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Abstract

Protein language models have excelled in a vari-
ety of tasks, ranging from structure prediction to
protein engineering. However, proteins are highly
diverse in functions and structures, and current
state-of-the-art models including the latest version
of AlphaFold rely on Multiple Sequence Align-
ments (MSA) to feed in the evolutionary knowl-
edge. Despite their success, heavy computational
overheads, as well as the de novo and orphan pro-
teins remain great challenges in protein represen-
tation learning. In this work, we show that MSA-
augmented models inherently belong to retrieval-
augmented methods. Motivated by this finding,
we introduce Retrieved Sequence Augmentation
(RSA) for protein representation learning with-
out additional alignment or pre-processing. RSA
links query protein sequences to a set of se-
quences with similar structures or properties in the
database and combines these sequences for down-
stream prediction. We show that protein language
models benefit from the retrieval enhancement on
both structure prediction and property prediction
tasks, with a 5% improvement on MSA Trans-
former on average while being 373× faster. In
addition, we show that our model can transfer to
new protein domains better and outperforms MSA
Transformer on de novo protein prediction. Our
study fills a much-encountered gap in protein pre-
diction and brings us a step closer to demystifying
the domain knowledge needed to understand pro-
tein sequences. Code is available on https://
github.com/chang-github-00/RSA.
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1. Introduction
Proteins are the basic yet intricate building blocks of life,
performing a vast array of functions within organisms, in-
cluding catalyzing metabolic reactions, DNA replication,
responding to stimuli, providing structure to cells, and trans-
porting molecules from one location to another (Garrett &
Grisham, 2016). Central to the enigma of these building
blocks is the complex knowledge of protein relationships in
their sequences, structures, and functions, which is a conse-
quence of the interplay between physics and evolution (Sad-
owski & Jones, 2009). Experimental and theoretical efforts
have been made to unveil the structures and functions of
emergent proteins (Korendovych & DeGrado, 2020; An-
ishchenko et al., 2021), yet few methods can keep pace with
the rapid accumulation of sequences (Roy et al., 2010).

Recently, protein language models (Rives et al., 2019; Lin
et al., 2022; Elnaggar et al., 2021; Jumper et al., 2021)
have achieved remarkable progress in predicting protein
functions and structures from sequences. Protein language
models create a distribution of amino acids that matches
the co-occurrence probability in their natural state, thereby
capturing structural and evolutionary knowledge. In these
approaches, all protein knowledge is implicitly stored in the
parameters, and the quality of the language model distribu-
tion is highly dependent on pre-training and parameter scale.
For example, ESM-2 (Lin et al., 2022) shows that evolution-
ary depth saturates at lower model scales, and scaling up to
a model size of billions is inevitable for protein modeling.
To this end, we study enhancing the prediction of language
models with a simple retrieval-based augmentation.

Previous work (Khandelwal et al., 2019; Goyal et al., 2022;
Guu et al., 2020b; Wang et al., 2022) in natural language
processing and machine learning has demonstrated that in-
troducing related input sequences can effectively introduce
domain knowledge without excessive backbone parameter
size. In protein learning, a similar approach Multiple Se-
quence Alignment (MSA) has been adopted to introduce
evolutionary knowledge into models by augmenting input
with aligned homologous sequences. MSA has improved
deep learning performance on various models (Rao et al.,
2021; Jumper et al., 2021; Marks et al., 2011; Hong et al.,
2022), yet its success is often attributed to the alignment
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process that highlights co-evolution – especially the align-
ment process that is central to direct-coupling analysis meth-
ods (Morcos et al., 2011; Marks et al., 2011; Kamisetty
et al., 2013). The most common practice for constructing
MSA (Remmert et al., 2012; Altschul & Koonin, 1998; John-
son et al., 2010) is to build a Hidden Markov Model (HMM)
profile for the entire sequence space of databases and then
iteratively search for homologous sequences. Despite ef-
forts to accelerate MSA construction (Remmert et al., 2012;
Deorowicz et al., 2016; Hauser et al., 2016), this process is
notoriously slow – it takes HHblits (Remmert et al., 2012)
10 seconds to perform a single iteration search on Pfam with
64 CPUs – and requires pre-computing of a HMM profile.

These considerations motivate us to rethink the role of
MSA as a retrieval-based augmentation. Viewing MSA
as a retrieval-augmentation method, it can be decomposed
into two processes: retrieval and alignment. As shown in
Figure 1, the speed bottleneck of MSA is the alignment
time, which is constrained by a quadratic complexity of
O(LD) (Remmert et al., 2012), where D is the database
size, and L is the protein length. Meanwhile, dense retriev-
ers can be accelerated and use only a 100th of the time MSA
needs to align a sequence (Hong et al., 2021; Johnson et al.,
2019b). Moreover, the language of proteins encodes not
only evolutionary knowledge but also other sources of infor-
mation including structural and functional properties (Xia
et al., 2009; O’Sullivan et al., 2004). Multiple sources of
knowledge can be used to aid protein understanding when
evolutionary knowledge is not available for orphan proteins
and de novo (designed) proteins (Perdigão et al., 2015; Ste-
fani, 2004; Anishchenko et al., 2021). Residue alignment
imitates the mutation process in proteins, but empirically,
present large language models have the potential to directly
capture the evolutionary relationship between sequences
without alignment information (Riesselman et al., 2019).

In light of these bottlenecks, We propose a simple yet effec-
tive Retrieved Sequence Augmentation (RSA) method as a
general framework for augmenting protein sequences with
related sequences from an unlabeled database. Specifically,
RSA uses a pre-trained dense sequence retriever to retrieve
protein sequences that are similar to the query sequence
both in terms of homology as well as structure. These se-
quences are learned together with original input to help
the model cover external knowledge and transfer to new
domains. Extensive experiments on six tasks, including sec-
ondary structure prediction, contact prediction, homology
prediction, stability prediction, subcellular localization, and
protein-protein interaction demonstrate the effectiveness of
our model. In addition, RSA overcomes the speed limit
of MSA methods by directly inputting a batch of retrieved
sequences into protein language models without performing
the alignment process. Our main contributions are:

Figure 1. Illustration of speed up by RSA retrieval compared to
MSA on secondary structure prediction dataset with 8678 se-
quences. Accelerated MSA refers to the MSA Transformer with
MSA sequences retrieved by our RSA retriever.

• Employing probabilistic analysis, we develop a uni-
fied framework that uses retrieval knowledge to en-
hance protein language models. Our theory along
with our experiments strikes two novel perspectives:
(1) MSA-augmented methods are essentially retrieval-
augmented language models. Their performance can
be explained by the injection of evolutionary knowl-
edge. (2) The O(N2) complex alignment process is
less necessary for deep protein language models.

• We show that pre-trained dense retrievers can be faster
and perform well in extracting homologous sequences
and structurally similar sequences.

• We leverage the retrieval augmentation framework to
develop a new, fast method RSA. Unlike previous meth-
ods that combine protein language models with exter-
nal knowledge, our method performs retrieval on-the-
fly and requires no additional pre-training. We show
that our model performs better than or competitively
with previous SOTAs. The result promises new op-
portunities in using retrieval augmentation as a new
paradigm in protein learning. Code and data are avail-
able in the supplementary material.

2. Related Work
Retrieval-Augmented Language Models The scaling laws
of language models indicate that scaling up model size and
training data are central to better performance (Kaplan et al.,
2020). However, larger language models are expensive to
pre-train and may even be computationally heavy in infer-
ence. Retrieval-augmented language models (Guu et al.,
2020a; He et al., 2021a; Borgeaud et al., 2022) can achieve
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comparable performance on smaller models and are com-
putationally more efficient by injecting external knowledge.
Our RSA method is motivated by retrieval-augmented lan-
guage models (Guu et al., 2020a; He et al., 2021a), though
we specifically focus on injecting protein knowledge and
adapt the model for token-level tasks and better efficiency.

Protein Language Models To model and further understand
the protein sequence data, language models are introduced
to train on mass data (Heinzinger et al., 2019; Alley et al.,
2019). Large scale pre-training enables language models to
learn structural and evolutionary knowledge (Elnaggar et al.,
2021; Jumper et al., 2021; Lin et al., 2022). Despite these
successes, many important applications still require MSAs
and other external knowledge (Rao et al., 2021; Jumper
et al., 2021; He et al., 2021b; Zhang et al., 2021; Ju et al.,
2021; Rao et al., 2020). MSAs have been shown effective in
improving representation learning, despite being extremely
slow and costly in computation. Hu et al. (2022) and Hong
et al. (2021) use dense retrieval to accelerate multiple se-
quence augmentation, while still dependent on alignment
procedures. Recent work (Fang et al., 2022; Lin et al., 2022;
Wu et al., 2022; Chowdhury et al., 2022) explores MSA-free
language models though additional pre-training is involved.
We take this step further to investigate retrieval-augmented
protein language models that finds a balance between large
scale pre-training and external knowledge.

3. Problem Statement and Notations
The task of protein representation learning is to learn em-
beddings of protein sequences that can be transferred to
downstream tasks with finetuning. For a protein x with L
amino acids, it can be denoted as x = [o1, o2, ...oL], where
each token oi denotes one of the 25 essential amino acids.
We implement the embedding functions using BERT-style
Transformer encoder Embed(x) = [h1, h2, ...hL]

T , where
hi ∈ Rd is a d-dimensional token representation for oi. For
token property prediction (i.e., secondary structure predic-
tion), pairwise prediction (i.e., contact prediction), and se-
quence property prediction (i.e., protein engineering) tasks,
the probabilities are obtained through pooling operations
defined below:

p(yToken|oi) = FFN(hi),

p(yPairwise|oi, oj) = FFN([hi;hj ]),

p(ySequence|x) = FFN(Mean([h1, h2, ...hL]).

4. MSA Transformer as a Retrieval
Augmentation Method

In this section, we introduce a unified probabilistic frame-
work to connect the MSA-based models with retrieval aug-
mentations. We also offer a new holistic view on understand-
ing these models, that is the retrieved protein sequences

enhance the performance of pre-trained protein models by
providing evolutionary knowledge in a similar way as the
MSA sequences do.

Inspired by Guu et al. (2020a) and the probabilistic form of
MSA Transformer, we propose a general framework, protein
retrieval augmentation, that aims to unify several state-of-
the-art evolution augmentation methods. Specifically, we
consider these methods as learning a downstream predictor
p(y|x) based on an aggregation of homologous protein rep-
resentations R1...N . From the view of retrieval, p(y|x) is
decomposed into two steps: retrieve and predict. For a given
input x, the retrieve step first finds possibly helpful protein
sequence r from a sequence corpus R and then predict the
output y conditioning on this retrieved sequence. We treat
r as a latent variable and in practice, we approximately
marginalized it out with top-N retrieved sequences:

p(y|x) =
∑
r∈R

p(y|x, r)p(r|x) ≈
N∑

n=1

p(y|x, rn)p(rn|x).

(1)

The probability p(r|x) denotes the possibility that r is sam-
pled from the retriever given x. Intuitively it measures
the similarity between the two sequences r and x. This
framework also applies to the MSA-based augmentation
methods. We explain in detail using a state-of-the-art MSA-
augmentation model MSA Transformer (Rao et al., 2021) as
an example. In MSA Transformer, the layers calculate self-
attention both row-wise and column-wise. Column-wise
attention is defined as follows, given WQ, WK , WV , WO

as the parameters in a typical attention function:

Rs(i) =
N∑

n=1

σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV WO,

(2)

where Rn(i) denotes the i-th token representation of the
n-th MSA sequence after performing the row-wise attention.
Note that in MSA input, the first sequence r1 is defined as
the original sequence x. Then for a token prediction task,
we define the i-th position output as y and the predicted
distribution p(y|x) can be expressed as:

p(y|x) =
N∑

n=1

σ(
R1WQ(RnWK)T

N
√
d

)(RnWV WOWy)

=
N∑

n=1

p(y|x, rn)λn =
N∑

n=1

p(y|x, rn)p(rn|x),

(3)

where λn = σ(
R1(i)WQ(Rn(i)WK)T

N
√
d

) is the weighting norm
that represents the similarity of retrieved sequence rn and
original sequence x; p(y|x, rn) is a predictor that maps the
row-attention representation of rn and x to label.
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Table 1. Protein Retrieval Augmentation methods decomposed along a different axis. We formulate the aggregation function in the
sequence classification setting and use a feed-forward neural network FFN(·) to map representations to logits. The proposed variants vary
in design axis from the existing methods. †Note that MSA Transformer performs the aggregation in each layer of axial attention.

Method Retriever Form Alignment Form Weight λn Aggregation Function

Existing Methods
Potts Model MSA Aligned — —
Co-evolution Aggregator MSA Aligned 1

N FFN(
∑N

n=1 Rn(i)λn)

MSA Transformer MSA Aligned σ(
XWQ(RnWK)T

N
√
d

) FFN(
∑N

n=1 Rn(i)λn)
†

Proposed Variants
Unaligned MSA Augmentation MSA Not Aligned σ(−||X −Rn||2)

∑N
n=1 FNN(Rn(i))λn

Accelerated MSA Transformer Dense Retrieval Aligned σ(
XWQ(RnWK)T

N
√
d

) FFN(
∑N

n=1 Rn(i)λn)

Retrieval Sequence Augmentation Dense Retrieval Not Aligned σ(−||X −Rn||2)
∑N

n=1 FFN(Embed(x; rn))λn

Eq.3 gives a retrieval-augmentation view of MSA Trans-
former that essentially retrieves homologous sequences with
multiple sequence alignment and aggregates representations
of homologous sequences with regard to their sequence sim-
ilarity. Taking one step further, we define a set of design
dimensions to characterize the retrieving and aggregation
processes. We detail the design dimensions below and illus-
trate how popular models (Appendix B) and our proposed
methods (§5) fall along them in Table 1. These design
choices includes:

• Retriever Form indicates the retriever type used. Mul-
tiple Sequence Alignment is a discrete retrieval method
that uses E-value thresholds (Ye et al., 2006) to find
homologous sequences. Dense retrieval (Johnson et al.,
2019b) has been introduced to accelerate discrete se-
quence retrieval. The method represents the database
with dense vectors and retrieves the sequences that
have top-k vector similarity with the query.

• Alignment Form indicates whether retrieved se-
quences are aligned, as illustrated in Appendix Figure
6.

• Weight Form is the aggregation weight of homologous
sequences, as the p(rn|x) in Eq. 3. Here we denote
this weight as λn. Traditionally, aggregation meth-
ods consider the similarity of different homologous
sequences to be the same and use average weighting.
MSA Transformer also use a weighted pooling method
though the weights of λn use global attention and are
dependent on all homologous sequences.

• Aggregation Function is how the representations of
homologous sequences are aggregated to the origi-
nal sequence to form downstream prediction, as in
p(y|x, r). For example, considering the sequence clas-
sification problem, a fully connected layer maps repre-
sentations to logits. MSA Transformer first aggregates

the representations Rn and then maps the aggregated
representation to logits y, and the retrieval augmenta-
tion probabilistic form first maps each representation
to logits p(y|x, rn) and then linearly weight the logits
with λn in Eq. 3.

Our discussion and formulation so far reach the conclusion
that MSA augmentation methods intrinsically use the re-
trieval augmentation approach. This highlights the potential
of RSA to replace MSA Augmentations as a computation-
ally effective and more flexible method.

However, MSA-based methods claim a few advantages: the
alignment process can help the model capture column-wise
residue evolution; and the MSA Retriever uses a discrete,
token-wise search criterion that ensures all retrieved se-
quences are homology. We propose two novel variants to
help verify these claims.

Unaligned MSA Augmentation. MSA modeling tradi-
tionally depends on the structured alignment between se-
quences to learn evolutionary information. However, deep
models have the potential to learn patterns from unaligned
sequences. Riesselman et al. (2019) shows that the muta-
tion effect can be learned from unaligned sequences using
autoregressive models. Therefore, we first introduce this
variant that uses the homologous sequences from MSA to
augment representations without alignment.

Accelerated MSA Transformer. This variant explores
substituting the discrete retrieval process in MSA with a
dense retriever. We use the K-nearest neighbor search to
find the homologous sequences. We still align the sequences
before input into MSA Transformer. We introduce this
variant to find if MSA builder has an advantage over our
pre-trained dense retriever in finding related sequences.

An empirical study of the performance of these models can
be found in Subsection 6.6.
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5. Retrieval Sequence Augmentations

Figure 2. A brief overview of the proposed RSA protein encoding
framework. Based on a query protein, RSA first retrieves related
protein data from the database based on the top K similar features
encoded by a pretrained retrieval model. Then we augment the
query protein into pairs with each retrieved data and feed them
into the protein model for protein tasks.

Table 2. Recall and Precision for retrieving top 100 protein se-
quences with ESM1b embeddings. In dataset Pfam and SCOPe,
we test whether retrieved proteins are of the same Family, Super-
family, or Fold as query protein, and report the recall and precision.

Retrieval Task (Top 100) Type Recall Precision

Pfam - Family Homology 100 90.42
SCOPe - Fold Structural 100 65.98
SCOPe - Superfamily Structural 100 46.00
SCOPe - Family Structural 100 24.71

Existing knowledge augmentation methods for protein rep-
resentation learning are either designed for a specific task or
require cumbersome data preprocessing. Motivated by the
potential of pre-trained retrievers to identify proteins that
are homologous or geometric similar, we propose a pipeline,
RSA (Retrieval Sequence Augmentation), to directly aug-
ment protein models on-the-fly. Our model implementation
follows the retrieve-then-predict framework in Eq. 1. We
elaborate on the model architecture implementations in Sub-
section 5.1 and describe model training in Subsection 5.2.

5.1. Model Architectures

The RSA model comprises of a neural sequence retriever
p(r|x), and a protein model that combines both original
input and retrieved sequence to obtain prediction p(y|x, r).

5.1.1. RSA RETRIEVER

The retriever is defined as finding the sequences that are
semantically close to the query. Denote retriever model as

G which encode protein sequence and output embeddings.

p(r|x) = exp f(x, r)∑
r′∈R exp f(x, r′)

,

f(x, r) = −||G(x)−G(r)||2
(4)

The similarity score f(x, r) is defined as the negative L2 dis-
tance between the embedding of the two sequences. The dis-
tribution is the softmax distribution over similarity scores.

For protein retrieval, we aim to retrieve protein sequences
that have similar structures or are homologous to the query
sequence. Motivated by the k-nearest neighbor retrieval
experiment with ESM-1b (Rives et al., 2019) pre-trained
embeddings (as shown in Table 2 and Figure 4), we imple-
ment the embedding functions using a 34-layer ESM-1b
encoder. We obtain sequence embeddings by performing av-
erage pooling over token embeddings. Note that finding the
most similar proteins from a large-scale sequence database
is computationally heavy. To accelerate retrieval, we use
Faiss indexing (Johnson et al., 2019a), which uses clus-
tering of dense vectors and quantization to allow efficient
similarity search at a massive scale.

5.1.2. RSA ENCODER

Retrieval Augmented Protein Encoder Given a sequence
x and a retrieved sequence r with length L and M respec-
tively, the protein encoder combines x and r for prediction
p(y|x, r). To make our model applicable to any protein
learning task, we need to augment both sequence-level rep-
resentation and token-level representation. To achieve this,
we concatenate the two sequences before input into the
transformer encoder, which uses self-attention to aggregate
global information from the retrieved sequence r into each
token representation.

A = σ(
(H[x;r]W

Q)(H[x;r]W
K)T

√
d

), A = [Ax;Ar]

Attn(H[x;r]) = (AxHxW
V +ArHrW

V )WO

where H[x;r] = [hx
1 , h

x
2 , ..., h

x
L, h

r
1...h

r
M ]T denotes the in-

put embedding of original and retrieved sequences. The
output token representation hi automatically learns to select
and combine the representation of retrieved tokens. This
can also be considered a soft version of MSA alignment.
After computing for each pair of (x, r), we aggregate them
by weight p(r|x) defined in Eq. 4.

5.2. RSA Training

Training For downstream finetuning, we maximize p(y|x)
by performing training on the retrieval augmented protein
encoder. We freeze the retriever parameters during training.
For a query sequence with N retrieved proteins, the com-
putation cost is N times the original model, O(NL2) for a
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Table 3. Main Results for vanilla protein representation learning methods, knowledge-augmented baselines and our proposed RSA method.
Note that italized result is reported by corresponding related work. The last column reports average result on all six tasks. For MSA
Transformer and RSA, we all use 16 sequences (N=16) for augmentation. For Gremlin Potts model, we use the full MSA.

Method Pretrain Knowledge Knowledge SSP Contact Homology Stability Loc PPI Avg
Pretrain Injection

Transformer × × × 0.384 0.274 0.101 0.422 0.541 0.616 0.345
LSTM × × × 0.596 0.263 0.181 0.591 0.629 0.638 0.404

RSA (Transformer backbone) × × ✓ 0.541 0.332 0.346 0.602 0.591 0.700 0.518

ESM-1b ✓ × × 0.716 0.458 0.978 0.695 0.781 0.782 0.668
ProtBERT ✓ × × 0.691 0.556 0.528 0.651 0.771 0.688 0.579
MSA Transformer (MSA N=1) ✓ ✓ × 0.594 0.397 0.880 0.767 0.668 0.633 0.592

Gremlin (Balakrishnan et al., 2011) × × ✓ — 0.507 — — — — —
MSA Transformer ✓ ✓ ✓ 0.654 0.618 0.958 0.796 0.694 0.751 0.672
OntoProtein (Zhang et al., 2022) ✓ × ✓ 0.68 0.40 0.96 0.75 — — —
PMLM (He et al., 2021b) ✓ ✓ × 0.728 0.717 0.946 — — — —

RSA (ProtBERT backbone) ✓ × ✓ 0.691 0.717 0.987 0.778 0.795 0.827 0.723

transformer encoder layer, which is more efficient than the
MSA Transformer with a O(NL2)+O(N2L) computation
cost. Also, the retrieval is performed on the fly.

6. Experiments
6.1. General Setup

Downstream tasks In order to evaluate the performance
of our trained model, six datasets are introduced, namely
secondary structure prediction, contact prediction, remote
homology prediction, subcellular localization prediction,
stability prediction, and protein-protein interaction. Please
refer to Appendix Table 9 for more statistics of the datasets.
The train-eval-test splits follow TAPE benchmark (Rao et al.,
2019) for the first four tasks and PEER benchmark (Xu
et al., 2022) for subcellular localization and protein-protein
interaction. The introduction to datasets is in Appendix C.1.

Retriever and MSA Setup Limited by available compu-
tation resources, we build a database on Pfam (El-Gebali
et al., 2018) sequences, which covers 77.2% of the UniPro-
tKB (Apweiler et al., 2004) database and reaches the evo-
lutionary scale. We generate ESM-1b pre-trained repre-
sentations of 44 million sequences from Pfam-A and use
Faiss (Johnson et al., 2019b) to build the retrieval index. For
a fair comparison, the MSA datasets are also built on the
Pfam database. We use HHblits (Remmert et al., 2012) to
extract MSA. The details are shown in Appendix C.2.

Baselines We apply our retrieval method to both pre-
trained and randomly initialized language models. Fol-
lowing Rao et al. (2019) and Rao et al. (2021), we com-
pare our model with vanilla protein representation mod-
els, including LSTM(Liu, 2017), Transformers(Vaswani
et al., 2017) and pre-trained models ESM-1b(Rives et al.,

2019), ProtBERT(Elnaggar et al., 2020). We also compare
with state-of-the-art knowledge-augmentation models: Potts
Model(Balakrishnan et al., 2011), MSA Transformer(Rao
et al., 2021) that inject evolutionary knowledge through
MSA, OntoProtein(Zhang et al., 2022) that uses gene on-
tology knowledge graph to augment protein representations
and PMLM(He et al., 2021b) that uses pair-wise pretraining
to improve co-evolution awareness. We use the reported
results of LSTM from Zhang et al. (2021); Xu et al. (2022).

Training and Evaluation Our RSA model is applicable
to any global-aware encoders. To demonstrate RSA as a
general method, we perform experiments both with a shal-
low transformer encoder, and a large pre-trained ProtBERT
encoder. The Transformer model has 512 dimensions and
6 layers. All self-reported models use the same truncation
strategy and perform parameter searches on the learning
rate, warm-up rate, seed, and batch size. For evaluation, we
choose the best-performing model on the validation set and
perform prediction on the test set.

Figure 3. Contact Prediction of RSA and MSA Transformer on De
Novo Proteins. We plot samples that RSA have better predictions
under the diagonal line.
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6.2. Main Results

We show the result for downstream tasks in Table 3, in-
cluding models with/without pretraining, and with/without
knowledge augmentations. We form the following conclu-
sion: Retrieval Sequence Augmentations perform on par
with or even better than other knowledge-augmented
methods without additional pre-training. The last two
blocks compare our method with previous augmentation
methods. Our method outperforms MSA Transformer on
average by 5% and performs on par with PMLM on struc-
ture and evolution prediction tasks. Notably, both MSA
Transformer and PMLM perform additional pre-training
with augmentations, while our method uses no additional
pre-training. From the results, we can see that RSA com-
bined transformer model also improves by 10% than other
shallow models, demonstrating the effectiveness of our aug-
mentation to both shallow models and pre-trained models.

Table 4. The table shows remote homology prediction performance
with increasing domain gaps: Family, Superfamily and Fold.

Method Family Superfam Fold

Transformer 0.101 0.518 0.078
MSA Transformer (no MSA) 0.880 0.278 0.206
ProtBERT 0.528 0.192 0.170

MSA Transformer 0.958 0.503 0.235
Accelerated MSA Transformer 0.945 0.406 0.227
RSA (ProtBERT backbone) 0.987 0.677 0.267

6.3. Retrieval Augmentation for Domain Adaptation

We investigate the model’s transfer performance in domains
with distribution shifts. We train our model on the Remote
Homology dataset, and test it on three testsets with increas-
ing domain gaps: proteins that are within the same Family,
Superfam, and Fold as the training set respectively. The
results are in Table 4. It is pertinent to note that MSA
transformer’s performance decreases dramatically when the
gap between the domains increases. Our model surpasses
MSA Transformer by a large margin on shifted domains,
especially from 0.5032 to 0.6770 on Superfam. Our model
proves to be more reliable for domain shifts, illustrating that
retrieval facilitates the transfer across domains.

Furthermore, we test our model on 108 out-of-domain De
Novo proteins for the contact prediction task. De Novo
proteins are synthesized by humans and have a different
distribution from natural proteins. It can be seen in Figure 3
that, in addition to surpassing MSA transformer on average
precision by 1%, RSA also exceeds MSA transformer on
63.8% of data, demonstrating that RSA is more capable of
locating augmentations for out-of-distribution proteins. We
also test our model on the secondary structure task with
new domain data, as shown in Appendix (Table 8 and Fig-
ure 7). The results also show that our model surpasses MSA

Figure 4. Plot of the -log(E-values) of MSA and Dense Retriever
obtained sequences on the test sets for six tasks. E-values of
both methods are obtained with HHblits(Remmert et al., 2012).
Sequences with -log E-value >10 are high-quality homologous se-
quences. We also show with bar plots the percentage of sequences
in the test sets that have homologous sequences.

Transformer in transferring to unseen domains.

Table 5. Results for MSA Transformer and Unaligned MSA Aug-
mentation on Homology and Stability task. Both models use MSA
as inputs, but Unaligned MSA Augmentation unaligns MSA and
augments the model by concatenating MSA sequence to the input.

Methods Homology Stability

MSA Transformer 0.958 0.796
Unaligned MSA Augmentation 0.973 0.749
RSA 0.987 0.778

6.4. Retrieval Speed

A severe speed bottleneck limits the use of previous MSA-
based methods. In this part, we compare the computation
time of RSA with MSA and an accelerated version of MSA
as introduced in Section 4. As shown in Figure 1, alignment
time cost is much more intense than retrieval time. Even af-
ter reducing the alignment database size to 500, accelerated
MSA still need 270 min to build MSA. At the same time
RSA only uses dense retrieval, and is accelerated 373 times.
Note that with extensive search, MSA can find all available
alignments in a database. However, this would be less bene-
ficial to deep protein language models as the memory limit
only suffices a few dozens of retrieved sequences.

6.5. Retrieved Protein Interpretability

The previous retrieval-augmented language models rely on
a dense retriever to retrieve knowledge-relevant documents.
However, it remains indistinct what constitutes knowledge
for protein understanding and how retrieved sequences can
be used for improving protein representations. In this sec-
tion, we take a close look at the retrieved protein sequences
to examine their homology and geometric properties.

Dense Retrievers Find Homologous Sequences. One type
of knowledge distinct to the protein domain is sequence
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homology, which infers knowledge on shared ancestry be-
tween proteins in evolution. Homologous sequences are
more likely to share functions or similar structures. We
analyze whether retrieved sequences are homologous.

As illustrated in Figure 4 (right axis), across all six datasets,
our dense retriever retrieved a high percentage of homol-
ogous proteins that can be aligned to the original protein
sequence, comparable to traditional HMM-based MSA re-
trievers. We additionally plot each dataset’s negative log
E-values distribution in Figure 4. Accordingly, pre-trained
protein models can be used directly as dense retrieval of
homologous sequences.

Table 6. Results for MSA Transformer and Accelerated MSA
Transformer on downstream tasks. Accelerated MSA Transformer
uses MSA built from dense retrieval sequences.

Methods MSA Accelerated MSA RSA
Transformer Transformer

SSP 0.654 0.634 0.691
Contact 0.618 0.608 0.717

Homology 0.958 0.945 0.987
Stability 0.796 0.767 0.778

Loc 0.694 0.682 0.795
PPI 0.751 0.679 0.827

RSA Retriever Find Structurally Similar Protein Protein
structures are also central to protein functions and properties.
In this section, we analyze whether retrieved sequences are
structurally similar. In Figure 5, we plot the TM scores
between the RSA retrieved protein and the origin protein on
ProteinNet (AlQuraishi, 2019) test set. Using ESMFold1,
we obtain the 3D structures of the top 5 retrieved proteins
and then calculate the TM score between these proteins and
the query protein. Most of the retrieved proteins exceed the
0.2 criteria, which indicates structural similarity, and about
half are above the 0.5 criteria, which indicates high quality.
Accordingly, this indicates that the dense retrieval algorithm
is capable of finding proteins with structural knowledge.

6.6. Ablation Study

Ablation on Retriever: Unaligned MSA Augmentation.
We ablate RSA retriever by using MSA retrieved proteins
as augmentations to our model, denoted as Unaligned MSA
Augmentation. The results are in Table 5. As the result
shows, Unaligned MSA Augmentation performs worse than
our RSA model, especially on the Stability dataset, where
the performance drops from 0.778 to 0.7443. It thus con-
firms the ability of our dense retriever to provide more abun-
dant knowledge for protein models.

Ablation on Retriever: Ablation on Retrieval Number
Our study examines the effect of injected knowledge quan-
tity for RSA and all retrieval baselines. The results are listed

1https://esmatlas.com/resources?action=fold

Figure 5. Plot of the cumulative distribution of TM-scores for pro-
teins from dense retrieval. The value at a shows the probability
that TM-score is larger than a. We also give a visual example of
retrieved protein to illustrate similar structures.

in Table 7. We select the Contact dataset because all base-
line models are implemented on this dataset. RSA and all
baselines perform consistently better as the retrieval number
increases. Also, our model outperforms all baseline models
for all augmentation numbers.

Table 7. The performance of retrieval augmentation models w.r.t.
the number of retrieved sequences on contact prediction.

Methods N=1 N=4 N=8 N=16 N=32 N= full

Potts Model — 0.412 0.471 0.479 0.480 0.507
MSA Transformer 0.397 0.579 0.560 0.618 0.669 —
Accelerated MSA Transformer 0.397 0.524 0.538 0.608 0.654 —
RSA 0.556 0.595 0.615 0.717 0.719 —

Ablation on aggregation: We compare RSA with Acceler-
ated MSA Transformer to evaluate whether our aggregation
method is beneficial for learning protein representations.
Note that only part of the retrieved sequences that satisfy ho-
mologous sequence criteria are selected and utilized during
alignment. As shown in Table 6, the performance of the Ac-
celerated MSA Transformer drops a lot compared to RSA.
In contrast to MSA type aggregation, which is restricted by
token alignment, our aggregation is more flexible and can
accommodate proteins with variant knowledge.

Is MSA retriever necessary? Table 6 illustrates that Ac-
celerated MSA Transformer performs near to MSA Trans-
former (MSA N=16) for most datasets, except for Stability
and PPI on which our retriever failed to find enough homol-
ogous sequences, as Figure 4 demonstrates. Our retriever
is therefore capable of finding homologous sequences for
most tasks and is able to replace the MSA retriever.

Is MSA alignment necessary? To support that MSA align-
ment is not necessary, we compare Unaligned MSA Aug-
mentation to the original MSA transformer. As revealed
by the results in Table 5. Unaligned MSA Augmentation
performs close to the MSA transformer. This confirms our
declaration that self-attention is capable of integrating pro-
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tein sequences into representations.

7. Conclusions and Future Work
In this paper, we introduce a simple yet effective method to
enhance protein representation learning. We demonstrate
RSA as a fast yet high-performing method that has the poten-
tial to replace MSA-based methods in most scenarios. For
future work, we hope to further scale up our RSA method
and apply it to 3D folding tasks.
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Fast and accurate multiple sequence alignment of huge
protein families. Scientific reports, 6(1):1–13, 2016.

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani,
A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar,
G. A., Smart, A., Sonnhammer, E. L., Hirsh, L., Paladin,
L., Piovesan, D., Tosatto, S. C., and Finn, R. D. The
Pfam protein families database in 2019. Nucleic Acids
Research, 47(D1):D427–D432, 10 2018. ISSN 0305-
1048. doi: 10.1093/nar/gky995. URL https://doi.
org/10.1093/nar/gky995.

Elnaggar, A., Heinzinger, M., Dallago, C., Rihawi, G.,
Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., et al. Prottrans: towards cracking the lan-
guage of life’s code through self-supervised deep learn-
ing and high performance computing. arXiv preprint
arXiv:2007.06225, 2020.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G.,
Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., Bhowmik, D., and Rost, B. Prottrans:
Towards cracking the language of life’s code through
self-supervised learning. bioRxiv, 2021.

Fang, X., Wang, F., Liu, L., He, J., Lin, D., Xiang, Y., Zhang,
X., Wu, H., Li, H., and Song, L. Helixfold-single: Msa-
free protein structure prediction by using protein language
model as an alternative. arXiv preprint arXiv:2207.13921,
2022.

Garrett, R. H. and Grisham, C. M. Biochemistry. Cengage
Learning, 2016.

Goyal, A., Friesen, A., Banino, A., Weber, T., Ke, N. R.,
Badia, A. P., Guez, A., Mirza, M., Humphreys, P. C.,
Konyushova, K., et al. Retrieval-augmented reinforce-
ment learning. In International Conference on Machine
Learning, pp. 7740–7765. PMLR, 2022.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International Conference on Machine Learning, pp. 3929–
3938. PMLR, 2020a.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-
W. Realm: Retrieval-augmented language model pre-
training. international conference on machine learning,
2020b.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.22.529597doi: bioRxiv preprint 

https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1101/2023.02.22.529597


Protein Property Prediction via Retrieved Sequence Augmentation

Hauser, M., Steinegger, M., and Söding, J. Mmseqs software
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A. A Brief Recap on Proteins
Proteins are the end products of the decoding process that starts with the information in cellular DNA. As workhorses
of the cell, proteins compose structural and motor elements in the cell, and they serve as the catalysts for virtually every
biochemical reaction that occurs in living things. This incredible array of functions derives from a startlingly simple code
that specifies a hugely diverse set of structures.

In fact, each gene in cellular DNA contains the code for a unique protein structure. Not only are these proteins assembled
with different amino acid sequences, but they also are held together by different bonds and folded into a variety of three-
dimensional structures. The folded shape, or conformation, depends directly on the linear amino acid sequence of the
protein.

1. What are proteins made of?

20 kinds of amino acids. Within a protein, multiple amino acids are linked together by peptide bonds, thereby forming a
long chain.

2. Protein structures There are four levels of structures:

• Primary structure: amino acids sequence

• Secondary structure: stable folding patterns, including Alpha Helix, Beta Sheet.

• Tertiary structure: ensemble of formations and folds in a single linear chain of amino acids

• macromolecules with multiple polypeptide chains or subunits

3. Protein Homology Protein homology is defined as shared ancestry in the evolutionary history of life. There exists
different kinds of homology, including orthologous homology that may be similar function proteins across species (human
and mice α-goblin), and paralogous homology that is the result of mutations (human α-goblin and β-goblin). Homologies
result in conservative parts in protein sequences, or leads to similar structures and functions.

4. Multiple Sequence Alignments A method used to determine conservative regions and find homologous sequences. An
illustration is given here to show how sequences are aligned.

B. Overview of Previous Protein Representation Augmentation Methods
Below we introduce several state-of-the-art evolution augmentation methods for protein representation learning. These
methods rely on MSA as input to extract representations. We use x to denote a target protein and its MSA containing N
homologous proteins.

Potts Model (Balakrishnan et al., 2011). This line of research fits a Markov Random Field to the underlying MSA with
likelihood maximization. This approach is different from other protein representation learning methods as it only learns a
pairwise score for residues contact prediction. We will focus on other methods that augment protein representations that can
be used for diverse downstream predictions.

Co-evolution Aggregator (Yang et al., 2020; Ju et al., 2021). One way to build an evolution informed representation is to
use a MSA encoder to obtain the co-evolution related statistics. By applying MSA encoder on the n-th homologous protein
in the MSA, we can get a total of L× d embeddings Rn, each position is a d channel one-hot embedding indicating the
amino acid type. We use wn to denote the weight from Rn when computing the token representation hi:

hi =
1

Meff

N∑
n=1

wnRn(i), (5)

where Meff =
∑N

n=1 wn and wn = 1
N . For contact prediction, pair co-evolution representation are computed in a similar

way from the hadamard product:

hij =
1

Meff

N∑
n=1

wnRn(i)
⊗

Rn(j). (6)
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Figure 6. Illustrated difference of aligned and unaligned homologous sequences.

Ensembling Over MSA (Rao et al., 2020). This approach aligns and ensembles representations of homologous sequences.
Consider the encoder extract the same token representations for unaligned and aligned sequences. The ensembled token
representation is:

hi =
1

N

N∑
n=1

Rn(i), hij =
1

N

N∑
n=1

σ(
Rn(i)WQ(Rn(j)WK)T

N
√
d

). (7)

MSA Transformer (Rao et al., 2021) In each transformer layer, a tied row attention encoder extracts the dense representation
Rn, then a column attention encoder

Rs(i) =

N∑
n=1

σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV . (8)

C. Experiment Setups
C.1. Introduction to the datasets

Secondary structure prediction (SSP, 8-class) aims to predict the secondary structure of proteins, which indicates the local
structures. Contact prediction predicts the long-range (distance >6) residue-residue contact, which measures the ability of
models to capture global tertiary structures. Homology prediction aims to predict the fold label of any given protein, which
indicates the evolutionary relationship of proteins. Stability prediction is a protein engineering task, which measures the
change in stability w.r.t. residue mutations. Subcellular Localization (Loc) prediction predicts the local environment of
proteins in the cell, which is closely related to protein functions and roles in biological processes. Protein protein interaction
(PPI) predicts whether two proteins interact with each other, which is crucial for protein function understanding and drug
discovery.

C.2. Retriever and MSA Details

We adopt Faiss (Johnson et al., 2019b) indexing to accelerate the retrieval process by clustering the pre-trained dense vectors.
In our implementation, we use the Inverted file with Product Quantizer encoding Indexing and set the size of quantized
vectors to 64, the number of centroids to 4096, and the number of probes to 8. During retrieval, L2 distances are used
to measure sequence similarity. The index is first trained on .5% of all retrieval data and then add all vectors. For MSA
datasets, We use HHblits (Remmert et al., 2012) to perform alignment, and the iteration and E-value thresholds of HHblits
are set as 3 and 1.
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Figure 7. Prediction of Secondary Structure on De Novo Dataset. Each color corresponds to a different secondary structure.

D. Supplementary Experiment Analysis
D.1. Baselines

Protein representation learning benefits from knowledge augmentations. In this part, we examine the performance
of three types of baseline models. As shown in Table 3, structure and evolution-related tasks all benefit greatly from
pre-training, with over 20% improvement in contact prediction and over 40% improvement in homology prediction. Also,
we observe that all kinds of knowledge-augmentation methods improve performance on a few downstream tasks. Though
based purely on MSA information, Potts model shows competitive performance to vanilla pre-trained models. MSA
Transformer with depth=16 MSA input also sees 12% improvement on its no-MSA input performance. OntoProtein also
improves on homology prediction and stability prediction, since knowledge graph enhancement is more suitable to function
prediction than structure understanding. PMLM is the SOTA model on both structure and evolution-related tasks through
co-evolution pre-training on Pfam database. This trend shows that current scale ( <1 Billion parameters) pre-trained models
still need knowledge augmentations to reach SOTA, and evolutionary knowledge is especially important for downstream
prediction.

D.2. Domain Adaptation Analysis

In this section, we perform additional analysis on secondary structure prediction tasks. We perform training on NetSurfP-
2.0(Klausen et al., 2019) training set and test on two datasets with domain gaps. On CASP12, RSA marginally outperforms
other baselines, as shown in Table 8. We also test on 10 de novo proteins (6YWC, 2LUF, 7BPM, 7BPL, 7CBC, 1FSD, 1IC9,
5JI4, 5KWO, 6W6X). Since we didn’t find secondary structure labels for these proteins, we provide visualization in Figure 7
which shows that our model has an obvious overhead over MSA Transformer on predicting geometric components.

Table 8. The domain adaptation performance of models on CASP12 secondary structure prediction.

Method CASP12

ProtBERT 0.628
MSA Transformer 0.621
Accelerated MSA Transformer 0.620
RSA (ProtBERT backbone) 0.631

E. Dataset details
E.1. Downstream tasks

Table 9 gives the details for the datasets.
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Table 9. Overview for datasets in downstream tasks

Task Name Dataset source #train sequences #test sequences
Secondary Structure Prediction NetSurfP-2.0 (Klausen et al., 2019) 8,678 513
Contact Prediction ProteinNet (AlQuraishi, 2019) 25,299 40
Remote Homology Prediction Deepsf (Hou et al., 2018) 12,312 718
Stability Prediction Rocklin’s Dataset (Rocklin et al., 2017) 53,571 12,851
Subcellular Localization DeepLoc (Almagro Armenteros et al., 2017) 8,945 2,768
Protein Protein Interaction Pan’s Dataset (Pan et al., 2010) 6,844 227

E.2. De Novo Protein Dataset

We follow Chowdhury et al. (2022) to curate a de novo dataset of 108 proteins from Protein Data Bank (Bank, 2022).
These proteins are originally designed de novo using computationally parametrized energy functions and are well-suited for
out-of-domain tests. Note that different from orphan dataset, MSA can be built for this dataset, though showing a decline in
quality.

F. Additional Visualization of Retrieved Sequence 3D Structure

Figure 8. Query and Retrieved Sequence Structures

As shown in Figure 8, we random picked a few more examples to illustrate the structural similarity between query protein
and retrieval proteins.
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