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Abstract Consciousness is thought to be regulated by bidirectional information transfer29

between the cortex and thalamus, but the nature of this bidirectional communication - and its30

possible disruption in unconsciousness - remains poorly understood. Here, we present two main31

findings elucidating mechanisms of corticothalamic information transfer during conscious states.32

First, we identify a highly preserved spectral channel of cortical-thalamic communication which is33

present during conscious states but which is diminished during the loss of consciousness and34

enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats,35

information sent from either the cortex or thalamus via �/�/� waves (∼1.5-13 Hz) is consistently36

encoded by the other brain region by high 
 waves (∼50-100 Hz); moroever, unconsciousness37

induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this38

cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine39

(5-MeO-DMT) enhances this interregional communication. Second, we leverage numerical40
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simulations and neural electrophysiology recordings from the thalamus and cortex of human41

patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic42

information transfer are mediated by excursions of low-frequency thalamocortical43

electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability44

to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and45

further offer a novel, mathematically well-defined framework to explain the disruption to46

thalamic-cortical information transfer during unconscious states.47

48

Introduction49

Mounting evidence suggests that the maintenance of cortical information processing during con-50

scious states requires preserved communication between the cortex and several key subcortical51

structures (Koch et al., 2016). Among the subcortical structures that have been implicated in large-52

scale neural information processing during normal waking states, the thalamus stands out as per-53

haps themost important (Shine, 2021). This ismost clearly suggested by its anatomy: the first-order54

nuclei of thalamus are the major anatomical bridges across which sensory information is trans-55

ferred from peripheral sources to the cortex, and the presence of extensive connections between56

higher-order thalamic nuclei and diverse cortical regions suggests that these nuclei are among the57

key bridges through which information is transferred from one part of the cortex to another (Sher-58

man, 2007, 2016; Shine, 2021) - a hypothesis which has found support from diverse neuroimaging59

studies (Saalmann et al., 2012; Theyel et al., 2010; Hwang et al., 2017; Müller et al., 2020). It is60

therefore unsurprising that unconsciousness, which consistently coincides with reduced cortical61

information flow (Imas et al., 2005; Toker et al., 2022; Sanjari et al., 2021; Schroeder et al., 2016;62

Hudetz et al., 2020; Ku et al., 2011; Lee et al., 2013;Mäki-Marttunen et al., 2013; Chen et al., 2020),63

also appears to consistently coincide with disrupted communication between the cortex and tha-64

lamus (Zheng et al., 2017; White and Alkire, 2003; Malekmohammadi et al., 2019; Redinbaugh65

et al., 2020; Bastos et al., 2021; Afrasiabi et al., 2021). Identifying the mechanisms supporting66

cortical-thalamic communication, and how this communication may be disrupted during uncon-67

scious states, is therefore crucial both to our basic understanding of large-scale neural information68

processing, as well as our clinical grasp on conditions in which cortical-subcortical communication69

appears to be disrupted, such as in coma and vegetative states (Monti et al., 2010).70

One unexploredmechanismwhichmay support bidirectional communication between the cor-71

tex and thalamus during conscious states is criticality. Criticality, or a critical point, refers to the72

transition between different phases of a system, such as different phases of matter (e.g. solid73

versus liquid) or different phases of temporal dynamics (e.g. asynchronous versus synchronous74

dynamics, or laminar versus turbulent airflow). It is by now well-established that critical and near-75

critical systems tend to have a high capacity for transmitting and encoding information (Langton,76

1990; Crutchfield and Young, 1988; Boedecker et al., 2012; Bertschinger and Natschläger, 2004). It77

is thus unsurprising that a diverse array of analytical tools, applied to a diverse array of neurophys-78

iological data recorded from a diverse array of brain states, overwhelmingly support the hypothe-79

sis that the dynamics of the waking, healthy brain operate near one or several such critical points80

(O’Byrne and Jerbi, 2022). In line with this broad evidence of neural criticality during waking states,81

our recent work (Toker et al., 2022) showed that slow cortical electrodynamics during conscious82

states specifically operate near a phase transition known as the edge-of-chaos critical point, or the83

transition between periodicity and chaos, and that this form of criticality supports the information-84

richness of waking cortical electrodynamics. We also showed that slow cortical electrodynamics85

transition away from this critical point during anesthesia, generalized seizures, and coma, which86

diminishes the information-richness of cortical activity, and transitions closer to this critical point87

following the administration of the serotonergic hallucinogen lysergic acid diethylamide, which88

enhances the information-richness of cortical activity (Toker et al., 2022). These results accord89
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Figure 1. We hypothesize that the strength of bidirectional information transfer between the cortex and
thalamus should be highest during waking brain states, owing to the proximity of slow neural
electrodynamics to edge-of-chaos criticality during these states. We also predict that as slow neural
electrodynamics transition away from this critical point during unconscious states, either into the chaotic
phase or into the periodic phase, the strength of cortical-thalamic information transfer should be diminished.
Adapted from (Toker et al., 2022).

with the broad empirical evidence suggesting that cortical activity transitions away from criticality90

during unconscious states and transition closer to criticality during psychedelic states (Zimmern,91

2020). Therefore, it is straightforward to predict that the proximity of slow neural electrodynamics92

to the edge-of-chaos critical point might similarly modulate the strength of bidirectional commu-93

nication between the cortex and thalamus during normal waking states, unconscious states, and94

psychedelic states (Fig. 1).95

Here, in order to better characterize the mechanisms of cortical-thalamic communication and96

how those mechanisms might be modulated by the proximity of neural electrodynamics to edge-97

of-chaos criticality, we first applied a novel information-theoretic measure of spectrally resolved98

information transfer to concurrent thalamic and cortical electric field recordings across species, in-99

cluding human essential tremor (ET) patients, Long-Evans rats, Genetic Absence Epilepsy Rats from100

Strasbourg (GAERS rats), and c57/bl6 mice. We identified a highly preserved pattern of low-to-high101

frequency bidirectional cortical-thalamic information transfer present across nearly all patients102

and animals during conscious states. Specifically, we found that information transmitted at low103

frequencies (1.625-13 Hz) fromone brain structure is consistently encoded by the other brain struc-104

ture at high frequencies (∼50-100 Hz). We also present evidence that this cross-frequency cortical-105

thalamic information transfer is disruptedduring unconsciousness inducedbyboth 
-Aminobutyric106

acidmediated (GABAergic) anesthetics and generalized spike-and-wave seizures, and enhanced by107

the serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine, or 5-MeO-DMT, a potent dual108

agonist of 5-HT1A and 5-HT2A receptors. Finally, drawing both on our analysis of our electrophysiol-109

ogy recordings and on numerical simulations using a novel mean-field model of the basal ganglia-110

thalamo-cortical system, we found that the strength of this cross-frequency cortical-thalamic infor-111

mation transfer across brain states is likely mediated by transitions of low-frequency thalamocorti-112

cal electrodynamics toward or away from edge-of-chaos criticality, as predicted. To our knowledge,113

this work is the first to show that this precise form of criticality supports interregional communica-114

tion in the brain.115
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Results116

Low-to-high-frequency information transfer between the thalamus and cortex is117

highly preserved across humans, rats, and mice in waking states118

Because long-range neural communication is likely frequency-multiplexed, with distinct long-range119

information streams encoded by distinct (and interacting) frequencies of oscillatry neural electro-120

dynamics (Akam and Kullmann, 2014; Panzeri et al., 2010; Chao et al., 2018; Fontolan et al., 2014;121

Malekmohammadi et al., 2015), we first evaluated patterns of thalamic-cortical communication122

during conscious states using a recently developed, spectrally resolved measure of directed infor-123

mation transfer which is bothmodel-free and sensitive to delayed interactions (Pinzuti et al., 2020).124

Themeasure evaluates the strength and significance of frequency-specific information transfer us-125

ing surrogate time-series, which enable the estimation of howmanybits of transfer entropy are lost126

when dynamics only within certain frequency ranges are randomized (see Methods). We applied127

this spectral information transfer measure to neural extracellular electric fields recorded simulta-128

neously from the ventral intermediate (Vim) thalamic nucleus and ipsilateral sensorimotor cortex129

of human essential (ET) patients; the ventral posterior thalamic nucleus and ipsilateral somatosen-130

sory cortex of Long-Evans rats; the mediodorsal thalamic nucleus and themedial prefrontal cortex131

of C57/BL6 mice; and the ventral posterior thalamic nucleus and contralateral somatosensory cor-132

tex of GAERS rats. Note that with the exception of the recording locations in the GAERS rats, all of133

these thalamic nuclei share direct reciprocal anatomical connections with the cortical areas from134

which signals were simultaneously recorded. Although the recording sites in the GAERS rats are135

not directly connected, the ventral posterior thalamic nucleus communicates indirectly with the136

contralateral somatosensory cortex via its reciprocal connectivity with the ipsilateral somatosen-137

sory cortex, which directly projects to the contralateral somatosesory cortex (Petreanu et al., 2007;138

Wise and Jones, 1976; Olavarria et al., 1984).139

After an initial exploratory sweep of all possible spectral patterns of information transfer be-140

tween the cortex and thalamus across all patients/animals, channels, and recording windows,141

which did not use sufficient surrogate time-series data to evaluate statistical significance of infor-142

mation transfer across any given pair of frequency bands (owing to the prohibitive computational143

cost of doing so for all possible spectral patterns of information transfer) (Fig. 2), we identified144

a possible spectral channel of cortical-thalamic communication present across all species and ge-145

netic strains during conscious states: namely, information sent from either the cortex or thalamus146

in the low-frequency range (1.625-13 Hz) seemed to be consistently encoded by the other brain147

region in the high 
 range (52-104 Hz Hz) (note that these exact frequency ranges are determined148

by successive halves of the sampling frequency, as this method is based onwavelet decomposition149

- see Methods). To confirm this finding, we re-ran this spectral information transfer analysis along150

just these frequency bands, but using sufficient surrogates (100) to evaluate statistical significance,151

and found that there was indeed significant low-to-high frequency bidirectional cortical-thalamic152

information transfer across nearly all subjects during conscious states (Table 1).153

Bidirectional cross-frequency cortical-thalamic information transfer is disrupted154

in unconsciosuness and enhanced during psychedelic states155

To test whether this low-to-high frequency cortical-thalamic communication is disrupted during156

unconscious states and enhanced during psychedelic states (see Introduction), we calculated the157

strength of low-to-high-frequency bidirectional information intransfer following intravenous ad-158

ministration of propofol anesthesia in human ET patients (varying doses - see Methods) and Long-159

Evans rats (plasma propofol concentration of 12 �g/ml); during spontaneous generalized spike-160

and-wave seizures in GAERS rats; and following subcutaneous injection of saline + 5-MeO-DMT (5161

mg/kg) in C57/BL6mice. As predicted, we found that cross-frequency information transfer from the162

cortex to the thalamus was disrupted during unconscious states and enhanced during psychedelic163

states. Specifically, propofol diminished low-frequency to high-frequency information transfer164
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Table 1. Following our initial exploratory sweep of all possible spectral patterns of cortical-thalamic
communication (Fig. 2), we used surrogate testing to evaluate whether there was significant information
transfer from slow (1.625-13 Hz) to fast (52-104 Hz) electrodynamics between anatomically connected
sub-regions of the thalamus and cortex (see Methods). For each 10-second window of activity, surrogate
testing produced a single p-value reflecting the significance of cross-frequency information transfer in each
direction (cortico-thalamic and thalamo-cortical). Overall statistical significance, across 10-second windows
within each subject, was assessed by evaluating the harmonic mean p̊ (Wilson, 2019) of all single-trial p-values.
In line with our initial exploratory sweep (Fig. 2), we found that there was significant low-to-high frequency
bidirectional information transfer between the thalamus and cortex in nearly every species, strain, and
subject.

Cortex to Thalamus Thalamus to Cortex
Human ET Patient 1 p̊=0.0371 p̊=0.0099
Human ET Patient 2 p̊=0.0099 p̊=0.0099
Human ET Patient 3 p̊=0.0152 p̊=0.0099
Human ET Patient 4 p̊=0.0099 p̊=0.0099
Human ET Patient 5 p̊=0.0099 p̊=0.0099
Human ET Patient 6 p̊=0.0099 p̊=0.0099
Human ET Patient 7 p̊=0.0099 p̊=0.0099
Human ET Patient 8 p̊=0.0099 p̊=0.0099
Human ET Patient 9 p̊=0.0099 p̊=0.0099
Human ET Patient 10 p̊=0.0099 p̊=0.0099
Long-Evans Rat 1 p̊=0.0542 p̊=0.0179
Long-Evans Rat 2 p̊=0.0278 p̊=0.0328
Long-Evans Rat 3 p̊=0.024 p̊=0.0338
Long-Evans Rat 4 p̊=0.0375 p̊=0.0396
Long-Evans Rat 5 p̊=0.0257 p̊=0.0338
Long-Evans Rat 6 p̊=0.0407 p̊=0.0318
Long-Evans Rat 7 p̊=0.0234 p̊=0.0316
Long-Evans Rat 8 p̊=0.0225 p̊=0.0151
Long-Evans Rat 9 p̊=0.0792 p̊=0.1683
GAERS Rat 1 p̊=0.031 p̊=0.0238
GAERS Rat 2 p̊=0.0349 p̊=0.0207
GAERS Rat 3 p̊=0.0352 p̊=0.0237
GAERS Rat 4 p̊=0.0313 p̊=0.0274
GAERS Rat 5 p̊=0.0364 p̊=0.0319
GAERS Rat 6 p̊=0.0526 p̊=0.0309
GAERS Rat 7 p̊=0.0304 p̊=0.0266
C57/BL6 Mouse 1 p̊=0.0265 p̊=0.023
C57/BL6 Mouse 2 p̊=0.0262 p̊=0.0217
C57/BL6 Mouse 3 p̊=0.0281 p̊=0.0214
C57/BL6 Mouse 4 p̊=0.0461 p̊=0.0357
C57/BL6 Mouse 5 p̊=0.0356 p̊=0.0303
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Figure 2. In our initial exploratory sweep of spectral patterns of directed cortical-thalamic information
transfer during conscious states, we identified a prominent motif of low-to-high frequency bidirectional
communication that was present during waking states in nearly all subjects and species. We first estimated
the (z-scored) strengths of information transfer across every possible pair of frequency bands, for every
10-second trial, and for every subject during waking states. We then took the average cross-trial result for
every subject. Here, we plotted the mode across subjects’ cross-trial averages in order to reveal the spectral
patterns of information transfer that occurred most frequently across subjects during conscious states. For
cortico-thalamic information transfer (left), we found that information sent from the cortex across all
frequencies is frequently received by the thalamus in the high 
 range. For thalamo-cortical information
transfer (middle), we observed a prominent pattern of low-to-high frequency information transfer. When
looking at the mode across all cross-trial averages of both cortico-thalamic and thalamo-cortical information
transfer during conscious states (right), there seems to be a consistent channel of communication from the
low-frequency range (1.625-13 Hz) to the high-frequency range (∼50-100 Hz) in both directions
(cortico-thalamic and thalamo-cortical). We therefore chose to study this cross-frequency pattern of
information transfer in our subsequent analyses of waking, GABAergic anesthesia, generalized
spike-and-wave seizure, and psychedelic states.

from the cortex to the thalamus in both human ET patients (p=0.002, one-tailed Wilcoxon signed-165

rank test comparing patients’ cross-trial medians during waking states versus propofol states) (Fig.166

3A) and Long-Evans rats (p=0.002) (Fig. 3B). Similarly, cross-frequency corticothalamic information167

transferwas reducedduring generalized spike-and-wave seizures inGAERS rats (p=0.0078) (Fig. 3C).168

Conversely, 5-MeO-DMT significantly increased the strength of low-to-high frequency corticothala-169

mic information transfer in C57/BL6 mice (p=0.0312) (Fig. 3D), despite the fact that this brain state,170

similar to anesthesia, is marked by reduced high-frequency activity and increased low-frequency171

activity in both thalamus and cortex (Fig. 4); this suggests that these observed changes to cross-172

frequency communication are independent of the spectral content of thalamocortical activity. The173

same overall pattern was seen with low-to-high frequency information transfer from the thalamus174

to the cortex. Specifically, we found that the strength cross-frequency communication from the175

thalamus to the cortex was significantly diminished during propofol anesthesia in both human176

ET patients (p=0.002) (Fig. 5A) and Long-Evans rats (p=0.0098) (Fig. 5B). Similarly, the strength of177

cross-frequency thalamocortical information transfer was significantly reduced in GAERS rats dur-178

ing generalized spike-and-wave seizures (p=0.0078) (Fig. 5C), but did not change during psychedelic179

states in C57/BL6 mice (p=0.3125) (Fig. 5D).180

To confirm that the observed results reflect a breakdown in thalamic-cortical communication181

rather than changes in the spectral content of thalamocortical electrodynamics, we performed182

a permutation-based nonparametric analysis of covariance, which revealed significant variance183

across brain states in the strength of both cross-frequency cortico-thalamic (p=0.0001) and thalamo-184

cortical (p=0.0007) information transfer, which could not be explained by spectral changes at ei-185

ther low (1.625-13 Hz) or high (52-104 Hz) frequencies (Supplementary File 1). We also confirmed186

that these observed changes to cross-frequency communication were not driven by changes in187

non-spectrally resolved information transfer between the thalamus and cortex. Specifically, we188

found that (non-spectrally resolved) transfer entropy between these two brain regions did not vary189

consistently across different brain states, instead decreasing significantly during unconsciousness190

only in human ET patients, and increasing significantly during propofol anesthesia in Long-Evans191

Rats, generalized spike-and-wave seizures in GAERS rats, and psychedelic states in C57/BL6 mice192
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Figure 3. Using a spectrally resolved measure of directed information transfer (see Methods), we found that
the strength of information transferred from cortical �/�/� waves (∼1.5-13 Hz) to thalamic high 
 waves
(∼50-100 Hz) is significantly reduced during unconsciousness induced by propofol anesthesia (A-B) and
generalized spike-and-wave seizures (C). Conversely, the strength of this low-to-high frequency
corticothalamic information transfer is significantly increased during psychedelic states induced by
5-MeO-DMT (D). *=p<0.05, **p<0.01, significance assessed using a one-tailed Wilcoxon signed-rank test.

from both cortex to thalamus (Figure 3-figure supplement 1) and thalamus to cortex (Figure 5-193

figure supplement 1). We also found that the observed results were not driven by changes to the194

strength of phase-amplitude coupling between these regions. Specifically, we found that coupling195

between the phase of low-frequency (1.625-13 Hz) activity in one brain region and the amplitude196

of high-frequency (52-104 Hz) activity in the other, as assessed using the Modulation Index (Tort197

et al., 2008), increased during propofol anesthesia in Long-Evans Rats, generalized spike-and-wave198

seizures in GAERS rats, and psychedelic states in C57/BL6 mice, with no change during propo-199

fol anesthesia in human ET patients from both cortex to thalamus (Figure 3-figure supplement 2)200

and thalamus to cortex (Figure 5-figure supplement 2). These results suggest that low-to-high fre-201

quency cortical-thalamic information transfer is distinct fromboth conventional, non-spectralmea-202

sures of directed information transfer, as well as from conventional measures of cross-frequency203

coupling, which only take into account linear and same-time interactions. As such, the strength204

of low-to-high frequency bidirectional cortical-thalamic information transfer is a specific and novel205

hallmark of conscious brain states.206

Cross-frequency information transfer between the cortexand thalamus is supported207

by edge-of-chaos criticality: mean-field modeling results208

Based on our prior work indicating that the brain’s information processing capacity during con-209

scious states is supported by the proximity of slow cortical dynamics to edge-of-chaos criticality210

(Toker et al., 2022), we hypothesized that these changes in cross-frequency cortical-thalamic in-211

formation transfer across brain states might be mediated by transitions of slow thalamocortical212

electrodynamics away from or closer to the edge-of-chaos critical point, or the phase transition213

from stable to chaotic dynamics. To test this hypothesis, we first developed a mean-field model of214
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Figure 4. We here plot the cross-subject median power spectral densities (estimated using Welch’s method)
for all brain states. Note that both propofol and 5-MeO-DMT increased spectral power in the slow/delta range
(≤4 Hz) and decreased spectral power above 80 Hz in both cortex and thalamus, despite opposing effects on
cross-frequency corticothalamic information transfer (Fig. 3).
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Figure 5. Similar to the results we observed for communication from the cortex to the thalamus (Fig. 3), we
found that strength of information transferred from thalamic �/�/� waves (∼1.5-13 Hz) to cortical high 

waves (∼50-100 Hz) is significantly reduced during unconsciousness induced by propofol anesthesia (A-B) and
generalized spike-and-wave seizures (C). Unlike corticothalamic information transfer (Fig. 3), however, the
strength of this low-to-high frequency information transfer from the thalamus to cortex does not change
significantly during psychedelic states induced by 5-MeO-DMT (D). *=p<0.05, **p<0.01, significance assessed
using a one-tailed Wilcoxon signed-rank test.
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the electrodynamics of the brain which could replicate these spectral patterns of cortical-thalamic215

information transfer observed in nearly all subjects/animals during waking states, and which could216

moreover replicate diverse, known features of neural electrodynamics. The reason we must first217

construct a mean-field model is because the presence and degree of chaos in any system can218

only be calculated with (some) certainty in a simulation, where noise and initial conditions can be219

precisely controlled in the estimation of the system’s largest Lyapunov exponent (LLE) - a mathe-220

matically formal measure of chaoticity which quantifies how quickly initially similar system states221

diverge. It is for this reason that the study of chaos in biology should in general be paired with re-222

alistic simulations of the biological system of interest (Glass and Mackey, 1988; Toker et al., 2020).223

Accordingly, we used Bayesian-genetic optimization to tune the parameters of a mean-field model224

of the basal ganglia-thalamo-cortical system (Fig. 6) such that it generated biologically realistic225

large-scale neural electrodynamics across waking, anesthesia, and spike-and-wave seizure states226

(see Methods and Fig. 6-figure supplements 1-3 for details).227

The resulting simulations exhibited a broad range of biologically realistic features (Fig. 7). First,228

our simulated cortical LFPs for the waking state exhibited spectral peaks at all canonical frequency229

bands, with the strongest peak in the � (8-13 Hz) range (Fig. 7-figure supplement 1). Moreover,230

mean firing rates for each brain region in the model closely matched known region-specific firing231

rates in mammals (Supplementary File 2). Furthermore, as in the real brain (Ray et al., 2008), there232

was a significant, positive correlation between fluctuations in our model’s cortical firing rate and233

fluctuations in the amplitude of high-frequency (60-200 Hz) simulated cortical LFP activity (r=0.175,234

p=1.1e-35). Finally, recapitulating our novel empirical results (Table 1), our simulated cortical and235

thalamic LFPs exhibited significant, cross-frequency information transfer from thalamus to cortex236

(harmonic mean across 10 runs with different initial conditions p̊=0.0112) and from cortex to tha-237

lamus (p̊=0.011).238

Beyondour simulation of thewaking state, our anesthesia simulation likewise exhibited a broad239

range of biologically realistic features. First, in line with empirical results (Fig. 4), at a 100% anes-240

thetic “dose," our simulated cortical LFPs exhibited increased low-frequency power and decreased241

high-frequency power relative to the simulated LFPs corresponding to the waking state (Fig. 7-242

figure supplement 2). Moreover, increasing simulated “doses" of simulated anesthesia effect re-243

capitulated well-established dose-response trajectories of GABAergic anesthetics, including a con-244

tinual decline in cortical firing rates (Bastos et al., 2021) (Fig. 7-figure supplement 3A) and LFP245

information-richness (Frohlich et al., 2021) (Fig. 7-figure supplement 3B), a continual rise in the246

power of low-frequency activity (Billard et al., 1997) (Fig. 7-figure supplement 3C), and a transition247

to burst suppression followed by isoelectricity and cessation of firing at very high doses (Ching248

and Brown, 2014) (Fig. 7). Moreover, in line with both prior modeling (Steyn-Ross et al., 2013) and249

empirical (Toker et al., 2022) work, our simulated LFPs in the anesthesia state were more strongly250

chaotic than simulated cortical LFPs in thewaking state (Fig. 7-figure supplement 3D). Furthermore,251

though these featureswere not explicitly selected for in our parameter optimization, our simulated252

anesthesia effect yielded several additional biologically realistic features, including the generation253

of LFPs with increasingly steep spectral slopes (Colombo et al., 2019; Lendner et al., 2020) (Fig. 7-254

figure supplement 3E), as well as prolonged inhibitory postsynaptic potentials (IPSPs) at excitatory255

cortical and thalamic relay cells relative to our waking simulation (Kitamura et al., 2003; Hindriks256

and van Putten, 2012;Hutt and Longtin, 2010;Noroozbabaee et al., 2021) (Fig. 7-figure supplement257

4).258

Finally, our generalized spike-and-wave seizure simulation likewise recapitulated several estab-259

lished biological features of seizures, including a large rise in cortical firing rates (Fig. 7-figure260

supplement 5A) (though cortical firing rates in our seizure simulation were considerably higher261

than in empirical data from GAERS rats (Jarre et al., 2017)) and a loss in the information-richness262

of cortical LFPs (Mateos et al., 2018) (Fig. 7-figure supplement 5B). In addition, following both prior263

empirical (Toker et al., 2022) andmodeling (Steyn-Ross et al., 2013; Breakspear et al., 2006) results,264

our simulated LFPs in the seizure state were periodic, i.e., were insensitive to small perturbations265
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(Fig. 7-figure supplement 5C). Example traces of cortical LFPs from our simulations are plotted in266

Fig. 7. Parameters for the three simulated brain states are listed in Supplementary File 3.267

With these sufficiently realistic simulations of large-scale neural electrodynamics in hand, we268

used our mean-field model to assess, in silico, the relationship between edge-of-chaos criticality269

and bidirectional, cross-frequency information transfer between the cortex and thalamic relay nu-270

clei. To do so, we generated LFPs at 50 increasing “doses" of simulated anesthetic effect and 50271

increasing strengths of seizure effect, relative to our normal waking simulation (see Methods). The272

resulting parameter sweep yielded simulated cortical LFPs with a wide range of LLEs, including sev-273

eral near-critical LFPs (i.e., simulated LFPs with an estimated LLE near zero, indicating neither expo-274

nential divergence nor convergence of initially similar system states). Consistent with our predic-275

tions, we found that there was a clear peak of bidirectional, cross-frequency information transfer276

between our simulated cortical and thalamic LFPs when our simulated thalamocortical electrody-277

namics were poised near the edge-of-chaos critical point (Fig. 8A-B). We found that bidirectional278

cross-frequency information transfer decayed as the (simulated) anesthetic effect was increased,279

which generated increasingly chaotic thalamocortical LFPs; likewise, cross-frequency information280

transfer decayed as the (simulated) seizure effect was increased, which generated increasingly281

periodic LFPs, as shown in Fig. 8A-B. Though these results offer compelling theoretical evidence282

for a relationship between edge-of-chaos criticality and the strength of cross-frequency informa-283

tion transfer between the thalamus and cortex, LLEs cannot be accurately estimated in empirical284

data, and therefore alternative chaos detection algorithms are required in order to empirically test285

this relationship between chaoticity and cross-frequency cortical-thalamic communication in real286

brains. Because the K-statistic of themodified 0-1 chaos test has previously been demonstrated to287

accurately estimate chaoticity from empirical time-series recordings (Toker et al., 2020), we tested288

whether the K-statistic could accurately track chaoticity in ourmean-field simulation. Indeed, when289

applied to simulated thalamocortical LFPs bandpass filtered between 1.625-13 Hz (matching the290

slow frequencies of cortical-thalamic information transfer identified here), the K-statistic was sig-291

nificantly correlated with the estimated largest Lyapunov exponent of our simulated LFPs (�=0.74,292

p=0), and could moreover recapitulate the observed relationship between thalamocortical chaotic-293

ity and cross-frequency cortical-thalamic information transfer in our mean-field model, as shown294

in Fig. 8C-D. This indicates that the K-statistic of the modified 0-1 chaos test can be used to test295

the predicted relationship between proximity to edge-of-chaos criticality and the strength of cross-296

frequency cortical-thalamic information transfer in real brain data.297

Cross-frequency information transfer between the cortexand thalamus is supported298

by edge-of-chaos criticality: empirical results299

Because the K-statistic of the 0-1 chaos test can be calculated from empirical neural data, we ap-300

plied the test to our electrophysiology recordings. Confirming our predicitions, the empirical re-301

sults recapitulated the relationship between thalamocortical chaoticity and cortical-thalamic cross-302

frequency information transfer observed in our mean-field model (Fig. 8), with maximal informa-303

tion transfer occurring for intermediary levels of estimated chaoticity (presumably reflecting prox-304

imity to edge-of-chaos criticality) (Fig. 9). Importantly, replicating both prior simulation and empir-305

ical results (Toker et al., 2022) as well as the novel simulation results presented above (Figure 8,306

Fig. 7-figure supplement 3D), we found that GABAergic anesthesia destabilized slow thalamocor-307

tical electrodynamics in both humans (p=0.002, one-tailed Wilcoxon signed-rank test comparing308

patients’ cross-trial median K-statistic during waking states versus propofol anesthesia states) and309

rats (p=0.002, one-tailed Wilcoxon signed-rank test). Conversely, slow thalamocortical activity be-310

came periodic or hyper-stable during generalized spike-and-wave seizures (p=0.0078, one-tailed311

Wilcoxon signed-rank test). Finally, 5-MeO-DMT moderately stabilized cortical electrodynamics312

(p=0.03, one-tailed Wilcoxon signed-rank test), which is consistent with prior results showing that313

psychedelics tune slow neural electrodynamics closer to edge-of-chaos criticality, and do so by ap-314

proaching the critical point from the chaotic side of the edge (Toker et al., 2022). Finally, while the315
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Figure 6. Connections included in our mean-field model of the macro-scale electrodynamics of the basal
ganglia-thalamo-cortical system. Note that the internal globus pallidus and the substantia nigra pars
reticulata, which are both inhibitory output nuclei of the basal ganglia, are treated as a single structure. See
Supplementary File 2 for the mean firing rates for each neural population in the model, alongside known
region-specific firing rates in multiple mammalian species. See Supplementary File 3 for parameters
describing the properties of each neural population, as well as parameters describing the propagation of
electric fields along each anatomical connection.

estimated chaoticity of low-frequency (1.625-13 Hz) thalamocortical electrodynamics varied signif-316

icantly across brain states (p=0.0001, permutation-based nonparametric ANCOVA), this variance317

could not be explained by changes to spectral power in this frequency range in the thalamocorti-318

cal system across brain states (Supplementary File 4).319

Discussion320

We here identified a highly preserved spectral pattern of cross-frequency information transfer be-321

tween the cortex and thalamus across species duringwaking states, wherein information sent from322

one brain structure at low frequencies (1.625-13 Hz) is encoded by the other at high frequencies323

(∼50-100 Hz). We moreover showed that this pattern of information transfer is disrupted dur-324

ing unconscious states, possibly because low-frequency thalamocortical electrodynamics diverge325

from edge-of-chaos criticality during these states. Conversely, we showed that this low-to-high fre-326

quency information transfer from the cortex to the thalamus is enhancedduring psychedelic states,327

possibly because slow thalamocortical electrodynamics are tuned closer to edge-of-chaos critical-328

ity during these states (and approach this critical point from the chaotic side of the edge, where329

our evidence suggests normal waking slow thalamocortical electrodynamics lie). Note that we did330

not observe a significant increase in cross-frequency information transfer from the thalamus to331

cortex during psychedelic states, though this may be due to our small sample size of animals in332

this condition (n=5).333

To provide theoretical evidence for this relationship between edge-of-chaos criticality and cross-334

frequency cortical-thalamic information transfer, we used Bayesian-genetic optimization to tune a335

mean-field model of the electrodynamics of the full basal ganglia-thalamo-cortical system, so that336

it could recapitulate diverse aspects of real neural electrodynamics while using biologically realistic337

parameters (see Methods). Given the broad biological realism of our model of the basal ganglia-338

thalamo-cortical system, we believe that the model - or perhaps future versions of it, which are339

even more closely matched to empirical results from multiple brain states - may be a fruitful tool340

for future in silico studies of possible interventions to modulate consciousness.341
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Figure 7. Simulated cortical local field potentials (LFPs) as a function of increasing anesthetic or seizure
"dose." Note that all data plotted here are on the same scale. For our awake simulation (top), the mean-field
model generates near-critical, weakly chaotic, low-amplitude oscillations dominated by � waves (8-13 Hz),
with significant bidirectional cross-frequency information transfer between the cortex and thalamus (as
observed in our empirical data). With increasing anesthetic dose (left), the simulated cortical LFP transitions
to chaotic, high-amplitude � waves (1-4 Hz) and � waves. At a higher dose, the simulated cortical LFP
transitions to burst suppression-like dynamics, which are characterized by stochastic switching between
isoelectricity and high-amplitude bursts. Finally, at the highest anesthetic doses, the simulated cortical LFP
transitions to isoelectricity. This simulated anesthetic dose-response trajectory closely mirrors
well-established empirical dose-response trajectories. For our seizure simulation (right), increasing "doses"
first push the cortical LFP into a 3-4 Hz spike-and-wave seizure (which is characteristic of human epilepsy
patients), followed by a 6-8 Hz spike-and-wave seizure (which is characteristic of rodent models of epilepsy,
including the GAERS rats studied here).

13 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.02.22.529544doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529544
http://creativecommons.org/licenses/by/4.0/


Figure 8. We performed parameter sweeps for different "doses" of simulated anesthetic (red square) and
seizure (blue triangle) effects. For each "dose," we calculated the median estimated largest Lyapunov
exponent (LLE) of simulated thalamocortical LFPs across 10 runs, and plotted the median strength of
cross-frequency thalamocortical (A) and corticothalamic (B) information transfer as a function of those
median LLEs. We found a clear peak in the strength of bidirectional cross-frequency cortical-thalamic
information transfer when our simulated thalamocortical electrodynamics were poised near edge-of-chaos
criticality (the vertical lines at LLE=0). We further found that the strength of this bidirectional, cross-frequency
information transfer decayed in both the periodic phase (negative LLEs) with increasing seizure effect and the
chaotic phase (positive LLEs) with increasing anesthetic effect. However, because this decay was
exponentially faster in the periodic phase, we here plotted the bi-symmetric log-transform (Webber, 2012) of
our results for the sake of visualization. Because LLEs can only be estimated with some accuracy in
simulations, we also calculated the estimated the median chaoticity of the low-frequency (1.625-13 Hz)
component of our simulated cortical and thalamic LFPs using the K-statistic of the modified 0-1 chaos (which
can be measured from real neural recordings). We plotted those results against the (bi-symmetric
log-transformed) median strength of cross-frequency thalamocortical (C) and corticothalamic (D) information
transfer, and observed the same overall relationship between chaoticity and bidirectional cross-frequency
information transfer, suggesting that this relationship can be evaluated in real neural recordings.
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Figure 9. We here plot the median strength of cross-frequency thalamocortical (A) and corticothalamic (B)
information transfer across brain states (normalized to each patient’s or animal’s waking baseline, and
bi-symmetrically log-transformed) as a function of the median estimated chaoticity of the low-frequency
(1.625-13 Hz) component of thalamic and cortical electric field recordings (also normalized to waking
baselines). We found the same trend as in our mean-field model (Fig. 8), with bidirectional cross-frequency
information transfer exhibiting the most pronounced decay as thalamocortical electrodynamics
hyper-stabilize in the generalized spike-and-wave seizure state. The strength of bidirectional cross-frequency
information transfer also decays, though not as quickly, as thalamocortical electrodynamics become
increasingly chaotic in the GABAergic anesthesia state. Conversely, the strength of cross-frequency
information transfer from the cortex to the thalamus, but not from the thalamus to the cortex, increases as
thalamocortical electrodynamics moderately stabilize in the 5-MeO-DMT psychedelic state, presumably
reflecting a transition closer to edge-of-chaos criticality relative to normal waking states, which are
near-critical but weakly chaotic.

Although both our empirical and simulated thalamocortical electrodynamics show clear evi-342

dence of cross-frequency cortical-thalamic information transfer, and that the strength of this cross-343

frequency information transfer is supported by the proximity of thalamocortical electrodynamics344

to edge-of-chaos criticality, much work remains to be done to explain this frequency-specific com-345

munication pattern during conscious states. In other words, the precise code of cross-frequency346

communication remains to be determined. It is possible, for example, that this code will be related347

to mechanisms that are by now well-established in the neuroscience literature, such as the mod-348

ulation of the amplitude of high-frequency activity by the phase of low-frequency activity (Canolty349

and Knight, 2010). Indeed, our observation of cross-frequency information transfer between tha-350

lamus and cortex is, at least conceptually, consistent with prior evidence of low-to-high frequency351

phase-amplitude coupling between these regions during waking states (FitzGerald et al., 2013;352

Malekmohammadi et al., 2019; Opri et al., 2019; Malekmohammadi et al., 2015); however, it is353

important to note that, unlike the strength of directed cross-frequency information transfer, the354

strength of phase-amplitude coupling did not consistently vary as a function of brain state (Fig. 3-355

figure supplement 2, Fig. 5-figure supplement 2), which suggests that these are somewhat distinct356

phenomena. It may also be that cross-frequency cortical-thalamic information transfer could rely357

on codingmechanisms which have not yet been explored in the neuroscience literature, but which358

have been explored in the communications engineering literature, such as low-to-high-frequency359

information transfer using the harmonic backscattering of low-frequency signals (An et al., 2018).360

We note several limitations to the work done here, and fruitful areas for further investigation.361

First, we stress that currently, varying degrees of chaoticity - and therefore proximity to edge-of-362

chaos criticality - can only be detected with some certainty in simulations. The modified 0-1 chaos363

test, which we used here as an empirical test of chaoticity, is a relatively robust method for chaos364

detection (Toker et al., 2020), correlates well with ground-truth chaoticity in our mean-field model,365
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and reproduces the relationship between chaoticity and cross-frequency cortical-thalamic infor-366

mation transfer observed in our simulations; but, the test’s results may be affected by features of367

a signal, such as noise, which are unrelated to ground-truth chaoticity. For this reason, it will be368

imperative to develop additional methods for assessing the chaoticity of thalamocortical electro-369

dynamics in order to confirm or falsify the observations reported here. It will moreover be impor-370

tant to study how generalized seizures, anesthesia, and psychedelics affect information transfer371

between the cortex and other subcortical regions which have been implicated in the loss and re-372

covery of consciousness, such as the basal ganglia (Miyamoto et al., 2019; Deransart et al., 2000;373

Chen et al., 2015b; DiCesare et al., 2020; Crone et al., 2017; Lutkenhoff et al., 2015, 2020; Lazarus374

et al., 2012; Qiu et al., 2016a; Vetrivelan et al., 2010; Qiu et al., 2016b, 2010), and how that in turn375

relates to the proximity of thalamocortical electrodynamics to edge-of-chaos criticality. In a similar376

vein, it will also be important to test whether the observed phenomena extend to other states of377

unconsciousness (e.g. coma and vegetative states) and other psychedelic states (e.g. induced by378

lysergic acid diethylamide or psilocybin).379

Methods and Materials380

Mean-field model of the electrodynamics of the basal ganglia-thalamocortical sys-381

tem.382

To study the relationship between edge-of-chaos criticality and cross-frequency cortical-thalamic383

information transfer, and how that might change during GABAergic anesthesia and generalized384

spike-and-wave seizures, we developed a modified version of the mean-field model of the basal385

ganglia-thalamocortical system described by van Albada and Robinson (van Albada and Robinson,386

2009). Although our empirical analysis focuses on thalamo-cortical interactions, we chose a model387

which includes the basal ganglia because of recent evidence that the basal ganglia (perhaps via388

their influence on the thalamus and cortex) are involved in the loss and recovery of conscious-389

ness from generalized seizures (Miyamoto et al., 2019; Deransart et al., 2000; Chen et al., 2015b),390

anesthesia (DiCesare et al., 2020; Crone et al., 2017), vegetative and minimally conscious states391

(Lutkenhoff et al., 2015, 2020), and sleep (Lazarus et al., 2012; Qiu et al., 2016a; Vetrivelan et al.,392

2010; Qiu et al., 2016b, 2010).393

The model simulates the average firing rate of several populations of neurons, which is esti-394

mated as the proportion of neurons within a population whose membrane potential is greater395

than their reversal potential, multiplied by the maximum possible firing rate for that population.396

Specifically, the average population activity Qa at location r and time t is modeled as a sigmoidal397

function of the number of cells whose potential Va is above the mean threshold potential � of that398

population:399

Qa(r, t) =
Qmax
a

1 + exp[−(Va(t) − �a)∕�′]
(1)

where Qmax
a is the maximum possible firing rate of that population and �′ is the standard deviation400

of cell body potentials relative to the threshold potential. The change in mean cell potential Va is401

modeled as:402

D��(t)Va(t) =
∑

b
vab�b(t − �ab) (2)

where vab is the number of synapses between the axons of population b anddendrites of population403

a multiplied by the typical change in the membrane potential of a cell in a with each incoming404

electric pulse from b. �b(t − �ab) is the rate of incoming pulses from b to a, �ab is the time delay for405

signals traveling across axons from b to a, and D�� is the differential operator406

D��(t) =
1
��

d2

dt2
+

(

1
�
+ 1
�

)

d
dt
+ 1 (3)

where � is the decay rate of the cell membrane potential and � is the rise rate of the neural mem-407

brane potential. In the original Robinson mean-field model, not only the duration, but also the408
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peak � of synaptic responses is scaled by � and �:409

�(�, �) =
��
� − �

[

exp

(

− �
ln(�∕�)
� − �

)

− exp

(

− �
ln(�∕�)
� − �

)]

(4)

However, since we are interested in modeling GABAergic anesthesia, which prolongs the duration410

of postsynaptic inhibition - an effect that can be simulated by modulating the synaptic decay rate411

� (Hindriks and van Putten, 2012; Hutt and Longtin, 2010) or potentially the rise rate � - without412

altering the maximal postsynaptic chloride current (Kitamura et al., 2003), we followed prior mod-413

eling studies of anesthesia (Hindriks and van Putten, 2012;Hutt and Longtin, 2010; Bojak and Liley,414

2005; Noroozbabaee et al., 2021) and modified the synaptic response ℎ, such that its duration but415

not its peak is modulated by � and �:416

ℎ(t) = H
�(�, �)

ℎ(t) (5)

where ℎ(t) is the original synaptic response, and, following Hindriks and van Putten (Hindriks and417

van Putten, 2012), H=31.5 s−1. Finally, the outgoing mean electric field �ab from population b to418

population a is modeled with the widely used damped wave equation419

ab�ab(r, t) = Qb(r, t) (6)

with420

ab =

[

1

2ab

)2

)t2
+ 2

ab

)
)t
+ 1 − r2ab∇

2

]

(7)

where rab is the spatial axonal range, 
ab is the temporal damping coefficient and equals vab∕rab, and421

∇2 is the Laplacian operator.422

Importantly, apart from circuit connectivity described in the original van Albada and Robinson423

model, we included several additional known afferent projections from the globus pallidus externa424

(GPe) (Fig. 6), given the recent evidence for the importance of the GPe in particular in regulating425

the loss and recovery of consciousness (Lazarus et al., 2012; Qiu et al., 2016a; Vetrivelan et al.,426

2010; Qiu et al., 2016b, 2010; Zheng and Monti, 2019). Specifically, in light of recent tracing stud-427

ies in mice showing direct GABAergic projections from GPe to GABAergic cortical interneurons428

(Saunders et al., 2015; Chen et al., 2015a), as well as recent high angular resolution diffusion imag-429

ing showing direct projections from GPe to cortex in humans (Zheng and Monti, 2019), we added430

inhibitory connections from GPe to inhibitory cortical neurons. We also added direct inhibitory431

projections from GPe to thalamic relay nuclei, following recent human high angular resolution dif-432

fusion imaging results (Zheng and Monti, 2019). Moreover, following results from tracing studies433

in squirrel monkeys (Hazrati et al., 1991), we additionally added direct inhibitory projections from434

GPe to the thalamic reticular nucleus. We furthermore added inhibitory connections from GPe to435

both D1 and D2 striatal populations, based on extensive prior tracing studies showing pallidostri-436

atal projections in rats (Kuo and Chang, 1992; Staines et al., 1981; Kuo and Chang, 1992; Staines437

and Fibiger, 1984; Rajakumar et al., 1994), cats (Beckstead, 1983), and monkeys (Beckstead, 1983;438

Kita et al., 1999; Sato et al., 2000).439

The model thus constructed contains 185 free parameters. In the original model, van Albada440

and Robinson identified a parameter configuration within physiologically realistic bounds that pro-441

duced stable fixed points of neuronal firing rates for each brain region, which can be analytically442

identified using well-known mathematical tools. Under this approach, fluctuations of neuronal443

firing rates are generated via noise perturbations away from and back toward these stable fixed444

points. However, this approach assumes that macroscale neural electrodynamics are perfectly445

stable unless perturbed, which is contradicted by some empirical evidence: low-frequency electro-446

dynamic oscillations have been observed in the absence of any sensory inputs or perturbations in447

isolated, deafferented cortex (Timofeev et al., 2000; Lemieux et al., 2014) and in deafferented tha-448

lamic reticular nucleus (Steriade et al., 1987), as well as in unperturbed cerebral organoids (Trujillo449
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et al., 2019; Samarasinghe et al., 2019). Moreover, this modeling approach assumes that neural450

electrodynamic oscillations are predominantly stochastic, which our current (Supplementary File451

5) and past (Toker et al., 2022) work suggest is not the case. In line with this broad empirical evi-452

dence for intrinsic low-frequency, nonlinear oscillatory electrical activity in the brain, other mean-453

field modeling approaches have sought instead to understand slow neural electrodynamics (in454

both waking and non-waking states) in terms of (often chaotic) nonlinear oscillations, rather than455

in terms of noise perturbations of stable fixed points (Dafilis et al., 2001; Steyn-Ross et al., 2013;456

Freeman, 1987). In accordance with this approach, we sought a physiologically realistic parameter457

configuration for waking brain states that would yield low-amplitude, oscillatory, weakly chaotic458

oscillations of local field potentials (LFPs), where the LFPs of a given neural population were simu-459

lated by taking the superposition of synaptic currents (Buzsáki et al., 2012), estimated as the sum460

of the absolute value of dendritic potentials of that population (Mazzoni et al., 2015). In addition461

to meeting this criterion of generating low-amplitude, weakly chaotic LFPs, we sought a parameter462

configuration for waking states which yields mean firing rates for all brain regions that match em-463

pirical data, which generates fluctuations in cortical firing rates that are correlatedwith fluctuations464

in the amplitude of high gamma (60-200 Hz) cortical LFP oscillations, and which additionally reca-465

pitulates the spectral patterns of bidirectional cortico-thalamic information transfer we identified466

in our empirical data. Because there are no methods for deriving such a parameter configuration467

analytically, and because the parameter space of the model is infinite (though bounded) and thus468

impossible to explore through a systematic parameter sweep, we used aBayesian-geneticmachine469

learning algorithm (Lan et al., 2020) to tune all parameters in the model to produce the desired470

dynamics (see Supplementary Methods and Fig. 6-figure supplement 1-3 for flowcharts describing471

the details of the Bayesian-genetic optimization).472

Once we identified a parameter configuration for waking brain states (Supplementary File 3),473

we used that parameter configuration as the starting point for a search, using genetic optimization,474

for parameter configurations thatwould produceGABAergic anesthesia and generalized spike-and-475

wave seizure dynamics. For the seizure dynamics, we simply tuned the model’s parameters to gen-476

erate 2-8 Hz oscillations that are periodic and information-poor (as indexed by Lempel-Ziv complex-477

ity), which resulted in spike-and-wave behavior. For the anesthesia dynamics, we tuned themodel’s478

parameters to minimize the cortical firing rate while simultaneously generating information-poor,479

strongly chaotic LFPs that are dominated by large-amplitude slow/delta (<4 Hz) oscillations with480

low spectral power above 60 Hz. Once we identified a set of parameters for our awake simula-481

tion, our anesthesia simulation, and our spike-and-wave seizure simulation (Supplementary File482

3), we used the following equation to produce a given parameter set P at a particular “dose" D of483

simulated anesthetic or seizure effect:484

P = P0(
P1
P0
)D (8)

where P0 is the vector of parameters corresponding to our awake simulation and P1 is the vector of485

parameters corresponding to either our anesthesia or seizure simulation. Thus, as D is increased,486

the model’s parameters move from their “awake" values at D = 0 to their values in “altered" states487

at D = 1. Moreover, reflecting biological saturation effects, the magnitude of change in model488

parameters becomes increasingly small asD is further increased, and no parameters change signs489

with higher values of D.490

Calculating stochastic Lyapunov exponents491

Todetermine the chaoticity of themean-fieldmodel’s dynamics, we estimated the stochastic largest492

Lyapunov exponent across our simulated cortical and thalamic LFPs. In general, Lyapunov expo-493

nents measure the rate of divergence between initially nearby points in a system’s phase space: a494

positive largest Lyapunov exponent signifies chaos (because it indicates that initially similar states495

diverge exponentially fast), a negative largest Lyapunov exponent signifies periodicity (because it in-496
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dicates that initially similar states converge exponentially fast), and a largest Lyapunov exponent of497

zero indicates edge-of-chaos criticality, with near-zero exponents indicating near-critical dynamics498

(Ovchinnikov et al., 2020). For any given parameter configuration, stochastic Lyapunov exponents499

were estimated by running themodel once for 20 seconds with random initial conditions, and then500

running it again, but adding a tiny random perturbation to all neural populations at 9.999 seconds,501

and then measuring the rate of the divergence of the simulated cortical and thalamic LFPs over502

the two runs over the final 10 seconds of the simulation. The divergence �(t) between the first run503

Q(1)
e and the second run Q(2)

e was estimated as their summed squared-difference:504

�(t) = (Q(1)
e (t) −Q

(2)
e (t))

2∕�max (9)

where �max is the maximum possible difference between the two simulations:505

�max =
(

max(Q(1)
e ) − min(Q

(2)
e )

)2
(10)

The largest Lyapunov exponent Λ of the model’s dynamics is then determined by estimating the506

rate of divergence between the two runs �(t):507

�(t) = �(0)exp(Λt) (11)

where �(0) is the distance between Q(1)
e and Q(2)

e at t = 0. The slope of ln�(t)-versus-t therefore gives508

the estimate of the largest Lyapunov exponent. For all parameter configurations, Q(1)
e and Q(2)

e509

were run with identical noise inputs, meaning that the slope of ln�(t)-versus-t gives the stochastic510

Lyapunov exponent of the model.511

Human essential tremor patient propofol data512

Data previously published by Malekmohammadi et al. (2019) were re-analyzed in order to assess513

the relationship between the stability of neural electrodynamics and the breakdown of thalamo-514

cortical communicationduringGABAergic anesthesia. Datawere collected from10essential tremor515

patients (6 female and 4 male, ages 60-79 years) undergoing unilateral (n=6) or bilateral (n=4) im-516

plantation of deep brain stimulation (DBS) leads in the ventral intermediate (ViM) nucleus of the517

thalamus. All subjects providedwritten informed consent to participate in the original study, which518

was approved by the institutional review board of the University of California, Los Angeles. Lo-519

cal field potentials (LFPs) were recorded from the ViM thalamus, and electrocorticography (ECoG)520

signals were recorded from ipsilateral frontoparietal cortex during resting wake states and after521

intravenous propofol administration. Signals were acquired using BCI2000 v3 connected to an am-522

plifier (g.Tec, g.USBamp 2.0) at a sampling rate of 2400 Hz. Data were bandpass filtered online523

between 0.1 and 1000 Hz. Patients were awake with eyes open for the first minute of recording.524

We used this minute of data for each patient’s “awake" state. After this first minute, the attending525

anaesthesiologist administered propofol intravenously. All patients reached amodified observer’s526

assessment of alertness/sedation scale (MOAA/S) of 0, indicating no responsiveness, or 1, indi-527

cating only responses to noxious stimuli. On average, LFP and ECoG recording continued for 5528

minutes after propofol administration. To control for cross-patient differences in blood volume,529

cardiac output, and propofol dosing, we exclusively analyzed the final minute of recording as each530

patient’s “anesthetized" state, during which they weremaximally anesthetized. Data were split into531

10-second trials, demeaned, detrended, and band-stop filtered at 60 Hz and harmonics (to filter532

out line noise). Data were then visually inspected for artifacts, and 10-second trials with artifacts533

spanning multiple channels were removed.534

Long-Evans rat propofol data535

Data previously published by Reed and Plourde (Reed and Plourde, 2015) were re-analyzed to eval-536

uate the effect of propofol on neural criticality and cortical-thalamic information transfer in nine537

male Long-Evans rats. Bipolar electrodes were inserted into the ventral posteromedial nucleus of538
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the thalamus and sensory (barrel) cortex. A reference electrode was placed in the contralateral539

parietal bone and a ground was placed in the ipsilateral frontal bone. Propofol was administered540

in the right jugular vein catheter to achieve incrementally higher plasma propofol concentrations541

of 3 �g/ml, 6 �g/ml, 9 �g/ml, and 12 �g/ml. Target plasma concentrations were achieved using542

using pharmacokinetic parameters derived from Knibbe et al. (2005) with the Harvard-22 syringe543

pump, which was controlled by the Stanpump software (Department of Anesthesiology, Stand-544

ford University, CA). LFPs for each condition were recorded after 15 minutes of drug equilibration.545

Unconsciousness, defined as complete loss of the righting reflex, was achieved by 9 �g/ml in all546

animals. In our primary analyses, we used LFPs from the 12 �g/ml condition. Data were split into547

10-second trials, demeaned, detrended, and band-stop filtered at 60 Hz and harmonics (to filter548

out line noise). Data were then visually inspected for artifacts, and 10-second trials with artifacts549

spanning multiple channels were removed.550

GAERS rat seizure data551

Previously published (Miyamoto et al., 2019) data from seven Genetic Absence Epilepsy Rat from552

Strasbourg (GAERS) animals (both sexes, over 16 weeks of age), which experience spontaneous 6-8553

Hz generalized spike-and-wave seizures, were provided by H.M. and K.Y. and re-analyzed. Stain-554

less steel ECoG electrodes (1.1 mm diameter) were placed over the right somatosensory cortex555

under 2% isoflurane anesthesia. A stainless-steel electrode, which served as both ground and ref-556

erence, was placed on the cerebellum. An insulated stainless steel wire (200-�m diameter) was557

stereotaxically implanted in the ventroposterior thalamus contralateral to the ECoG electrode, as558

well as in other cortical and subcortical sites not analyzed here. For our analyses, we only selected559

data from generalized spike-and-wave seizures which continued for a minimum of 10 seconds.560

Data were split into 10-second trials, demeaned, detrended, and band-stop filtered at 50 Hz and561

harmonics (to filter out line noise). Data were then visually inspected for artifacts, and 10-second562

trials with artifacts spanning multiple channels were removed.563

C57/bl6 mouse 5-MeO-DMT data564

Previously published (Riga et al., 2018) LFP recordings from five male, 9-16 week-old C57/bl6 mice565

(wild-type) following administration of either saline or 5-MeO-DMT were provided by M.S.R. and566

L.L.P. and re-analyzed here. For electrode implantation, animals were first pretreated with 0.05567

mg/kg s.c of the analgesic buprenorphine. Thirty minutes later, anesthetic unconsciousness was568

induced with 2.5% isoflurane and maintained with 1.5% isoflurane. Three stabilizer screws and a569

ground screw were implanted, and Plastics One electrodes (Virgina, USA) were placed in medial570

prefrontal cortex (mPFC) and mediodorsal nucleus of the thalamus (MD), as well as other cortical571

areas not analyzed here (as they are not directly connected to the MD nucleus). A prophylactic572

antibiotic (Enrofloxacina 7.5 mg/kg s.c.) and the analgesic buprenorphine (0.05 mg/kg s.c.) were573

administered for 2-3 days after surgery. LFP recordings from mPFC and MD were collected at a574

sampling rate of 3,200 Hz using a digital Lynx system and Cheetah software (Neuralynx, Montana,575

USA) in a 40 x 40 cm open field, and bandpass filtered between 0.1 and 100 Hz. On the record-576

ing day, first 10 ml/kg saline was injected subcutaneously, and 30 min later, saline + 5-MeO-DMT577

(5 mg/kg) was injected subcutaneously. LFPs were recorded for 30 minutes for each condition.578

The first five minutes after each injection were excluded from the analysis, in light of prior pharma-579

cokinetic and behavioral studies on 5-MeO-DMT inmice (Halberstadt et al., 2011; Shen et al., 2011;580

van den Buuse et al., 2011). Data were split into 10-second trials, demeaned, detrended, and band-581

stop filtered at 50 Hz and harmonics (to filter out line noise). Data were then visually inspected for582

artifacts, and 10-second trials with artifacts spanning multiple channels were removed.583

Estimating chaoticity of neural electrodynamics584

To estimate the chaoticity of real low-frequency neural electrodynamics, we used the modified 0-1585

chaos test. The 0-1 test for chaos was initially developed by Gottwald and Melbourne (Gottwald586
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and Melbourne, 2004), who later modified the test so that it was more robust to measurement587

noise (Gottwald and Melbourne, 2005). Dawes and Freeland modified the test further, so that it588

could more accurately distinguish between chaotic dynamics on the one hand, and strange non-589

chaotic dynamics on the other (Dawes and Freeland, 2008). This final modified 0-1 test involves590

taking a univariate time-seriesφ, and using it to drive the following two-dimensional system:591

p(n + 1) = p(n) + �(n)coscn

q(n + 1) = q(n) + �(n)sincn
(12)

where c is a random value bounded between 0 and 2�. For a given c, the solution to Eq. 12 yields:592

pc(n) =
n
∑

j=1
�(j)cosjc

qc(n) =
n
∑

j=1
�(j)sinjc

(13)

If the time-seriesφ is generated by a periodic system, the motion of p and q is bounded, whereas593

if φ is generated by a chaotic system, p and q display asymptotic Brownian motion. This can be594

quantified by assessing the growth rate of the time-averaged mean square displacement of p and595

q, plus a noise term �n proposed by Dawes and Freeland (Dawes and Freeland, 2008):596

Mc(n) =
1
N

N
∑

j=1
([pc(j + n) − pc(j)]2 + [qc(j + n) − qc(j)]2) + ��n. (14)

where �n is a uniformly distributed random variable between [− 1
2
, 1
2
] and � is the noise level. The597

growth rate of the mean squared displacement can be assessed using a correlation coefficient:598

Kc = corr(n,Mc(n)) (15)

K is computed for 100 unique values of c sampled randomly between 0 and 2�. The final K-statistic599

is the median K across all values of c. The K-statistic will approach 1 for chaotic systems and will600

approach 0 for periodic systems (Gottwald and Melbourne, 2004, 2005, 2009, 2008; Dawes and601

Freeland, 2008; Toker et al., 2020). Finally, note that the modified test includes a parameter �,602

which controls the level of added noise in Eq. 14. Based on our prior work examining the effects603

of different values of � on the test’s classification performance (Toker et al., 2020), we set � = 0.5.604

The 0-1 chaos test is designed to estimate chaoticity from low-noise signals recorded from pre-605

dominantly deterministic, discrete-time systems. As such, steps must generally be taken to reduce606

measurement noise as much as possible, to determine that a signal is not generated by a predomi-607

nantly stochastic system, and to discretize in time potentially oversampled signals from continuous608

time systems. Following our prior work (Toker et al., 2022), we effectively cleaned upmeasurement609

noise by only applying the test to low-frequency components of neural electrophysiology record-610

ings. Low-frequency activity was extracted by band-pass filtering LFPs between 1.625 and 13 Hz611

(matching the frequency range in our analysis of spectral information transfer). Band-pass filter-612

ing was performed using EEGLAB’s two-way least-squares finite impulse response filter, with the613

filter order set to 500Hz
13Hz

⋅ 75
22
for an attenuation of 75 dB at the higher-frequency transition band of614

13 Hz, following (Harris, 2022). However, we note that in our prior work, which only investigated615

the chaoticity of cortical electrodynamics slower than 6 Hz, we used the Fitting Oscillations And616

One Over F or “FOOOF" algorithm to identify channel-specific slow oscillation frequencies. Follow-617

ing (Armand Eyebe Fouda et al., 2014; Toker et al., 2022), all signals were time discretized before618

application of the 0-1 chaos test by taking only all local minima and maxima, where a local ex-619

tremum was defined as having a prominence greater than 10% of the maximum amplitude of a620

given signal. For a given 10-second window of data, the estimated chaoticity of slow thalamocorti-621

cal electrodynamics was set as the median of such band-pass filtered and time-discretized signals622

across all available cortical and thalamic channels. Finally, we used our previously described test623

of stochasticity (Toker et al., 2020, 2022) to ensure that our neural electrophysiology recordings624

were produced by predominantly deterministic dynamics (Supplementary File 5).625
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Calculating directed information flow626

Because neural information flow is likely frequency-multiplexed, we used a spectral measure of627

information transfer, which was recently developed by Pinzuti et al. (2020). The measure is based628

on transfer entropy, an information-theoretic estimate of the amount of information transferred629

from a source variable X to an influenced variable Y . Transfer entropy over a time-delay L can be630

formulated as the conditional mutual information between X and Y , where the condition is the631

history of Y :632

TX→Y = I(Yt;Xt−1;t−L|Yt−1;t−L) (16)

Effectively, this is a measure of the degree to which uncertainty about the future of Y is reduced by633

knowing the history ofX, given the history of Y . In our implementation of the spectral information634

transfer algorithm (described further below), we used the Java Information Dynamics Toolkit (JIDT)635

(Lizier, 2014) to implement the method of Kraskov and colleagues (Kraskov et al., 2004) for model-636

free kernel estimation of probability distributions, which uses Kozachenko–Leonenko estimators of637

log-probabilities via nearest-neighbor counting (Kozachenko and Leonenko, 1987), a fixed number638

K of nearest neighbors, and bias correction, with the embedded Schrieber history length k = 1. We639

scanned from 0.002 ms (one time-step at a sampling rate of 500 Hz) to 40 ms (20 time-steps at a640

sampling rate of 500Hz) and picked a time-lagL for each individual time-series pair thatmaximized641

the estimated transfer entropy between those time-series (followingWollstadt et al. (2017);Wibral642

et al. (2013)).643

The innovation described by Pinzuti and colleagues, which enables the estimation of informa-644

tion transfer at particular sending and receiving frequency bands, is to use the invertiblemaximum645

overlap discrete wavelet transform (MODWT) to create surrogate data in which dynamics in either646

the sending or receiving signal are randomized (in our case, using the Iterative Amplitude Adjust-647

ment Fourier Transform) only within a particular frequency range. The use of such surrogate sig-648

nals allows both for the estimation of the strength of spectrally resolved information transfer (by649

assessing, on average, how much transfer entropy is lost when dynamics in a certain frequency650

range of the sender and receiver are randomized), as well as the statistical significance of spectral651

information transfer (by quantifying the percentage of surrogates which result in estimated trans-652

fer entropy greater than the estimated transfer entropy between the original sender and receiver653

signals).654

As described by Pinzuti and colleagues, this approach can be used to determine which fre-655

quency bands are significant channels for the sending or receiving of information. They moreover656

describe a variant of their approach, which they title the ‘swap-out swap-out’ or SOSO algorithm,657

which enables the determination of the specific frequency bands from which information is sent658

from one channel and the frequency bands from which that same information is then received659

by the other channel. We used this algorithm in all spectral analyses of information transfer in660

this paper. In order to maximize the overlap of the frequency bands assessed by the SOSO algo-661

rithm (which are determined by successive halves of the sampling rate) with those corresponding662

to canonical neural oscillations, we resampled all data for our information transfer analyses to a663

sampling frequency of 416 Hz. In our initial exploratory analysis in Fig. 2, we used the SOSO al-664

gorithm with only 10 surrogates (which is insufficient for determination of statistical significance)665

to estimate the strenth of information transfer from and to all possible pairs of frequency bands666

between the cortex and thalamus during waking states. In all subsequent figures and in Table667

1, we used the SOSO algorithm with 100 surrogates, which is sufficient for the determination of668

statistical significance, and which additionally provides more reliable estimates of the strength of669

spectrally resolved information transfer.670
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Data Availability671

The source data underlying Figures 2-4 and 8, and code necessary to perform all statistical analy-672

ses, information transfer analyses, and mean-field simulations will be available on Figshare upon673

publication of this manuscript. The raw electrophysiology recordings from Long-Evans rats are674

available at the Harvard Dataverse Network, with the following DOI: doi:10.7910/DVN/29366.675
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1

Fig. 3-figure supplement 1: We here plot changes to (non-spectrally resolved) transfer entropy from
cortex to thalamus across brain states. As described in our methods, we used the Java Information
Dynamics Toolkit (JIDT) to implement the method of Kraskov et al for model-free kernel estima-
tion of probability distributions, which uses Kozachenko–Leonenko estimators of log-probabilities
via nearest-neighbor counting, a fixed number K of nearest neighbors, and bias correction, with
the embedded Schrieber history length k = 1. We also picked a time-lag for each individual time-
series pair that maximized the estimated transfer entropy between those time-series. We found no
consistent relationship between corticothalamic transfer entropy and consciousness. *=p<0.05,
**p<0.01, ***p<0.001, significance assessed using a one-tailed Wilcoxon signed-rank test.
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Fig. 3-figure supplement 2: We evaluated cross-frequency phase-amplitude coupling from cortex
to thalamus using the modulation index (MI). Specifically, we evaluated coupling between the
phase of the low-frequency (1.625-13 Hz) activity and the amplitude of high-frequency (52-104
Hz) activity (matching the frequency ranges analyzed in the main body of our paper). Note that the
MI is a bivariate measure, meaning that it is calculated between pairs of univariate channels. As
such, for our human ET patient data, which consisted of multiple cortical and thalamic channels,
we calculated the MI from all cortical channels to all thalamic channels, and set the corticothalamic
MI as the median across all resulting values. As was the case with transfer entropy, we found no
consistent relationship between cross-frequency corticothalamic phase-amplitude coupling (across
the frequencies studied in this paper) and consciousness. *=p<0.05, **p<0.01, ***p<0.001,
significance assessed using a one-tailed Wilcoxon signed-rank test.
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3

Fig. 5-figure supplement 1: We here plot changes to (non-spectrally resolved) transfer entropy
from thalamus to cortex across brain states, calculated using the same methods described in Fig.
3-figure supplement 1. We again found no consistent relationship between thalamocortical transfer
entropy and consciousness. *=p<0.05, **p<0.01, ***p<0.001, significance assessed using a one-
tailed Wilcoxon signed-rank test.
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Fig. 5-figure supplement 2: We analyzed cross-frequency phase-amplitude coupling from thala-
mus to cortex using the same methods described in Fig. 1-figure supplement 2, and again ob-
served no consistent relationship between cross-frequency thalamocortical phase-amplitude cou-
pling and consciousness. *=p<0.05, **p<0.01, ***p<0.001, significance assessed using a one-
tailed Wilcoxon signed-rank test.
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Fig. 6-figure supplement 1: We here depict the workflow for the use of Bayesian-genetic optimiza-
tion to derive model parameters for the awake state of the mean-field model of the electrodynamics
of the basal ganglia-thalamo-cortical system.
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Fig. 6-figure supplement 2: We here depict the workflow for the use of genetic optimization to
derive model parameters for the anesthesia state of the mean-field model, starting from the param-
eters for the wake state of the mean-field model.
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Fig. 6-figure supplement 3: We here show the workflow for the use of genetic optimization to
derive model parameters for the generalized spike-and-wave seizure state of the mean-field model,
starting from the parameters for the wake state of the model.
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Fig. 7-figure supplement 1: The power spectrum of our simulated “awake” cortical local field po-
tential (LFP), which was generated by optimizing the parameters of a mean-field model of the basal
ganglia-thalamo-cortical system using machine learning (see Methods). Our simulated cortical
LFP produces spectral peaks at frequencies precisely corresponding to canonical cortical electro-
dynamic oscillations, including � waves (1-4 Hz), ✓ waves (4-8 Hz), ↵ waves (8-13 Hz), � waves
(15-30 Hz), and low-� waves (35-60 Hz).
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Fig. 7-figure supplement 2: Compared to the power spectrum of our simulated awake cortical LFP,
the power spectrum of our simulated anesthesia LFP exhibited increased low-frequency power and
decreased high-frequency power. Here, the anesthesia simulation corresponds to the 100% “dose,”
which is the set of parameters arrived at through our genetic optimization.
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Fig. 7-figure supplement 3: Our mean-field model successfully recapitulated several previously
established features of anesthesia, including a reduction in cortical firing rate (A), a loss of the
information-richness of cortical LFPs as indexed by Lempel-Ziv complexity (B), a rise in the
spectral power of delta (1-4 Hz) oscillations in cortical LFPs (C), strongly chaotic neural electro-
dynamics (D - note that the dashed red line at LLE=0 corresponds to edge-of-chaos criticality), and
a steepening spectral slope of cortical electrodynamics (here measured by fitting a line to the log
spectral density of the simulated cortical LFP between 30 and 45 Hz) (E). Note that we here plot
only up to 100% anesthesia “dose,” which is the set of parameters arrived at through our genetic
optimization. At higher “doses” (see Methods), dynamics switch to stochastic burst suppression
followed by isoelectricity with a complete cessation of firing (see Figure 5 for example LFP traces
from these higher-dose states).
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Fig. 7-figure supplement 4: Though this effect was not explicitly selected for in our parameter
optimization, we found that our simulated anesthesia state resulted in prolonged inhibitory postsy-
naptic potentials (IPSPs) at excitatory cells in both the cortex and thalamic relay nucleus relative
to the waking state of the model, owing to changes in synaptodendritic rise and decay rates (Tables
S1, S3).
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Fig. 7-figure supplement 5: Our mean-field model successfully recapitulated several previously
established features of generalized seizures, including a large rise in cortical firing rate (A), a
loss of the information-richness of cortical LFPs as indexed by Lempel-Ziv complexity (B), and
strongly periodic neural electrodynamics (C - note that the dashed red line at LLE=0 corresponds
to edge-of-chaos criticality).
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