because the parameter space of the model is infinite (though bounded) and thus
impossible to explore through a systematic parameter sweep, we used a Bayesian-genetic machine
learning algorithm (Lan et al., 2020) to tune all parameters in the model to produce the desired
dynamics (see Supplementary Methods and Fig. 6-figure supplement 1-3 for flowcharts describing
the details of the Bayesian-genetic optimization).

Once we identified a parameter configuration for waking brain states (Supplementary File 3),
we used that parameter configuration as the starting point for a search, using genetic optimization,
for parameter configurations that would produce GABAergic anesthesia and generalized spike-and-
wave seizure dynamics. For the seizure dynamics, we simply tuned the model's parameters to gen-
erate 2-8 Hz oscillations that are periodic and information-poor (as indexed by Lempel-Ziv complex-
ity), which resulted in spike-and-wave behavior. For the anesthesia dynamics, we tuned the model's
parameters to minimize the cortical firing rate while simultaneously generating information-poor,
strongly chaotic LFPs that are dominated by large-amplitude slow/delta (<4 Hz) oscillations with
low spectral power above 60 Hz. Once we identified a set of parameters for our awake simula-
tion, our anesthesia simulation, and our spike-and-wave seizure simulation (Supplementary File
3), we used the following equation to produce a given parameter set P at a particular “dose" D of
simulated anesthetic or seizure effect:

P,
P=Py(5)" (8)
0

where Py is the vector of parameters corresponding to our awake simulation and P, is the vector of
parameters corresponding to either our anesthesia or seizure simulation. Thus, as D is increased,
the model's parameters move from their “awake" values at D = 0 to their values in “altered" states
at D = 1. Moreover, reflecting biological saturation effects, the magnitude of change in model
parameters becomes increasingly small as D is further increased, and no parameters change signs
with higher values of D.

Calculating stochastic Lyapunov exponents

To determine the chaoticity of the mean-field model's dynamics, we estimated the stochastic largest
Lyapunov exponent across our simulated cortical and thalamic LFPs. In general, Lyapunov expo-
nents measure the rate of divergence between initially nearby points in a system’s phase space: a
positive largest Lyapunov exponent signifies chaos (because it indicates that initially similar states
diverge exponentially fast), a negative largest Lyapunov exponent signifies periodicity (because itin-
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dicates that initially similar states converge exponentially fast), and a largest Lyapunov exponent of
zero indicates edge-of-chaos criticality, with near-zero exponents indicating near-critical dynamics
(Ovchinnikov et al., 2020). For any given parameter configuration, stochastic Lyapunov exponents
were estimated by running the model once for 20 seconds with random initial conditions, and then
running it again, but adding a tiny random perturbation to all neural populations at 9.999 seconds,
and then measuring the rate of the divergence of the simulated cortical and thalamic LFPs over
the two runs over the final 10 seconds of the simulation. The divergence ¢(r) between the first run
Q' and the second run ng) was estimated as their summed squared-difference:

e(t) = (@11 — QP (1)) /™ C)

where ¢™>* is the maximum possible difference between the two simulations:

e = (max(Qg”) - min(Qf)))2 (10)

The largest Lyapunov exponent A of the model’s dynamics is then determined by estimating the
rate of divergence between the two runs e(?):

e(t) = e(0)exp(Ar) 11

where ¢(0) is the distance between Q" and Q@ at + = 0. The slope of Ine(r)-versus- therefore gives
the estimate of the largest Lyapunov exponent. For all parameter configurations, 0" and Q%
were run with identical noise inputs, meaning that the slope of Ine(r)-versus- gives the stochastic
Lyapunov exponent of the model.

Human essential tremor patient propofol data

Data previously published by Malekmohammadi et al. (2019) were re-analyzed in order to assess
the relationship between the stability of neural electrodynamics and the breakdown of thalamo-
cortical communication during GABAergic anesthesia. Data were collected from 10 essential tremor
patients (6 female and 4 male, ages 60-79 years) undergoing unilateral (n=6) or bilateral (n=4) im-
plantation of deep brain stimulation (DBS) leads in the ventral intermediate (ViM) nucleus of the
thalamus. All subjects provided written informed consent to participate in the original study, which
was approved by the institutional review board of the University of California, Los Angeles. Lo-
cal field potentials (LFPs) were recorded from the ViM thalamus, and electrocorticography (ECoG)
signals were recorded from ipsilateral frontoparietal cortex during resting wake states and after
intravenous propofol administration. Signals were acquired using BCI2000 v3 connected to an am-
plifier (g.Tec, g.USBamp 2.0) at a sampling rate of 2400 Hz. Data were bandpass filtered online
between 0.1 and 1000 Hz. Patients were awake with eyes open for the first minute of recording.
We used this minute of data for each patient’s “awake" state. After this first minute, the attending
anaesthesiologist administered propofol intravenously. All patients reached a modified observer’s
assessment of alertness/sedation scale (MOAA/S) of O, indicating no responsiveness, or 1, indi-
cating only responses to noxious stimuli. On average, LFP and ECoG recording continued for 5
minutes after propofol administration. To control for cross-patient differences in blood volume,
cardiac output, and propofol dosing, we exclusively analyzed the final minute of recording as each
patient's “anesthetized" state, during which they were maximally anesthetized. Data were splitinto
10-second trials, demeaned, detrended, and band-stop filtered at 60 Hz and harmonics (to filter
out line noise). Data were then visually inspected for artifacts, and 10-second trials with artifacts
spanning multiple channels were removed.

Long-Evans rat propofol data

Data previously published by Reed and Plourde (Reed and Plourde, 2015) were re-analyzed to eval-
uate the effect of propofol on neural criticality and cortical-thalamic information transfer in nine
male Long-Evans rats. Bipolar electrodes were inserted into the ventral posteromedial nucleus of
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the thalamus and sensory (barrel) cortex. A reference electrode was placed in the contralateral
parietal bone and a ground was placed in the ipsilateral frontal bone. Propofol was administered
in the right jugular vein catheter to achieve incrementally higher plasma propofol concentrations
of 3 ug/ml, 6 ug/ml, 9 ug/ml, and 12 ug/ml. Target plasma concentrations were achieved using
using pharmacokinetic parameters derived from Knibbe et al. (2005) with the Harvard-22 syringe
pump, which was controlled by the Stanpump software (Department of Anesthesiology, Stand-
ford University, CA). LFPs for each condition were recorded after 15 minutes of drug equilibration.
Unconsciousness, defined as complete loss of the righting reflex, was achieved by 9 ug/ml in all
animals. In our primary analyses, we used LFPs from the 12 ug/ml condition. Data were split into
10-second trials, demeaned, detrended, and band-stop filtered at 60 Hz and harmonics (to filter
out line noise). Data were then visually inspected for artifacts, and 10-second trials with artifacts
spanning multiple channels were removed.

GAERS rat seizure data

Previously published (Miyamoto et al., 2019) data from seven Genetic Absence Epilepsy Rat from
Strasbourg (GAERS) animals (both sexes, over 16 weeks of age), which experience spontaneous 6-8
Hz generalized spike-and-wave seizures, were provided by H.M. and K.Y. and re-analyzed. Stain-
less steel ECoG electrodes (1.1 mm diameter) were placed over the right somatosensory cortex
under 2% isoflurane anesthesia. A stainless-steel electrode, which served as both ground and ref-
erence, was placed on the cerebellum. An insulated stainless steel wire (200-um diameter) was
stereotaxically implanted in the ventroposterior thalamus contralateral to the ECoG electrode, as
well as in other cortical and subcortical sites not analyzed here. For our analyses, we only selected
data from generalized spike-and-wave seizures which continued for a minimum of 10 seconds.
Data were split into 10-second trials, demeaned, detrended, and band-stop filtered at 50 Hz and
harmonics (to filter out line noise). Data were then visually inspected for artifacts, and 10-second
trials with artifacts spanning multiple channels were removed.

C57/bl6 mouse 5-MeO-DMT data

Previously published (Riga et al., 2018) LFP recordings from five male, 9-16 week-old C57/bl6 mice
(wild-type) following administration of either saline or 5-MeO-DMT were provided by M.S.R. and
L.L.P. and re-analyzed here. For electrode implantation, animals were first pretreated with 0.05
mg/kg s.c of the analgesic buprenorphine. Thirty minutes later, anesthetic unconsciousness was
induced with 2.5% isoflurane and maintained with 1.5% isoflurane. Three stabilizer screws and a
ground screw were implanted, and Plastics One electrodes (Virgina, USA) were placed in medial
prefrontal cortex (mPFC) and mediodorsal nucleus of the thalamus (MD), as well as other cortical
areas not analyzed here (as they are not directly connected to the MD nucleus). A prophylactic
antibiotic (Enrofloxacina 7.5 mg/kg s.c.) and the analgesic buprenorphine (0.05 mg/kg s.c.) were
administered for 2-3 days after surgery. LFP recordings from mPFC and MD were collected at a
sampling rate of 3,200 Hz using a digital Lynx system and Cheetah software (Neuralynx, Montana,
USA) in a 40 x 40 cm open field, and bandpass filtered between 0.1 and 100 Hz. On the record-
ing day, first 10 ml/kg saline was injected subcutaneously, and 30 min later, saline + 5-MeO-DMT
(5 mg/kg) was injected subcutaneously. LFPs were recorded for 30 minutes for each condition.
The first five minutes after each injection were excluded from the analysis, in light of prior pharma-
cokinetic and behavioral studies on 5-MeO-DMT in mice (Halberstadt et al., 2011; Shen et al., 2011,
van den Buuse et al., 2011). Data were splitinto 10-second trials, demeaned, detrended, and band-
stop filtered at 50 Hz and harmonics (to filter out line noise). Data were then visually inspected for
artifacts, and 10-second trials with artifacts spanning multiple channels were removed.

Estimating chaoticity of neural electrodynamics
To estimate the chaoticity of real low-frequency neural electrodynamics, we used the modified 0-1
chaos test. The 0-1 test for chaos was initially developed by Gottwald and Melbourne (Gottwald
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and Melbourne, 2004), who later modified the test so that it was more robust to measurement
noise (Gottwald and Melbourne, 2005). Dawes and Freeland modified the test further, so that it
could more accurately distinguish between chaotic dynamics on the one hand, and strange non-
chaotic dynamics on the other (Dawes and Freeland, 2008). This final modified 0-1 test involves
taking a univariate time-series ¢, and using it to drive the following two-dimensional system:

p(n+ 1) = p(n) + ¢(n)coscn
q(n+ 1) = q(n) + ¢(n)sincn
where ¢ is a random value bounded between 0 and 2z. For a given ¢, the solution to Eq. 12 yields:

(12)

pe(m) =Y p(j)cosje

. (13)
g.(m) =Y ¢(j)sinje

j=1

If the time-series ¢ is generated by a periodic system, the motion of p and q is bounded, whereas
if ¢ is generated by a chaotic system, p and q display asymptotic Brownian motion. This can be
quantified by assessing the growth rate of the time-averaged mean square displacement of p and
g, plus a noise term 5, proposed by Dawes and Freeland (Dawes and Freeland, 2008):

N
1 . . ; ;
M) = = D12 +m) = pDF +1a.G +n) = 4. ()F) +om,. (14)
j=1
where 7, is a uniformly distributed random variable between [—%, %] and ¢ is the noise level. The
growth rate of the mean squared displacement can be assessed using a correlation coefficient:

K, = corr(n, M (n)) (15)

K is computed for 100 unique values of ¢ sampled randomly between 0 and 2z. The final K-statistic
is the median K across all values of c¢. The K-statistic will approach 1 for chaotic systems and will
approach 0 for periodic systems (Gottwald and Melbourne, 2004, 2005, 2009, 2008; Dawes and
Freeland, 2008; Toker et al., 2020). Finally, note that the modified test includes a parameter o,
which controls the level of added noise in Eq. 14. Based on our prior work examining the effects
of different values of ¢ on the test's classification performance (Toker et al., 2020), we set ¢ = 0.5.

The 0-1 chaos test is designed to estimate chaoticity from low-noise signals recorded from pre-
dominantly deterministic, discrete-time systems. As such, steps must generally be taken to reduce
measurement noise as much as possible, to determine that a signal is not generated by a predomi-
nantly stochastic system, and to discretize in time potentially oversampled signals from continuous
time systems. Following our prior work (Toker et al., 2022), we effectively cleaned up measurement
noise by only applying the test to low-frequency components of neural electrophysiology record-
ings. Low-frequency activity was extracted by band-pass filtering LFPs between 1.625 and 13 Hz
(matching the frequency range in our analysis of spectral information transfer). Band-pass filter-
ing was performed using EEGLAB's two-way least-squares finite impulse response filter, with the
filter order set to 23 . 2 for an attenuation of 75 dB at the higher-frequency transition band of
13 Hz, following (Harris, 2022). However, we note that in our prior work, which only investigated
the chaoticity of cortical electrodynamics slower than 6 Hz, we used the Fitting Oscillations And
One Over F or “FOOOF" algorithm to identify channel-specific slow oscillation frequencies. Follow-
ing (Armand Eyebe Fouda et al., 2014; Toker et al., 2022), all signals were time discretized before
application of the 0-1 chaos test by taking only all local minima and maxima, where a local ex-
tremum was defined as having a prominence greater than 10% of the maximum amplitude of a
given signal. For a given 10-second window of data, the estimated chaoticity of slow thalamocorti-
cal electrodynamics was set as the median of such band-pass filtered and time-discretized signals
across all available cortical and thalamic channels. Finally, we used our previously described test
of stochasticity (Toker et al., 2020, 2022) to ensure that our neural electrophysiology recordings
were produced by predominantly deterministic dynamics (Supplementary File 5).
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Calculating directed information flow

Because neural information flow is likely frequency-multiplexed, we used a spectral measure of
information transfer, which was recently developed by Pinzuti et al. (2020). The measure is based
on transfer entropy, an information-theoretic estimate of the amount of information transferred
from a source variable X to an influenced variable Y. Transfer entropy over a time-delay L can be
formulated as the conditional mutual information between X and Y, where the condition is the
history of Y:

Ty oy =1 Xy |Y1-r) (16)

Effectively, this is a measure of the degree to which uncertainty about the future of Y is reduced by
knowing the history of X, given the history of Y. In our implementation of the spectral information
transfer algorithm (described further below), we used the Java Information Dynamics Toolkit (JIDT)
(Lizier, 2014) to implement the method of Kraskov and colleagues (Kraskov et al., 2004) for model-
free kernel estimation of probability distributions, which uses Kozachenko-Leonenko estimators of
log-probabilities via nearest-neighbor counting (Kozachenko and Leonenko, 1987), a fixed number
K of nearest neighbors, and bias correction, with the embedded Schrieber history length k = 1. We
scanned from 0.002 ms (one time-step at a sampling rate of 500 Hz) to 40 ms (20 time-steps at a
sampling rate of 500 Hz) and picked a time-lag L for each individual time-series pair that maximized
the estimated transfer entropy between those time-series (following Wollstadt et al. (2017); Wibral
et al. (2013)).

The innovation described by Pinzuti and colleagues, which enables the estimation of informa-
tion transfer at particular sending and receiving frequency bands, is to use the invertible maximum
overlap discrete wavelet transform (MODWT) to create surrogate data in which dynamics in either
the sending or receiving signal are randomized (in our case, using the Iterative Amplitude Adjust-
ment Fourier Transform) only within a particular frequency range. The use of such surrogate sig-
nals allows both for the estimation of the strength of spectrally resolved information transfer (by
assessing, on average, how much transfer entropy is lost when dynamics in a certain frequency
range of the sender and receiver are randomized), as well as the statistical significance of spectral
information transfer (by quantifying the percentage of surrogates which result in estimated trans-
fer entropy greater than the estimated transfer entropy between the original sender and receiver
signals).

As described by Pinzuti and colleagues, this approach can be used to determine which fre-
qguency bands are significant channels for the sending or receiving of information. They moreover
describe a variant of their approach, which they title the ‘swap-out swap-out’ or SOSO algorithm,
which enables the determination of the specific frequency bands from which information is sent
from one channel and the frequency bands from which that same information is then received
by the other channel. We used this algorithm in all spectral analyses of information transfer in
this paper. In order to maximize the overlap of the frequency bands assessed by the SOSO algo-
rithm (which are determined by successive halves of the sampling rate) with those corresponding
to canonical neural oscillations, we resampled all data for our information transfer analyses to a
sampling frequency of 416 Hz. In our initial exploratory analysis in Fig. 2, we used the SOSO al-
gorithm with only 10 surrogates (which is insufficient for determination of statistical significance)
to estimate the strenth of information transfer from and to all possible pairs of frequency bands
between the cortex and thalamus during waking states. In all subsequent figures and in Table
1, we used the SOSO algorithm with 100 surrogates, which is sufficient for the determination of
statistical significance, and which additionally provides more reliable estimates of the strength of
spectrally resolved information transfer.
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Data Availability

The source data underlying Figures 2-4 and 8, and code necessary to perform all statistical analy-
ses, information transfer analyses, and mean-field simulations will be available on Figshare upon
publication of this manuscript. The raw electrophysiology recordings from Long-Evans rats are
available at the Harvard Dataverse Network, with the following DOI: doi:10.7910/DVN/29366.
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Fig. 3-figure supplement 1: We here plot changes to (non-spectrally resolved) transfer entropy from
cortex to thalamus across brain states. As described in our methods, we used the Java Information
Dynamics Toolkit (JIDT) to implement the method of Kraskov et al for model-free kernel estima-
tion of probability distributions, which uses Kozachenko—-Leonenko estimators of log-probabilities
via nearest-neighbor counting, a fixed number K of nearest neighbors, and bias correction, with
the embedded Schrieber history length £ = 1. We also picked a time-lag for each individual time-
series pair that maximized the estimated transfer entropy between those time-series. We found no
consistent relationship between corticothalamic transfer entropy and consciousness. *=p<0.05,
*p<0.01, ***p<0.001, significance assessed using a one-tailed Wilcoxon signed-rank test.
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Fig. 3-figure supplement 2: We evaluated cross-frequency phase-amplitude coupling from cortex
to thalamus using the modulation index (MI). Specifically, we evaluated coupling between the
phase of the low-frequency (1.625-13 Hz) activity and the amplitude of high-frequency (52-104
Hz) activity (matching the frequency ranges analyzed in the main body of our paper). Note that the
MI is a bivariate measure, meaning that it is calculated between pairs of univariate channels. As
such, for our human ET patient data, which consisted of multiple cortical and thalamic channels,
we calculated the MI from all cortical channels to all thalamic channels, and set the corticothalamic
MI as the median across all resulting values. As was the case with transfer entropy, we found no
consistent relationship between cross-frequency corticothalamic phase-amplitude coupling (across
the frequencies studied in this paper) and consciousness. *=p<0.05, **p<0.01, ***p<0.001,
significance assessed using a one-tailed Wilcoxon signed-rank test.
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Fig. 5-figure supplement 1: We here plot changes to (non-spectrally resolved) transfer entropy
from thalamus to cortex across brain states, calculated using the same methods described in Fig.
3-figure supplement 1. We again found no consistent relationship between thalamocortical transfer
entropy and consciousness. *=p<0.05, **p<0.01, ***p<0.001, significance assessed using a one-
tailed Wilcoxon signed-rank test.
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Fig. 5-figure supplement 2: We analyzed cross-frequency phase-amplitude coupling from thala-
mus to cortex using the same methods described in Fig. 1-figure supplement 2, and again ob-
served no consistent relationship between cross-frequency thalamocortical phase-amplitude cou-
pling and consciousness. *=p<0.05, **p<0.01, ***p<0.001, significance assessed using a one-
tailed Wilcoxon signed-rank test.
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"Awake" Parameter Optimization

Step 1: Use Bayesian optimization for 150 generations across
50 parallel runs, allowing model parameters to vary between
0.5x and 2x their values in the original van Albada and Robinson
model (which were selected for biological realism), to minimize
an objective function set up to 1) generate low-amplitude,
weakly chaotic cortical LFPs, 2) mean firing rates within
physiological bounds for each brain region, 3) cross-frequency
bidirectional cortical-thalamic information transfer, and 4) a
positive correlation between cortical firing rates and cortical LFP
high gamma power

the 25 runs that best minimized the objective

l Selected the best parameter configuration from
function as the starting population for Step 2

Step 2: Using a genetic algorithm for 150 generations across
50 parallel runs to further minimize the same objective function
as Step 1

Selected the final population from the run which
produced a cortical LFP with the most realistic
power spectrum, and which exhibited statistically
significant cross-frequency, bidirectional cortical-
thalamic information transfer as the starting
population for Step 4

Step 3: Using a genetic algorithm for 50 generations across 50
parallel runs, minimize an objective function set up to 1) tune
cortical LFPs closer to edge-of-chaos criticality while remaining
within the chaotic phase, 2) maintain mean firing rates within
physiological bounds for each brain region, and 3) maintain a
positive correlation between cortical firing rates and cortical LFP
high gamma power

Of the resulting parameter configurations which
yielded statistically significant bidirectional,
cross-frequency information transfer between
the thalamic and cortical LFPs, selected the one
that best minimized the objective function in
Step 3 as the "awake" parameters

— T~

"Anesthesia" Parameter "Seizure" Parameter
Optimization Optimization

Fig. 6-figure supplement 1: We here depict the workflow for the use of Bayesian-genetic optimiza-
tion to derive model parameters for the awake state of the mean-field model of the electrodynamics
of the basal ganglia-thalamo-cortical system.
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"Anesthesia" Parameter Optimization

Anesthesia Step 1: Using a genetic algorithm for 150
generations across 50 parallel runs, minimize an objective
function set up to 1) increase cortical LFP amplitude to match
empirical propofol data, 2) increase delta power to match
empirical propofol data, 3) increase slow wave power to match
empirical propofol data, 4) minimize the average cortical firing
rate, and 5) maximize the chaoticity of the cortical LFP

Of the resulting parameter configurations, selected
the two which produced cortical LFPs with a largest
Lyapunov exponent greater than 1.3, a reduction

in mean cortical firing rate, a cortical LFP with
Lempel-Ziv complexity less than 1, and visually
resembled real anesthesia recordings as the starting
population for Anesthesia Step 2

Anesthesia Step 2: Using a genetic algorithm for 50
generations across 50 parallel runs, minimize an objective

function set up to 1) ensure that the anesthesia parameters
produce consistently chaotic dynamics within 10% of a full
anesthetic "dose," and 2) maintain a low-firing rate, low
complexity, low high-frequency power, and high low-frequency
power

N

Selected the two resulting parameter configurations
which produced the most chaotic cortical LFP
dynamics within +/- 10% of the full anesthetic
"dose" as the starting population for Anesthesia Step

3
Anesthesia Step 3: Using a genetic algorithm for 50
generations across 50 parallel runs, minimize the same

objective function as in Anesthesia Step 2, but averaged across
an anesthetic "dose" range of 25%, 50%, 75%, 100%, and
125%, with a random 10% jitter around each dose in each
generation

N

Selected the 25 resulting parameter configurations
which produced the lowest error in the objective
function as the starting population for Anesthesia

Step 4
Anesthesia Step 4: Using a genetic algorithm for 50
generations across 50 parallel runs, minimize the same
objective function as in Anesthesia Steps 2-3 for the 100%

anesthetic "dose" (with 10% jitter around the dose) but
increasing the error for reducing high-frequency power, and
simply ensure that all anesthetic "doses" under 75% remain
within the chaotic phase

Selected the resulting parameter configuration
which produced the most chaotic cortical LFP

with the lowest high-frequency power as the starting
population for Anesthesia Step 5

Anesthesia Step 5: Using a genetic algorithm for 50
generations across 50 parallel runs, minimize the same
objective function as in Anesthesia Step 4, but adding an error
term to increase the low-frequency power of the thalamic LFP

Selected the resulting parameter configuration
which produced the most chaotic cortical LFP
with the lowest high-frequency cortical LFP power

Anesthesia Step 5: Using a genetic algorithm for 150
generations across 50 parallel runs, minimize the same
objective function as in Anesthesia Step 4, but adding an error
term to increase the low-frequency power and decrease the
high-frequency power of pallidal LFPs

N N N

Selected the parameter configuration which
produced overall the largest increase in thalamic
LFP amplitude, thalamic LFP delta power, and
cortical LFP delta power, as well as the largest
drop in the LZ-complexity of both cortical and
thalamic LFPs, the largest reduction in cortical
firing rate, and the largest reduction in cortical
high-frequency LFP power as the "anesthesia"
parameters

Fig. 6-figure supplement 2: We here depict the workflow for the use of genetic optimization to
derive model parameters for the anesthesia state of the mean-field model, starting from the param-
eters for the wake state of the mean-field model.
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"Seizure" Parameter Optimization

Seizure Step 1: Using a genetic algorithm for 150
generations (or until error falls under 0.01) across 50 parallel
runs, minimize an objective function set up to 1) minimize the
largest Lyapunov exponent of the cortical LFP 2) minimize the
Lempel-Ziv complexity of the cortical LFPs and 3) maximize the
correlation between raw the cortical LFP and the cortical LFP
bandpass filtered between 2 and 8 Hz (to ensure the cortical
LFP is dominated by oscillations in this frequency range, which
is typical for spike-and-wave seizures across mammalian
species)

Of the resulting parameter configurations, selected one
which produced a cortical LFP resembling a roughly
3-Hz spike-and-wave seizure

Seizure Step 2: Using a genetic algorithm for 50 generations
across 50 parallel runs, minimize an objective function set up to
1) ensure that cortical LFP dynamics at 25%, 50%, and 75% of
the full seizure "dose" (with 5% jitter around each "dose" in each
run) do not produce stable fixed point dynamics, and 2) ensure
that the 100% seizure "dose" produces a strongly periodic, low-
complexity cortical LFP dominated by 2-8 Hz oscillations, and
whose power spectrum maintains a minimal Euclidian distance
from the power spectrum of the 3 Hz spike-and-wave cortical
LFP generated by the parameter configuratoin selected in
Seizure Step 1

Selected a paramater configuration which produced no
stable fixed points for any seizure "dose," and which
could produce both 3-4 spike-and-wave dynamics and
6-8 spike-and-wave dynamics as a function of "dose" as
the "seizure" parameters

Fig. 6-figure supplement 3: We here show the workflow for the use of genetic optimization to
derive model parameters for the generalized spike-and-wave seizure state of the mean-field model,
starting from the parameters for the wake state of the model.
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Fig. 7-figure supplement 1: The power spectrum of our simulated “awake” cortical local field po-
tential (LFP), which was generated by optimizing the parameters of a mean-field model of the basal
ganglia-thalamo-cortical system using machine learning (see Methods). Our simulated cortical
LFP produces spectral peaks at frequencies precisely corresponding to canonical cortical electro-
dynamic oscillations, including 6 waves (1-4 Hz), ¢ waves (4-8 Hz), o waves (8-13 Hz), 5 waves
(15-30 Hz), and low-y waves (35-60 Hz).
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Fig. 7-figure supplement 2: Compared to the power spectrum of our simulated awake cortical LFP,
the power spectrum of our simulated anesthesia LFP exhibited increased low-frequency power and
decreased high-frequency power. Here, the anesthesia simulation corresponds to the 100% “dose,”
which is the set of parameters arrived at through our genetic optimization.
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Fig. 7-figure supplement 3: Our mean-field model successfully recapitulated several previously
established features of anesthesia, including a reduction in cortical firing rate (A), a loss of the
information-richness of cortical LFPs as indexed by Lempel-Ziv complexity (B), a rise in the
spectral power of delta (1-4 Hz) oscillations in cortical LFPs (C), strongly chaotic neural electro-
dynamics (D - note that the dashed red line at LLE=0 corresponds to edge-of-chaos criticality), and
a steepening spectral slope of cortical electrodynamics (here measured by fitting a line to the log
spectral density of the simulated cortical LFP between 30 and 45 Hz) (E). Note that we here plot
only up to 100% anesthesia “dose,” which is the set of parameters arrived at through our genetic
optimization. At higher “doses” (see Methods), dynamics switch to stochastic burst suppression
followed by isoelectricity with a complete cessation of firing (see Figure 5 for example LFP traces
from these higher-dose states).
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Fig. 7-figure supplement 4: Though this effect was not explicitly selected for in our parameter
optimization, we found that our simulated anesthesia state resulted in prolonged inhibitory postsy-
naptic potentials (IPSPs) at excitatory cells in both the cortex and thalamic relay nucleus relative
to the waking state of the model, owing to changes in synaptodendritic rise and decay rates (Tables
S1, S3).
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Fig. 7-figure supplement 5: Our mean-field model successfully recapitulated several previously
established features of generalized seizures, including a large rise in cortical firing rate (A), a
loss of the information-richness of cortical LFPs as indexed by Lempel-Ziv complexity (B), and
strongly periodic neural electrodynamics (C - note that the dashed red line at LLE=0 corresponds
to edge-of-chaos criticality).
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