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Abstract

The advancement of protein representation learning has been significantly in-
fluenced by the remarkable progress in language models. Accordingly, protein
language models perform inference from individual sequences, thereby limiting
their capacity to incorporate evolutionary knowledge present in sequence varia-
tions. Existing solutions, which rely on Multiple Sequence Alignments (MSA),
suffer from substantial computational overhead and suboptimal generalization
performance for de novo proteins. In light of these problems, we introduce a
novel paradigm called Retrieved Sequence Augmentation (RSA) that enhances
protein representation learning without necessitating additional alignment or pre-
processing. RSA associates query protein sequences with a collection of struc-
turally or functionally similar sequences in the database and integrates them for
subsequent predictions. We demonstrate that protein language models benefit from
retrieval enhancement in both structural and property prediction tasks, achieving
a 5% improvement over MSA Transformer on average while being 373 times
faster. Furthermore, our model exhibits superior transferability to new protein
domains and outperforms MSA Transformer in de novo protein prediction. This
study fills a much-encountered gap in protein prediction and brings us a step closer
to demystifying the domain knowledge needed to understand protein sequences.
Code is available at https://github.com/HKUNLP/RSA.

1 Introduction

Proteins, as fundamental yet complex components of life, exhibit a diverse range of functions
within organisms [17]. The enigmatic nature of these macromolecules originates from the intricate
interplay between their sequences, structures, and functions, which is influenced by both physics
and evolution [47]. Commonly, language models are employed to model protein sequences by
generating amino acid distributions that align with co-occurrence probabilities observed in nature, thus
encapsulating structural and evolutionary information within representations. While this approach has
proven effective [14, 30, 35, 38, 45], extracting adequate information from the sequence alone can be
inadequate in addressing challenges in capturing fine-grained evolutionary knowledge [26, 35].

Retrieval-augmented models have demonstrated efficacy in incorporating domain knowledge and
improving intricate reasoning abilities in natural language processing and machine learning [18,
20, 32, 52]. These models employ a large-scale memory of sequences as a knowledge base and
utilize multiple related input sequences instead of a single input to establish connections with implicit
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knowledge. Such approach offers the potential for more interpretable and modular knowledge
capture [19], enabling rapid generalization to novel domains [32, 8]. To this end, we investigate
the enhancement of protein language model predictions through a straightforward retrieval-based
augmentation that perform prediction based on related sequences. This process is particularly
related with evolution, as sequentially similar proteins, or homologs, often result from evolutionary
selection and are more likely to possess shared functional and structural characteristics with the target
protein [4, 12, 56].

Figure 1: Illustration of speed up by
RSA retrieval compared to MSA on
secondary structure prediction dataset
with 8678 sequences. Accelerated MSA
refers to the MSA Transformer with
MSA sequences retrieved by our RSA
retriever.

In this work, we explore Retrieved Sequence
Augmentation (RSA) method as a general frame-
work for augmenting protein representations. Specifically,
RSA employs a pre-trained dense sequence retriever
to retrieve protein sequences that are similar to the
query sequence both in terms of homology as well as
structure. By learning these sequences alongside the
original input, the model incorporates external knowledge
and transfers it to new domains. Our assessment of
this method consists of comprehensive experiments
conducted across seven distinct tasks, encompassing
protein structure, function, evolution, and engineering,
which require diverse knowledge. Employing a vast
database of approximately 40 million protein sequences,
we show that a retrieval-based approach leveraging this
data consistently outperforms state-of-the-art methods.

In recent studies [30, 43, 55, 29], models such as
MSA Transformer and AlphaFold2 have demonstrated re-
markable success utilizing Multiple Sequence Alignment
(MSA) of protein homologs as input features. However,
these models heavily depend on the MSA alignment process, which is thought to underscore co-
evolutionary features. This procedure is notoriously computationally intensive - for instance, it takes
HHblits [44] 10 seconds for a single iteration search on Pfam using 64 CPUs. In contrast, RSA
employs retrieved sequences from dense retrievers without requiring an alignment process, resulting
in a 373-fold speed-up and on-the-fly processing, as shown in Figure 1. Additionally, RSA without
additional pretraining outperforms a pre-trained MSA Transformer in downstream tasks, particularly
for denovo proteins with few or no MSAs. Furthermore, we employ probabilistic analysis to integrate
MSA-based approaches into the retrieval-augmentation paradigm and challenge conventional wisdom
by demonstrating that, although residue alignment adheres to biological principles, modern language
models do not solely depend on alignment to extract evolutionary information. Consequently, we
conclude that retrieval augmentation for proteins as a general framework can be a sound replacement
for MSA in terms of expressiveness, speed, and augmentation performance. Our major contributions
can be summarized as:

• The novel investigation of retrieval-augmented protein language models and the proposal of
the first alignment-free, efficient framework, RSA, for enhancing protein representations.

• Our theoretical establishment of a unified framework reveal two significant insights: (1)
MSA-augmented methods are essentially retrieval-augmented language models. Their
performance can be explained by the injection of evolutionary knowledge. (2) The O(N2)
complex alignment process is less necessary for deep protein language models.

• The demonstration that pre-trained dense retrievers offer greater efficiency and competitive
efficacy in extracting homologous sequences and structurally similar sequences.

2 Related Work

Retrieval-Augmented Language Models The integration of non-parametric memory retrieval and
parametric models has been an intriguing approach for many problems [31, 19, 21, 10, 59]. Retrieval-
augmented language models explicitly introduce related knowledge from the memory and have shown
improved performance in complex reasoning [50] and generalization [32, 8] to new domains. Our
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Figure 2: Comparison between MSA Transformer and RSA. (A) MSA Transformer aligns query to
the protein database and use axial attention to encode MSA feature. (B) Overview of the probablistic
framework. (C) RSA initially extracts related protein sequence from the database with a dense
retriever. Subsequently, the query protein is augmented into pairs with each retrieved datum, which
are input into the protein model for relevant tasks. Both MSA Transformer and RSA fall within the
retrieval framework; however, RSA doesn’t require the alignment process.

RSA method is motivated by retrieval-augmented language models [19, 21], though we specifically
focus on injecting protein knowledge and adapt the model for token-level tasks and better efficiency.

Protein Language Models To model and further understand the protein sequence data, language
models are introduced to train on mass data [23, 1]. Large scale pre-training enables language models
to learn structural and evolutionary knowledge [14, 30, 35]. Despite these successes, many important
applications still require MSAs and other external knowledge [43, 30, 22, 61, 29, 42]. MSAs have
been shown effective in improving representation learning, despite being extremely slow and costly
in computation. Hu et al. [26] and Hong et al. [24] use dense retrieval to accelerate multiple sequence
augmentation, while still dependent on alignment procedures. Recent work [16, 35, 53, 11] explores
MSA-free language models though additional pre-training is involved. We take this step further to
investigate retrieval-augmented protein language models.

3 Augmenting Protein Representations with Retrieved Sequences

In this section, we introduce a unified probabilistic framework to connect the MSA-based models
with retrieved augmentations. This framework offers a novel holistic view on understanding these
models, that is the retrieved protein sequences enhance the performance of pre-trained protein models
by providing evolutionary knowledge in a similar way as MSA sequences do. Furthermore, we
emphasize design elements that inspire our methodology for achieving increased efficiency and
adaptability.

3.1 Background and Problem Statement

Given a protein x = [o1, o2, ...oL] comprising of L amino acids, the objective of a protein language
model is to learn an embedding transferable to subsequent tasks. The embedding, represented as
Embed(x) = [h1, h2, ...hL], where hi ∈ Rd denotes a d-dimensional token representation for oi. The
aim is to learn p(y|x) for predicting the properties of the sequence. For token property prediction
tasks (e.g., secondary structure prediction) and pairwise prediction tasks (e.g., contact prediction), a
prediction should be allocated to each token/pair, i.e., p(yi|oi) or p(yij |oi, oj).
One way to construct an evolution-informed representation involves encoding MSA input into
corresponding representations. We consider MSAs as N aligned protein homologs r1, . . . , rN . Prior
studies [55, 29] encode MSA as co-evolution statistics features R1...N and aggregate these features
to derive the representation, while MSA Transformer [43, 30] perceives MSA as a matrix, employing
axial attention to extract salient evolutionary traits. Here we also denote retrieved sequences as
r1, . . . , rN and their features as R1...N , though no alignment is performed to these sequences.
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3.2 Protein Retrieval Augmentations: A Unified Framework

Table 1: Protein Retrieval Augmentation methods decomposed along a different axis. We formulate
the aggregation function in the sequence classification setting and use a feed-forward neural network
FFN(·) to map representations to logits. The proposed variants vary in design axis from the existing
methods. †Note that MSA Transformer performs the aggregation in each layer of axial attention,
which differs from other variants.

Method Retriever Form Alignment Form Weight λn Aggregation Function

Existing Methods
Potts Model MSA Aligned — —
Co-evolution Aggregator MSA Aligned 1

N FFN(
∑N

i=1 Rn(i)λn)

MSA Transformer MSA Aligned σ(
XWQ(RnWK)T

N
√
d

) FFN(
∑N

i=1 Rn(i)λn)
†

Proposed Variants
Unaligned MSA Augmentation MSA Not Aligned σ(−||X −RL||2)

∑N
i=1 FNN(Rn(i))λn

Accelerated MSA Transformer Dense Retrieval Aligned σ(
XWQ(RnWK)T

λ(N,d) ) FFN(
∑N

i=1 Rn(i)λn)

Retrieval Sequence Augmentation Dense Retrieval Not Aligned σ(−||X −Rn||2)
∑N

i=1 FNN(Embed(x; rn))λn

Inspired by Guu et al. [19], protein retrieval augmentation, that aims to unify several state-of-the-art
evolution augmentation methods. Specifically, we consider these methods as learning a downstream
predictor p(y|x) based on an aggregation of homologous protein representations R1...N . From the
view of retrieval, p(y|x) is decomposed into two steps: retrieve and predict. For a given input x,
the retrieve step first finds possibly helpful protein sequence r from a sequence corpus R and then
predict the output y conditioning on this retrieved sequence. We treat r as a latent variable and in
practice, we approximately marginalized it out with top-N retrieved sequences:

p(y|x) =
∑
r∈R

p(y|x, r)p(r|x) ≈
N∑

n=1

p(y|x, rn)p(rn|x). (1)

The probability p(r|x) denotes the possibility that r is sampled from the retriever given x. Intuitively
it measures the similarity between the two sequences r and x. This framework also applies to the
MSA-based augmentation methods. We explain in detail using a state-of-the-art MSA-augmentation
model MSA Transformer [43] as an example. In MSA Transformer, the layers calculate self-attention
both row-wise and column-wise. Column-wise attention is defined as follows, given WQ, WK , WV ,
WO as the parameters in a typical attention function:

Rs(i) =

N∑
n=1

σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV WO, (2)

where Rn(i) denotes the i-th token representation of the n-th MSA sequence after performing the
row-wise attention. Note that in MSA input, the first sequence r1 is defined as the original sequence x.
Then for a token prediction task, we define the i-th position output as y and the predicted distribution
p(y|x) can be expressed as:

p(y|x) =
N∑

n=1

σ(
R1WQ(RnWK)T

N
√
d

)(RnWV WOWy)

=
N∑

n=1

p(y|x, rn)λn =
N∑

n=1

p(y|x, rn)p(rn|x),

(3)

where λn = σ(
R1(i)WQ(Rn(i)WK)T

N
√
d

) is the weighting norm that represents the similarity of re-
trieved sequence rn and original sequence x; p(y|x, rn) is a predictor that maps the row-attention
representation of rn and x to label.

Eq.3 gives a retrieval-augmentation view of MSA Transformer that essentially retrieves homologous
sequences with multiple sequence alignment and aggregates representations of homologous sequences
with regard to their sequence similarity. Taking one step further, we define a set of design dimensions
to characterize the retrieving and aggregation processes. We detail the design dimensions below and
illustrate how popular models (§D) and our proposed methods (§4) fall along them in Table 1.
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• Retriever Form indicates the retriever type used. Multiple Sequence Alignment is a
discrete retrieval method that uses alignment [58] to find homologous sequences. Dense
retrieval [27] has been introduced to accelerate discrete sequence retrieval.

• Alignment Form indicates whether retrieved sequences are aligned.
• Weight Form is the aggregation weight of homologous sequences, as the p(rn|x) in

Eq. 3. Here we denote this weight as λn. Traditionally, aggregation methods consider
different homologous sequences to be similarly important and use average weighting. MSA
Transformer uses a weighted pooling method though the weights of λn use global attention
and are dependent on all homologous sequences.

• Aggregation Function is how the representations of homologous sequences are aggregated
to the original sequence to form downstream prediction, as in p(y|x, r). For example,
considering the sequence classification problem, a fully connected layer maps representations
to logits. The retrieval augmentation probabilistic form first maps each representation to
logits p(y|x, rn) and then linearly weight the logits with λn in Eq. 3.

Our discussion and formulation so far reach the conclusion that retrieval augmentation serves
as a comprehensive framework capable of extracting evolutionary knowledge, akin to multiple
sequence alignment (MSA) augmentation methods. This underlines the prospects of retrieval sequence
alignment (RSA) superseding MSA augmentations as an efficient and generalizable approach.

However, MSA-based methods claim a few advantages: the alignment process can help the model
capture column-wise residue evolution; and the MSA Retriever uses a discrete, token-wise search
criterion that ensures all retrieved sequences are homology. We propose two novel variants to help
verify these claims: 1) Unaligned MSA Augmentation uses the homologous sequences from MSA
to augment representations without alignment and 2) Accelerated MSA Transformer explores
substituting the discrete retrieval process in MSA with a dense retriever. An empirical study of the
performance of these models can be found in §5.6.

4 Our Approach

Existing knowledge augmentation methods for protein representation learning are either designed for
a specific task or require cumbersome data preprocessing. Motivated by the potential of pre-trained
retrievers to identify proteins that are homologous or geometric similar, we propose a pipeline, RSA
(Retrieval Sequence Augmentation), to directly augment protein models on-the-fly. RSA follows the
retrieve-then-predict framework in Eq. 1. It comprises of a neural sequence retriever p(r|x), and a
protein model that combines both original input and retrieved sequence to obtain prediction p(y|x, r).
RSA Retriever The retriever is defined as finding the sequences that are semantically close to the
query. Denote retriever model as G which encode protein sequence and output embeddings.

p(r|x) = exp f(x, r)∑
r′∈R exp f(x, r′)

,

f(x, r) = −||G(x)−G(r)||2
(4)

The similarity score f(x, r) is defined as the negative L2 distance between the embedding of the two
sequences. The distribution is the softmax distribution over similarity scores.

For protein retrieval, we aim to retrieve protein sequences that have similar structures or are homolo-
gous to the query sequence. Motivated by the k-nearest neighbor retrieval experiment with ESM-1b
[45] pre-trained embeddings (as shown in Table 2), we implement the embedding functions using
a 34-layer ESM-1b encoder. We obtain sequence embeddings by performing average pooling over
token embeddings. Note that finding the most similar proteins from a large-scale sequence database
is computationally heavy. To accelerate retrieval, we use Faiss indexing [28], which uses clustering
of dense vectors and quantization to allow efficient similarity search at a massive scale.

Retrieval Augmented Protein Encoder Given a sequence x and a retrieved sequence r with length
L and M respectively, the protein encoder combines x and r for prediction p(y|x, r). To make our
model applicable to any protein learning task, we need to augment both sequence-level representation
and token-level representation. To achieve this, we concatenate the two sequences before input into
the transformer encoder, which uses self-attention to aggregate global information from the retrieved
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sequence r into each token representation.

A = σ(
(H[x;r]W

Q)(H[x;r]W
K)T

√
d

), A = [Ax;Ar]

Attn(H[x;r]) = (AxHxW
V +ArHrW

V )WO

(5)

where H[x;r] = [hx
1 , h

x
2 , ..., h

x
L, h

r
1...h

r
M ] denotes the input embedding of original and retrieved

sequences. The output token representation hi automatically learns to select and combine the
representation of retrieved tokens. This can also be considered a soft version of MSA alignment.
After computing for each pair of (x, r), we aggregate them by weight p(r|x) defined in Eq. 4.
Table 2: Recall and Precision for retrieving top 100 protein sequences with ESM1b embeddings. In
dataset Pfam and SCOPe, we test whether retrieved proteins are of the same Family, Superfamily, or
Fold as query protein.

Retrieval Task Type Recall Precision

Pfam - Family Homology 100 90.42
SCOPe - Fold Structural 100 65.98
SCOPe - Superfamily Structural 100 46.00
SCOPe - Family Structural 100 24.71

Training For downstream finetuning, we maximize p(y|x) by performing training on the retrieval
augmented protein encoder. We freeze the retriever parameters during training. For a query sequence
of length L with N retrieved proteins, suppose the length of retrieved proteins L′ ≤ L the computation
cost is N times the original model, O(NL2) for a transformer encoder layer, which is as efficient as
MSA Transformer with a O(NL2) +O(N2L) computation cost.

5 Experiments

In this section, we conduct comprehensive experiments on 7 tasks to answer the following three
questions: (1) Does RSA enhance protein representation learning concerning downstream perfor-
mance, generalizability, and efficiency? (2) Is the alignment process in MSA dispensable? (3) What
knowledge do the retrieved sequences provide to enhance the accuracy of downstream predictions?
Experimental setup are briefly explained in §5.1 with more information in the appendix.

5.1 General Setup

Downstream Task In order to evaluate the performance of our trained model, seven tasks are
introduced, namely secondary structure prediction [33], contact prediction [3], remote homology
prediction [25], subcellular localization prediction [2], stability prediction [46], protein-protein
interaction [39] and structure prediction on CASP14 [34]. Please refer to Appendix Table 9 for more
statistics of the datasets. The train-eval-test splits follow TAPE benchmark [41] for the first four tasks
and PEER benchmark [54] for subcellular localization and protein-protein interaction.

Retriever and MSA Setup Limited by available computation resources, we build a database on
Pfam [13] sequences, which covers 77.2% of the UniProtKB [5] database and reaches the evolutionary
scale. We generate ESM-1b pre-trained representations of 44 million sequences from Pfam-A and
use Faiss [27] to build the retrieval index. For a fair comparison, the MSA datasets are also built on
the Pfam database. We use HHblits [44] to extract MSA, searching for 3 rounds with threshold 1e-3.

Baselines We apply our retrieval method to both pre-trained and randomly initialized language
models. Following Rao et al. [41] and Rao et al. [43], we compare our model with vanilla protein
representation models, including LSTM[36], Transformers[51] and pre-trained models ESM-1b[45],
ProtBERT[15]. We also compare with state-of-the-art knowledge-augmentation models: Potts
Model[6], MSA Transformer[43] that inject evolutionary knowledge through MSA, OntoProtein[62]
that uses gene ontology knowledge graph to augment protein representations and PMLM[22] that
uses pair-wise pretraining to improve co-evolution awareness.

Training and Evaluation To demonstrate RSA as a general method, we perform experiments both
with a shallow transformer encoder, and a large pre-trained ProtBERT encoder. The Transformer
model has 512 dimensions and 6 layers. Also, we combined our method with popular pre-trained
protein folding architectures ESMFold and AlphaFold2. All self-reported models use the same
truncation strategy and perform parameter searches on the learning rate, warm-up rate, and batch size.
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Table 3: Main Results for vanilla protein representation learning methods, knowledge-augmented
baselines and our proposed RSA method. Note that italized result is reported by corresponding
related work. The last column reports average result on all six tasks. For MSA Transformer and RSA,
we all use 16 sequences (N=16) for augmentation. For Gremlin Potts model, we use the full MSA.

Method Pretrain Knowledge Knowledge SSP Contact Homology Stability Loc PPI Avg
Pretrain Injection

Transformer × × × 0.384 0.274 0.101 0.422 0.541 0.616 0.345
LSTM × × × 0.596 0.263 0.181 0.591 0.629 0.638 0.404
RSA (Transformer backbone) × × ✓ 0.541 0.332 0.346 0.602 0.591 0.700 0.518

ESM-1b ✓ × × 0.716 0.458 0.978 0.695 0.781 0.782 0.668
ProtBERT ✓ × × 0.691 0.556 0.528 0.651 0.771 0.688 0.579
MSA Transformer (MSA N=1) ✓ ✓ × 0.594 0.397 0.880 0.767 0.668 0.633 0.592

Gremlin [6] × × ✓ — 0.507 — — — — —
MSA Transformer ✓ ✓ ✓ 0.654 0.618 0.958 0.796 0.694 0.751 0.672
OntoProtein [62] ✓ × ✓ 0.68 0.40 0.96 0.75 — — —
PMLM [22] ✓ ✓ × 0.728 0.717 0.946 — — — —
RSA (ProtBERT backbone) ✓ × ✓ 0.691 0.717 0.987 0.778 0.795 0.827 0.723

Table 4: Results for Structure Prediction on
CASP14. AlphaFold-Acc uses accelerated-
MSA and Percentage stands for the percent-
age of samples more precise than baseline
prediction.

Methods TM-Score Percentage

ESMFold 0.678
AlphaFold-single 0.335
ESMFold-RSA 0.693 27.7%
AlphaFold-RSA 0.359 45.5%

AlphaFold-Full 0.747
AlphaFold-Acc 0.551 19.7%

Table 5: The table shows remote homology
prediction performance with increasing domain
gaps: Family, Superfamily and Fold.

Method Family Superfam Fold

Transformer 0.101 0.518 0.780
MSA Transformer (no MSA) 0.880 0.278 0.206
ProtBERT 0.528 0.192 0.170

MSA Transformer 0.958 0.503 0.235
Accelerated MSA Transformer 0.945 0.406 0.227
RSA (ProtBERT backbone) 0.987 0.677 0.267

5.2 Main Results

We show the result for downstream tasks in Table 3, including models with/without pretraining, and
with/without knowledge augmentations. We form the following conclusion: Retrieval Sequence
Augmentations perform on par with or even better than other knowledge-augmented methods
without additional pre-training. The last two blocks compare our method with previous augmenta-
tion methods. Our method outperforms MSA Transformer on average by 5% and performs on par
with PMLM on structure and evolution prediction tasks. Notably, both MSA Transformer and PMLM
perform additional pre-training with augmentations, while our method uses no additional pre-training.
From the results, we can see that RSA combined transformer model also improves by 10% than other
shallow models, demonstrating the effectiveness of our augmentation to both shallow models and
pre-trained models. We also study retrieval sequence augmentations on pre-trained protein folding
models in Table 4. Despite RSA was implemented without additional fine-tuning on folding models,
we achieve a 2% improvement both on ESMFold and AlphaFold2.

5.3 Retrieval Augmentation for Domain Adaptation

We investigate the model’s transfer performance in domains with distribution shifts. We train our
model on the Remote Homology dataset, and test it on three testsets with increasing domain gaps:
proteins within the same Family, Superfam, and Fold as the training set respectively. The results are
in Table 5. Our model surpasses MSA Transformer by a large margin on shifted domains, especially
from 0.5032 to 0.6770 on Superfamily. This proves our models to be more reliable for domain shifts,
illustrating that retrieval facilitates the transfer across domains.

Furthermore, we test our model on a challenging problem in protein prediction, the prediction
for proteins with few homologs, i.e. de novo (synthesized) proteins and orphan proteins [16, 53].
This task is especially difficult for MSA-based methods as alignment-based method often fails to
generate MSA for these proteins, resulting in degraded performance. We test our model on 108 De
Novo proteins from PDB [9] for the contact prediction task. It can be seen in Figure 3 that, RSA
exceeds MSA transformer on 63.8% of data, demonstrating that RSA is more capable of locating
augmentations for out-of-distribution proteins. We also test our model on the structure prediction task
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with 16 targets from CASP14-FM. CASP14-FM are considered more difficult because the absence
of related templates requires the prediction methods to rely on de novo modeling techniques. We
compare RSA augmented ESMFold and AlphaFold2 model with baselines in Figure 3, showing
improved or competitive prediction on the majority of the targets. The results also show that our
model surpasses MSA-based methods in transferring to unseen domains.

Figure 3: Prediction on proteins with few homologs,
including contact prediction result on PDB de novo
proteins and structure prediction result on CASP14-FM.

Figure 4: The cumulative distribution
of TM-scores for proteins from dense
retrieval. The value at α shows the prob-
ability that TM-score is larger than α.

5.4 Retrieval Speed

A severe speed bottleneck limits the use of previous MSA-based methods. In this part, we compare
the computation time of RSA with MSA and an accelerated version of MSA as introduced in § 3.2.
As shown in Figure 1, alignment time cost is much more intense than retrieval time. Even after
reducing the alignment database size to 500, accelerated MSA still need 270 min to build MSA. At
the same time RSA only uses dense retrieval, and is accelerated 373 times. Note that with extensive
search, MSA can find all available alignments in a database. However, this would be less beneficial to
deep protein language models as the memory limit only suffices a few dozens of retrieved sequences.

Also, MSA is limited by its cubersome construction of retrieval HHM profile to perform HHM-HHM
search. Previous work mentioned that it may take many days to construct a custom HHblits database
for a large database, though no precise time is given [60].By contrast, RSA only needs to build the
pre-trained features for the database, which can be accelerated with GPUs and batch forwarding. We
build the retrieval index for Pfam with 16 Tesla V100 GPUs in 20 hours.

Table 6: Results for MSA Transformer and
Unaligned MSA Augmentation on Homology
and Stability task. Both models use MSA
as inputs, but Unaligned MSA Augmentation
unaligns MSA and augments the model by
concatenating MSA sequence to the input.

Methods Homology Stability

MSA Transformer 0.958 0.796
Unaligned MSA Augmentation 0.973 0.749
RSA 0.987 0.778

Table 7: Results for MSA Transformer and
Accelerated MSA Transformer on downstream
tasks. Accelerated MSA Transformer uses MSA
built from dense retrieval sequences.

Tasks MSA Accelerated MSA RSA
Transformer Transformer

SSP 0.654 0.634 0.691
Contact 0.618 0.608 0.717

Homology 0.958 0.945 0.987
Stability 0.796 0.767 0.778

Loc 0.694 0.682 0.795
PPI 0.751 0.679 0.827

5.5 Ablation Study

Ablation on Retriever: Unaligned MSA Augmentation. We ablate RSA retriever by using MSA
retrieved proteins as augmentations to our model, denoted as Unaligned MSA Augmentation. As
shown in Table 6, Unaligned MSA Augmentation performs worse than our RSA model, especially on
the Stability dataset, where the performance drops from 0.778 to 0.7443. It thus confirms the ability
of our dense retriever to provide more abundant knowledge for protein models.

Ablation on Retriever: Ablation on Retrieval Number Our study examines the effect of injected
knowledge quantity for RSA and all retrieval baselines. The results are listed in Table 8. We select the
Contact dataset because all baseline models are implemented on this dataset. RSA and all baselines
perform consistently better as the retrieval number increases. Also, our model outperforms all baseline
models for all augmentation numbers.
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Table 8: The performance of retrieval augmentation models w.r.t. the number of retrieved sequences
on contact prediction.

Methods N=1 N=4 N=8 N=16 N=32 N= full

Potts Model — 0.412 0.471 0.479 0.480 0.507
MSA Transformer 0.397 0.579 0.560 0.618 0.669 —
Accelerated MSA Transformer 0.397 0.524 0.538 0.608 0.654 —
RSA 0.556 0.595 0.615 0.717 0.719 —

Ablation on Aggregation: We compare RSA with Accelerated MSA Transformer to evaluate whether
our aggregation method is beneficial for learning protein representations. Note that only part of
the retrieved sequences that satisfy homologous sequence criteria are selected and utilized during
alignment. As shown in Table 7, the performance of the Accelerated MSA Transformer drops a lot
compared to RSA. In contrast to MSA type aggregation, which is restricted by token alignment, our
aggregation is more flexible and can accommodate proteins with variant knowledge.

5.6 Discussion on Alignment: Is It Necessary?

Does alignment makes better retriever? Table 7 illustrates that Accelerated MSA Transformer
performs near to MSA Transformer (MSA N=16) for most datasets, except for Stability and PPI on
which our retriever failed to find enough homologous sequences, as Figure 5 demonstrates. Also, as
shown in the figure, our dense retriever is capable of finding homologous sequences for most tasks
and surpasses alignment in E-value.

Is MSA alignment necessary for expressing knowledge? To support that MSA alignment is not
necessary, we compare Unaligned MSA Augmentation to the original MSA transformer. As revealed
by the results in Table 6. Unaligned MSA Augmentation performs close to the MSA transformer. This
confirms our declaration that self-attention is capable of extracting knowledge without alignment.

5.7 Retrieved Protein Interpretability

In this section, we give an intuitive analysis of what constitutes knowledge for protein understanding
and why retrieved sequences can be used for improving protein reprensetations. We cover two major
aspects of biology sequences, homology and geometry.

(a) percentage comparison (b) e-value comparison

Figure 5: (a) Plot of the percentage of sequences that have found homologs on datasets for six tasks.
(b) Plot of the -log(E-values) of MSA and Dense Retriever obtained sequences. E-values of both
methods are obtained with HHblits[44]. Sequences with -log E-value >10 are high-quality homologs.

Dense Retrievers Find Homologous Sequences. In this part, we analyze whether retrieved sequences
are homologous. As illustrated in Figure 5(a), across all six datasets, our dense retriever retrieved
a high percentage of homologous proteins that can be aligned to the original protein sequence,
comparable to traditional MSA retrievers. We additionally plot each dataset’s negative log E-values
distribution in Figure 5(b). Accordingly, dense retrieval show high potential for finding homologous
sequences, which explains the ability of RSA to capture evolutionary knowledge.

RSA Retriever Find Structurally Similar Protein In this section, we analyze whether retrieved
sequences are structurally similar. In Figure 4, we plot the TM scores between the RSA retrieved
protein and the origin protein on ProteinNet [3] test set. Most of the retrieved proteins exceed the
0.2 criteria, which indicates structural similarity, and about half are above the 0.5 criteria, which
indicates high quality. Accordingly, this indicates that the dense retrieval algorithm is capable of
finding proteins with structural knowledge.
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6 Discussions

In this paper, we introduce a simple yet effective method to enhance protein representation learning.
We demonstrate RSA as a fast yet high-performing method that has the potential to replace MSA-
based. The most notable limitation is that our method is dependent on high quality pre-trained
embeddings and the abundance of protein sequences. We intend to further scale up our RSA method
to larger protein databases and pre-train a retriever on abundant data in future work.
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A Limitations and Failed Case Analysis

One notable limitation of our method RSA is that it is highly dependent on high-quality pre-trained
embeddings and the abundance of protein sequences. We found that our retriever tends to perform
better in a database that has more protein sequences – that have not been screened by a clustering
algorithm, like Uniclust30. This could be explained by our nearest neighbor retrieval technique which
often requires more similar sequences for augmentation. We also found different patterns in retrieval
sequences from MSAs. Our retriever tends to show polarized retrieval quality, either finding many
evolutionary close sequences or failing to find any homologous sequences. We believe this is due to
the imbalanced training of pre-trained embeddings on different protein families and hope to mitigate
this issue with further training on retrieval datasets.

We report other failed cases here for a more thorough view of our proposed method:

• Directly applying Accelerated MSAs to MSA-based pre-trained models often shows about 2-
3% decrease on downstream performance than using original MSAs. However, Accelerated
MSAs are 10 times faster.

• The performance of RSA improves marginally with more sequences when N > 16. This
is because we use the softmax distribution over L2 metrics to perform weighting, thereby
assigning low weights to sequences further from the query.

• We found that in protein folding tasks, performing Average Pooling on ESMFold/AlphaFold
shows worse zero-shot performance than Max Pooling with a scoring model. This is due to
the misalignment of protein structures and simple weighting could result in averaging the
structures of proteins with different angles of view.

B Broader Impact

In this section, we discuss the broader impact of RSA in terms of protein representation learning, de
novo protein understanding, as well as the potential application to large language models.

RSA for Protein Representation Learning Developing efficient protein representation learning
methods will significantly improve the ability to analyze complex protein structures, functions, and
interactions. This would lead to a more comprehensive understanding of biological processes at the
molecular level, consequently boosting advancements in the fields of bioinformatics and computa-
tional biology. In this paper, we propose RSA as an efficient and effective protein representation
learning methods, which will spur the development of protein representation learning methods.
Notably, our method requires no alignment methods. The traditional alignment process in MSA
often requires mass CPU engines mostly available to academics. Our method on the other hand
only requires a small memory GPU like 3090Ti and we will publicize our retrieval index, promoting
democratic research in this field.

RSA for De Novo Protein Understanding We have shown in our work that RSA could perform De
Novo Protein Understanding. This is particularly important for drug repurposing and virtual screening
tasks [40] for drug discovery. This can contribute to the development of personalized medicine by
facilitating the identification of disease-specific protein biomarkers and selecting molecular cures for
various diseases. However, de novo protein understanding often relies on newly-designed protein
databases, which may include sensitive information about individuals, such as their genetic makeup,
or violates intellectual property rights. Ensuring the privacy and security of this data is critical to
prevent misuse and protect individual rights
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RSA as Tool for Large Language Models In addition to the potential impacts in the field of
biology, our method could also improve the ability of Large Language Models in biological sequence
understanding. Currently, large language models like ChatGPT show difficulty in understanding
protein sequences. We showcase how RSA could improve this ability with the combination of retrieval
and chain of thought. This application is valuable in education and training, as uses could rapidly
learn about proteins through chat models, which help educate the next generation of researchers in
bioinformatics, computational biology, and related fields. This will lead to a more skilled workforce
in the life sciences.

Figure 6: Illustrated explanation of protein
levels of structures, primary structure, sec-
ondary structure and tertiary structure.

Figure 7: Illustrated difference of aligned
and unaligned protein sequences. The white
colour stands for the empty space in align-
ment "-".

C A Brief Recap on Proteins

Proteins are the end products of the decoding process that starts with the information in cellular
DNA. As workhorses of the cell, proteins compose structural and motor elements in the cell, and
they serve as the catalysts for virtually every biochemical reaction that occurs in living things. This
incredible array of functions derives from a startlingly simple code that specifies a hugely diverse
set of structures. In fact, each gene in cellular DNA contains the code for a unique protein structure.
Not only are these proteins assembled with different amino acid sequences, but they also are held
together by different bonds and folded into a variety of three-dimensional structures. The folded
shape, or conformation, depends directly on the linear amino acid sequence of the protein. In fact,
this phenomenon is denoted as the sequence-structure-function paradigm. Here we will emphasize
four key concepts in protein understanding.

1. What are proteins made of ?

Amino acids. Within a protein, multiple amino acids are linked together by peptide bonds, thereby
forming a long chain. There are 22 alpha-amino acids, from which proteins are composed. We model
these amino acids in a similar way in NLP, as tokens. A tokenizer breaks the protein sequences into
amino acid tokens that could be modeled by protein language models.

2. Protein structures

There are four levels of structures in protein, as illustrated in Figure 6:

• Primary structure: amino acids sequence
• Secondary structure: stable folding patterns, including Alpha Helix, Beta Sheet.
• Tertiary structure: ensemble of formations and folds in a single linear chain of amino acids
• macromolecules with multiple polypeptide chains or subunits

Predicting protein structure is an important and difficult task. In this work, we also perform experi-
ments on three tasks – secondary structure prediction, protein contact prediction (tertiary structure),
and protein folding (tertiary structure), with increasing task difficulty.

3. Protein Homology Protein homology is defined as shared ancestry in the evolutionary history of
life. There exists different kinds of homology, including orthologous homology that may be similar
function proteins across species (human and mice α-goblin), and paralogous homology that is the
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result of mutations (human α-goblin and β-goblin). Homologies result in conservative parts in protein
sequences, or leads to similar structures and functions.

4. Multiple Sequence Alignments A method used to determine conservative regions and find
homologous sequences. An illustration (Figure 7) is given here to show how sequences are aligned.
Aligned tokens may include the original amino acid, substitution, and deletions. The traditional way
to generate MSA is using dynamic programming, with O(LN ) complexity. Temporary methods
use HMM-HMM alignment, as well as other acceleration methods. HH-Suite3 [48] reports a time
complexity of O(NL2), which is still costly when performing alignment on a large database.

D Overview of Previous Protein Representation Augmentation Methods

Below we introduce several state-of-the-art evolution augmentation methods for protein representation
learning. These methods rely on MSA as input to extract representations. We use x to denote a target
protein and its MSA containing N homologous proteins. We consider MSAs as N aligned protein
homologs r1, . . . , rN . These studies [55, 29] encode MSA as co-evolution statistics features R1...N

and aggregate these features to derive the representation, while MSA Transformer [43, 30] perceives
MSA as a matrix, employing axial attention to extract salient evolutionary traits. A unified view of
these variants is available in Table 1 and §3.2 in the main paper.

Potts Model [6]. This line of research fits a Markov Random Field to the underlying MSA with
likelihood maximization. This approach is different from other protein representation learning
methods as it only learns a pairwise score for residues contact prediction. We will focus on other
methods that augment protein representations that can be used for diverse downstream predictions.

Co-evolution Aggregator [55, 29]. One way to build an evolution informed representation is to use
a MSA encoder to obtain the co-evolution related statistics. By applying MSA encoder on the n-th
homologous protein in the MSA, we can get a total of L× d embeddings Rn, each position is a d
channel one-hot embedding indicating the amino acid type. We use wn to denote the weight from Rn

when computing the token representation hi:

hi =
1

Meff

N∑
n=1

wnRn(i), (6)

where Meff =
∑N

n=1 wn and wn = 1
N . For contact prediction, pair co-evolution representation are

computed in a similar way from the hadamard product:

hij =
1

Meff

N∑
n=1

wnRn(i)
⊗

Rn(j). (7)

Ensembling Over MSA [42]. This approach aligns and ensembles representations of homologous
sequences. Consider the encoder extract the same token representations for unaligned and aligned
sequences. The ensembled token representation is:

hi =
1

N

N∑
n=1

Rn(i), hij =
1

N

N∑
n=1

σ(
Rn(i)WQ(Rn(j)WK)T

N
√
d

). (8)

MSA Transformer [43] In each transformer layer, a tied row attention encoder extracts the dense
representation Rn, then a column attention encoder

Rs(i) =
N∑

n=1

σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV . (9)

Knowledge Graph Augmentation [62, 63]. This line of research aims at incorporating factual
knowledge in protein representations. Different from MSA-based methods that draw evolution
knowledge from raw protein sequences, these methods are dependent on protein knowledge graphs
that have been annotated by experts, therefore we only provide comparisons with these models in
experimental studies and don’t incorporate them into our unified framework.
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E Experiment Setups

E.1 In-depth Introduction to Protein Tasks

Table 9: Overview for datasets in downstream tasks

Task Name Dataset source #train sequences #test sequences
Secondary Structure Prediction NetSurfP-2.0 [33] 8,678 513
Contact Prediction ProteinNet [3] 25,299 40
Remote Homology Prediction Deepsf [25] 12,312 718
Stability Prediction Rocklin’s Dataset [46] 53,571 12,851
Subcellular Localization DeepLoc [2] 8,945 2,768
Protein Protein Interaction Pan’s Dataset [39] 6,844 227
Protein Folding CASP14 [34] – 65

Secondary structure prediction (SSP)
Task Formulation: 8-class classification oi 7→ {0, 1, . . . , 7}
Task Description: Secondary structure prediction aims to predict the secondary structure of proteins,
which indicates the local structures. This task predicts an 8-class label for each token, indicating
which local structure this amino acid belongs to.
Task Impact: This task helps to determine whether a model captures protein local structure.

Contact prediction (Contact):
Task Formulation: 2-class classification (oi, oj) 7→ {0, 1}
Task Description: Contact prediction predicts the medium-range and long-range (distance >6) residue-
residue contact, which measures the ability of models to capture global tertiary structures.
Task Impact: This task helps to determine whether a model captures protein tertiary structure. The
assessment of this task focuses specifically on medium- and long-range interactions due to their
crucial importance in the protein folding process.

Homology prediction (Homology):
Task Formulation: 1195-class classification x 7→ {0, 1 . . . 1194}
Task Description: Homology prediction aims to predict the fold label of any given protein, which
indicates the evolutionary relationship of proteins.
Task Impact: Protein fold classification is important for both functional analysis and evaluating
evolutionary knowledge.

Stability prediction (Stability):
Task Formulation: regression x 7→ R
Task Description: Stability prediction is a protein engineering task, which measures the change in
stability w.r.t. residue mutations.
Task Impact: Evaluate the ability of models to predict protein function as well as evaluate the ability
of models to understand mutations, which is crucial for drug discovery and protein engineering.

Subcellular Localization (Loc):
Task Formulation: regression x 7→ {0, 1, . . . , 7}
Task Description: Subcellular localization refers to the process of determining the specific location
or compartment within a cell where a particular molecule or protein resides. This information is
essential for understanding the function and behavior of molecules or proteins, as their subcellular
locations often dictate their roles in cellular processes, interactions with other molecules, and influence
on cellular functions. For example, proteins on the cell membrane generally have signaling and
regulatory functions.
Task Impact: This task is closely related to protein functions and roles in biological processes.

Protein-Protein Interaction (PPI):
Task Formulation: two-class classification (x1, x2) 7→ {0, 1}
Task Description: Protein-protein interaction predicts whether two proteins interact with each other.
Task Impact: This task is crucial for protein function understanding and drug discovery.

Protein Folding (Fold):
Task Formulation: x 7→ S, where S is the 3d-structure of protein, including all coordinates of atoms.
Task Description: Protein Folding predicts the structure of protein sequences.
Task Impact: This task is known to be challenging, and requires elaborated knowledge of protein
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local and global structure to make atomic predictions.
Dataset Details: We report test results on CASP14 public available targets. We also remove all
sequences over 800 tokens due to the computation memory limit. The reported targets are: T1024,
T1025, T1026, T1027, T1028, T1029, T1030, T1031, T1032, T1033, T1034, T1035, T1036s1, T1037,
T1038, T1039, T1040, T1041, T1042, T1043, T1045s1, T1045s2, T1046s1, T1046s2,T1047s1,
T1047s2, T1048, T1049, T1050, T1051, T1053, T1054, T1055, T1056, T1057, T1058, T1059,
T1060s2, T1060s3, T1062, T1063, T1064, T1065s1, T1065s2, T1066s1, T1066s2, T1067, T1068,
T1069s1, T1069s2, T1070, T1071, T1072s1, T1072s2, T1073, T1074, T1075, T1076, T1077, T1078,
T1079, T1082, T1083, T1084, T1085, T1086, T1087, T1088, T1089, T1090, T1092, T1093, T1094,
T1095, T1096, T1098, T1099, T1100, T1101. The blue targets are from CASP14-FM set.

Table 9 gives the details of the datasets for these tasks.

De Novo Contact Prediction: We follow Chowdhury et al. [11] to curate a de novo dataset of
108 proteins from Protein Data Bank [Bank]. These proteins are originally designed de novo using
computationally parametrized energy functions and are well-suited for out-of-domain tests. Note that
different from orphan dataset, MSA can be built for this dataset, though showing a decline in quality.

E.2 HHblits Settings

For MSA datasets, We use HHblits [44] to perform alignment. The commands for MSA dataset
construction is:

hhblits -cpu $CPU_NUM -i $INPUT_FILE -d $DATABASE_DIR -oa3m $OUTPUT_FILE -n
1 -e 0.001

We also use HHblits to calculate E-value and determine whether we found homologous sequences in
Figure 5 and §5.7 in the main paper. The commands for protein E-value calculation is:

hhalign -i query.fasta -d retrieved.fasta -o output.aln -e 0.001

E.3 Model Hyperparameters

All self-reported models use the same truncation strategy and perform parameter searches on the
learning rate among [3e − 8, 3e − 6, 3e − 5, 3e − 4, 1e − 3], warm-up rate among [0, 0.08], seed
among [111, 222, 333, 444, 555, 666], and batch size among [1, 2, 4, 8, 16]. For evaluation, we choose
the best-performing model on the validation set and perform prediction on the test set. The best
performing hyperparameters could be found in the file:

./RSA-code\scripts\$MODEL_NAME\run_$TASK_NAME.sh

Also, code with download instructions for dataset and retrieval index is available in the supplementary.

E.4 RSA and Variants Implementation Details

E.4.1 Retriever Implementation Details

First, we calculate the ESM-1b embeddings of the 44 million sequences in Pfam-A 32.0. We use
16 V100 GPUs to calculate the embeddings in a day. A GPU as small as 3090 Ti would be enough,
though it would take longer. Then, we adopt Faiss [27] indexing to accelerate the retrieval process by
clustering the pre-trained dense vectors. In our implementation, we use the Inverted file with Product
Quantizer encoding Indexing and set the size of quantized vectors to 64, the number of centroids to
4096, and the number of probes to 8. The construction of the Faiss index takes roughly 30 minutes
using 0.5% randomly selected protein embeddings for index training. All embeddings as well as their
id are subsequently added to the index.

During retrieval, for each query sequence, we first use ESM-1b to calculate its embedding, and then
using this embedding, we query faiss to find the top N nearest neighbor of this embedding, getting
the distance and sequence id of retrieved sequences. L2 distances are used to measure sequence
similarity.

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.02.22.529597doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529597


E.4.2 ProtBERT-RSA Architecture and Implementation

Here we provide the details for ProtBERT-RSA Architecture. An illustration of this process is also
available in Figure 8. Note that in Step 2 retrieval of Faiss index could be further accelerated with
GPU. In Step 4, the predictions of pairwise augmentation could be accelerated with batching on GPU,
concurrently predicting k augmented sequences at the same time.

However, for large pre-trained models and when k is very large, the batch computation may exceed
memory limit. In this case, we provide implementation for gradient accumulation, which calculates
loss and gradients for individual prediction (predictionsi) and sum up the gradients with gradient
accumulation. This implementation is a convex upperbound for the original loss function and we
have validated its stability. This could also be implemented in batch size n, where each backward
iteration calculates k/n retrieval augmentations, achieving trade-off between inference speed and
memory limit.

Given query sequence $query, retrieval database $Faiss_Index, sequence
database $Pfam, the number of retrieval $k, ProtBERT model $Model, and
label $y.

Step 1. embedding = ESM_1b(query)
Step 2. distances, ids = Faiss_Index.retrieve(embedding, k)

retrieved_seqs = Pfam[ids]
Step 3. predictions_i = Model([query, retrieved_seq]), i=1,2,..k
Step 4. prediction = sum(predictions_i * softmax(distance_i))
Step 5. loss = loss_function(prediction, y), perform training

Figure 8: Detailed illustration of ProtBERT-RSA architecture.

E.4.3 RSA for Protein Folding

The major difference of RSA prediction for protein folding from other tasks is that we use a ranker
to choose the final prediction rather than using weighted pooling. This is due to the misalignment
of protein structures and simple weighting could result in averaging the structures of proteins with
different angles of view. We train the ranker together with pTM-score loss [35] and contrastive loss
on a subset of 1000 randomly chosen proteins from Protein Data Bank. These proteins are distinct
from CASP14 test set. The ranker takes in the original structure prediction of the protein sequence
and the k augmented predictions, and generate the highest ranking prediction as the final result. As
current protein folding models are very large, we only provide zero-shot testing results on these
pre-trained models, without further finetuning on our pipeline.

Given query sequence $query, retrieval database $Faiss_Index, sequence
database $Pfam, the number of retrieval $k, Folding model $Model,
Ranking model $Ranker and label $y.

Step 1. embedding = ESM_1b(query)
Step 2. distances, ids = Faiss_Index.retrieve(embedding, k)

retrieved_seqs = Pfam[ids]
Step 3. predictions_i = Model([query, retrieved_seq]), i=1,2,..k
Step 4. prediction = Ranker(predictions_i), i=1,2,..k
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Due to the different model architectures of ESMFold and AlphaFold, we explain in details the
inference pipeline of Model([query, retrieved]).

ESMFold-RSA ESMFold is a single sequence protein folding model that consists of a protein
representation model and a folding trunk based on the extracted representation. As illustrated
in Figure 9(a), we concatenate query sequence with retrieved sequence and input them into the
representation encoder. The encoder combines information from both query and retrieved sequence
into query embedding via self-attention. Then we could use the pre-trained folding trunk to predict
the structure of the query sequence. This pipeline could also be accelerated with batch prediction.

AlphaFold-RSA Different from ESMFold, AlphaFold encoder takes both single sequence repre-
sentation and pairwise representation as input. Therefore, as shown in FIgure 9(b), we generate the
retrieved structure encoding with AlphaFold based on retrieved sequences, then we generate the
structure of the query sequence based on the combination of single and pair representation. Note that
we removed the template and MSA input in AlphaFold to ablation the effect of RSA.

Figure 9: Illustration of the inference pipeline of RSA for Protein Folding

E.4.4 Accelerated MSA

Accelerated MSA variant explores 165 substituting the discrete retrieval process in MSA with a
dense retriever. We implement this method by first retrieving 500 sequences and then aligning
these sequences with JackHMMer tool. Note that for most tasks we retrieve 500 sequences before
alignment, as MSA Transformer can’t take in many sequences. The command for aligning is:

./jackhmmer -E 10.0 -A $aligned_file query.fasta retrieved.fasta

F Supplementary Experiment Analysis

F.1 Comparison of the Running time between RSA vs MSA

A severe speed bottleneck limits the use of previous MSA-based methods. In this part, we add
analysis on database construction time as well as give details for inference time calculation. We
calculate the total time used in each retrieval inference by summing: alignment time and retrieval
time, as shown in Figure 10. Alignment time is the time used when finding MSA sequences through
alignment and aligning found sequences with HHblits. Retrieval time is the time used during dense
retrieval, including calculating the embedding of the query sequence with GPU. It is notable from the
figure that alignment itself is a computationally costly procedure.

Also, MSA is limited by its cubersome construction of retrieval HHM profile to perform HHM-HHM
search. We follow the MSA custom database construction process in HHblits and compare with the
construction time for RSA on a single V100 GPU (batch size=1) on a database of 10000 protein
sequences. As shown in Figure 11, our method use only 10 minutes to finish the construction, though
building a profile requires more than 3200 minutes.
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Figure 10: Illustration of speed up by RSA re-
trieval compared to MSA on secondary struc-
ture prediction dataset with 8678 sequences.
Accelerated MSA refers to the MSA Trans-
former with MSA sequences retrieved by our
RSA retriever.

Figure 11: Illustration of speed up by RSA
retrieval compared to MSA on database con-
struction of 10000 protein sequences.

F.2 Case Study

We cherry-picked one example of ProtBERT and ProtBERT-RSA on homology prediction (1195 class
classification task) to showcase the interpretability as well as give intuition on our method. As shown
in Figure 12, our method takes the original sequence as well as 16 retrieved sequences for prediction.
After weighted summing of all predicted results, the prediction of probability on ground truth label
increase and gives the correct prediction. We checked the most highly weighted (top 5) retrieved
sequences, all five proteins are Colicins, which is a family under Toxins’ membrane translocation
domains. We can see from the case that weighting by distance helps the model focus on more similar
retrieved instances.

Figure 12: Case study on homology prediction.

We also provide two case studies on how RSA improves ESMFold. For target
T1055, a DNA polymerase processivity factor, RSA retrieves A0A1A8WBQ9_9APIC,
A0A1Y4NGW6_9FIRM, A0A4V4NFM9_9ASCO, A0A1D3TXL7_9FIRM, A0A0V0QX86_PSEPJ,
A9KN76_LACP7, A0A162CB07_9CRUS, A0A369KX60_9PROT,SKI2_SCHPO, and the highest rank-
ing augmentation prediction is from (T1055, A0A1A8WBQ9_9APIC). A0A1A8WBQ9_9APIC
is a Merozoite surface protein. Merozoite surface protein 7 (MSP7) is a protein of the malaria
parasite that has been found to be associated with processed fragments from the MSP1 protein in a
complex involved in red blood cell invasion. A0A1A8WBQ9_9APIC is a Merozoite surface protein
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C-terminal domain-containing protein that is related to DNA polymerase processivity factor through
its requirement of a host factor, E. coli thioredoxin, in order to carry out its function. They also show
similar structures with a TM-score of 0.42.

For target T1039, a virion RNA polymerase of crAss-like phage, RSA retrieves A0A078ATM6_STYLE,
A0A1D8P931_9FLAO, A0A363CW97_9PROT, D7JGI7_9BACT, A0A0B3VPN2_9FIRM,
A0A1E4TQ27_PACTA, A0A1M6KY55_9FLAO, A0A1X7R9D3_9SACH, A0A0R1SCS6_9LACO,
A0A367GMI1_9SPHI, A0A2N1F639_9FLAO, A0A0D6TLE8_9FLAO, A0A3N4NFZ1_9FLAO,
A0A1D2VEI9_9ASCO, A0A1L7I7H7_9FLAO, A0A1R0FA92_9RHIZ. The highest ranking augmen-
tation prediction is from (T1039, A0A078ATM6_STYLE). A0A078ATM6_STYLE is a COMM
domain-containing protein 1. It has no distinct functional relationship with T1039, though the second
chain of this protein has a similar structure to T1039, with a TM-score of 0.34.

Figure 13: Structure Prediction for T1055,
Cyan is the color for Ground truth. Pink is the
color for ESMFold. Pink is the color for ESM-
Fold. Light purple is the color for ESMFold-
RSA. The TM-score for ESMFold is 0.70,
and the TM-score for ESMFold-RSA is 0.91.

Figure 14: Structure Prediction for T1039,
The TM-score for ESMFold is 0.61, and the
TM-score for ESMFold-RSA is 0.29

F.3 Domain Adaptation Analysis

In this section, we perform additional analysis on the domain adaptation ability on secondary structure
prediction tasks. We perform training on NetSurfP-2.0[33] training set and test on two datasets with
domain gaps. On CASP12, RSA marginally outperforms other baselines, as shown in Table 8. We
also test on 10 de novo proteins (6YWC, 2LUF, 7BPM, 7BPL, 7CBC, 1FSD, 1IC9, 5JI4, 5KWO,
6W6X). Since we didn’t find secondary structure labels for these proteins, we provide visualization in
Figure 15, which shows that our model has an obvious overhead over MSA Transformer on predicting
geometric components.

Table 10: The domain adaptation performance of models on CASP12 secondary structure prediction.
Method CASP12

ProtBERT 0.628
MSA Transformer 0.621
Accelerated MSA Transformer 0.620
RSA (ProtBERT backbone) 0.631
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Figure 15: Prediction of Secondary Structure on De Novo Dataset. Each color corresponds to a
different secondary structure.

Figure 16: E-value rank against dense retrieval rank on in CB513 dataset.

F.4 Comparison of Accelerated MSA vs MSA quality

Accelerated MSA performs worse than original MSA when directly applied to MSA Transformer,
as well as AlphaFold. In this section, we showcase successful and failed cases in AlphaFold and
compare the coverage of two kinds of MSA.

As shown in Figure 18, AlphaFold prediction is closely correlated to the coverage of MSA sequence.
On cases where dense retriever fails to find a wide coverage of homologous sequences, AlphaFold
performances drop starkly. Note that the MSA is implemented as ColabFold [37], using Uniclust30
for MSA building, while our retriever database has a smaller coverage, using only Pfam database.
Also we build accelerated MSA based on only top-500 sequences from retrieval.

F.5 Interpretability of RSA

In addition to analysis on interpretability in §5.7 in the main paper, we provide further analysis of the
interpretability of RSA in terms of homology and structures.

Retrieval rank does not necessarily corresponds to the sequence closest to the query sequence
token-wise. As shown in Figure 16, we calculate and rank the E-value of Top-32 retrieved protein
sequences in CB513 dataset. We then calculate the average rank for the 1st, 2nd,... 32nd proteins in
the dataset. It shows that the top-1 protein only has an average rank of 11, indicating that the retrieval
rank does not necessarily corresponds to the sequence closest to the query sequence token-wise.
Therefore, using dense retrieval, our retrieved results are diverse in sequences, though close to the
query sequences in properties.

Visualization on Retrieval Structural Similarity As shown in Figure 17, we random picked a few
more examples to illustrate the structural similarity between query protein and retrieval proteins. From
the visualization, we can see that retrieved proteins exhibit similar structure or structure components,
which could be used to boost structural knowledge.
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F.6 ProteinChat: RSA Empowers ChatGPT on Protein Understanding

In the section, we point out a direction for our future work. RSA can not only be used on small-scale
representation learning model, it can also augment large language models, e.g. ChatGPT. Currently,
even GPT4 model shows limited understanding of biological sequences, especially long sequences
like proteins. Galactica [49] pretrains LLM on scientific text and biological sequences, however,
calibration on the nature of these sequences are ubiquitous. Here, we propose a new method to enable
ChatGPT to understand protein sequences, ProteinChat, by directly applying the protein dense
retriever to ChatGPT. We implement ProteinChat by binding ChatGPT with three tools,

• RSA retriever, that finds homologous sequences to the query protein.
• Annotator, that annotates the homologous sequences in a protein online database, i.e. Inter-

Pro5.
• Wikipedia Search, that facilitates more elaborated enquiry into the features of these proteins.

ProteinChat is implemented similar to ReAct agent [57], which views ChatGPT as an agent that uses
chain-of-thoughts to break down a difficult task into parts that could be accomplished by available
tools. Here we show several demos of ProteinChat.

Demo 1:

Question: Which family does this protein MSLNAEQKAKVVLEHGSSAHDTGSTEVQVAL
LTLRINDLQKHFLEHKKDHHSRRGLLRMVSQRRKLLDYLKKRNISKYTDLIQSLGLRK
belongs to? (Ground truth: Belongs to the universal ribosomal protein uS15 family.)

Thought: I need to find out the functional and evolutionary annotations of this protein.

Action: Protein Retrieval

Action Input: MSLNAEQKAKVVLEHGSSAHDTGSTEVQVALLTLRINDLQKHFLEHKKD-
HHSRRGLLRMVSQRRKLLDYLKKRNISKYTDLIQSLGLRK

Observation: Here are 4 homologs for this protein separated by ",":B4D3S0_9BACT,
RS15_HAMD5, K6ZQA3_9ALTE, A0A1H6FC85_9GAMM

Thought: I need to use the entry labels to search the InterPro database.

Action: InterPro Annotation, Action Input: B4D3S0_9BACT

Observation: This is a 30S ribosomal protein S15. It is found in organism Chthoniobacter flavus
Ellin428.It has molecular function that structural constituent of ribosome. It has a biological
process translation. It has cellular component ribosome.

Thought: I need to search Wikipedia to find out which family this protein belongs to.

Action: Wikipedia Search, Action Input: 30S ribosomal protein S15

Observation: Page: Ribosomal protein Summary: A ribosomal protein (r-protein or rProtein) is
any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in
the cellular process of translation. E. coli, other bacteria and Archaea have a 30S small subunit
and a 50S large subunit, whereas humans and yeasts have a 40S small subunit and a 60S large
subunit. Page: 40S ribosomal protein S30 Summary: 40S ribosomal protein S30 is a protein
that in humans is encoded by the FAU gene.

Thought: I now know the answer.

Final Answer: The protein belongs to the 40S ribosomal protein S30 family.

Demo 2:

Question: Can this protein MPGVTVKDVNQQEFVRALAAFLKKSGKLKVPEWVDTVK-
LAKHKELAPYDENWFYTRAASTARHLYLRGGAGVGSMTKIYGGRQRNGVMPSHFSRG
SKSVARRVLQALEGLKMVEKDQDGGRKLTPQGQRDLDRIAGQVAAANKK binds with
RNA? (Ground truth: Yes)

5https://www.ebi.ac.uk/interpro/
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Figure 17: Query and Retrieved Sequence Structures

Thought:I need to find out what this protein does

Action: Protein Retrieval

Action Input: MPGVTVKDVNQQEFVRALAAFLKKSGKLKVPEWVDTVKLAKHKE-
LAPYDENWFYTRAASTARHLYLRGGAGVGSMTKIYGGRQRNGVMPSHFSRGSKSVARRV
LQALEGLKMVEKDQDGGRKLTPQGQRDLDRIAGQVAAANKK

Observation: Here are 4 homologs for this protein separated by ",":A0A315V8B8_GAMAF
,A0A673GQT0_9TELE ,A0A2K6SCP9_SAIBB ,A0A674GDP2_TAEGU

Thought: I need to find out what this protein does

Action: InterPro Search, Action Input: A0A315V8B8_GAMAF

Observation: This is a 40S ribosomal protein S19. It is found in organism Gambusia affinis
(Western mosquitofish).

Thought: I need to find out if this protein binds with RNA

Action: Wikipedia Search, Action Input: 40S ribosomal protein S19 binds RNA

Page: 40S ribosomal protein S19 Summary: 40S ribosomal protein S19 is a protein that in
humans is encoded by the RPS19 gene. Page: 5S ribosomal RNA Summary: The 5S ribosomal
RNA (5S rRNA) is an approximately 120 nucleotide-long ribosomal RNA molecule with a
mass of 40 kDa. It is a structural and functional component of the large subunit of the ribosome
in all domains of life (bacteria, archaea, and eukaryotes), with the exception of mitochondrial
ribosomes of fungi and animals. The designation 5S refers to the molecule’s sedimentation
velocity in an ultracentrifuge, which is measured in Svedberg units (S). Page: Ribosomal
protein Summary: A ribosomal protein (r-protein or rProtein) is any of the proteins that, in
conjunction with rRNA, make up the ribosomal subunits involved in the cellular process of
translation. E. coli, other bacteria and Archaea have a 30S small subunit and a 50S large subunit,
whereas humans and yeasts have a 40S small subunit and a 60S large subunit. )

Thought: I now know the final answer.

Final Answer: Yes, 40S ribosomal protein S19 binds with 5S ribosomal RNA as part of the
ribosomal subunits involved in the cellular process of translation
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(a) T1024 MSA, AlphaFold prediction TM-score:
0.9842

(b) T1024 Acc-MSA, AlphaFold prediction TM-
score: 0.9897

(c) T1025 MSA, AlphaFold prediction TM-score:
0.9229

(d) T1025 Acc-MSA, AlphaFold prediction TM-
score: 0.9204

(e) T1047s1 MSA, AlphaFold prediction TM-
score: 0.5020

(f) T1047s1 Acc-MSA, AlphaFold prediction TM-
score: 0.4214

(g) T1045s2 MSA, AlphaFold prediction TM-
score: 0.9356

(h) T1045s2 Acc-MSA, AlphaFold prediction TM-
score: 0.2759

Figure 18: Visualization of the coverage rate of Accelerated MSA VS MSA.
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