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Summary   

Imaging mass cytometry (IMC) is a powerful multiplexed tissue imaging technology that allows 

simultaneous detection of more than 30 makers on a single slide. It has been increasingly used for single-

cell-based spatial phenotyping in a wide range of samples. However, it only acquires a small, rectangle 

field of view (FOV) with a low image resolution that hinders downstream analysis. Here, we reported a 

highly practical dual-modality imaging method that combines high-resolution immunofluorescence (IF) and 

high-dimensional IMC on the same tissue slide. Our computational pipeline uses the whole slide image 

(WSI) of IF as a spatial reference and integrates small FOVs IMC into a WSI of IMC. The high-resolution 

IF images enable accurate single-cell segmentation to extract robust high-dimensional IMC features for 

downstream analysis. We applied this method in esophageal adenocarcinoma of different stages, identified 

the single-cell pathology landscape via reconstruction of WSI IMC images, and demonstrated the 

advantage of the dual-modality imaging strategy.  
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Motivation 

Highly multiplexed tissue imaging allows visualization of the spatially resolved expression of multiple 

proteins at the single-cell level. Although imaging mass cytometry (IMC) using metal isotope-conjugated 

antibodies has a significant advantage of low background signal and absence of autofluorescence or batch 

effect, it has a low resolution that hampers accurate cell segmentation and results in inaccurate feature 

extraction. In addition, IMC only acquires mm2-sized rectangle regions, which limits its application and 

efficiency when studying larger clinical samples with non-rectangle shapes. To maximize the research 

output of IMC, we developed the dual-modality imaging method based on a highly practical and technical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.23.529718doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529718
http://creativecommons.org/licenses/by-nc-nd/4.0/


improvement requiring no extra specialized equipment or agents and proposed a comprehensive 

computational pipeline that combines IF and IMC. The proposed method greatly improves the accuracy of 

cell segmentation and downstream analysis and is able to obtain whole slide image IMC to capture the 

comprehensive cellular landscape of large tissue sections. 
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INTRODUCTION  

Understanding the cellular composition and its spatial distribution in tissue sections, termed “spatial biology,” 

is becoming increasingly important in a wide range of biological research fields1. Spatial biology utilizes 

highly multiplexed tissue imaging (MTI) techniques that allow visualization and quantification of the spatially 

resolved expression of various protein markers at single-cell resolution in tissues by acquiring multiple 

images of the same tissue that correspond to different markers, followed by computational deconvolution 

of the image data into single-cell-based marker quantification. MTI enables detailed spatial characterization 

of individual cells along with the complex interaction between target cells and their microenvironments, such 

as cancer cells and their neighboring immune and stromal cells. However, every MTI has platform-specific 

limitations that pose a substantial computational challenge to overcome these limitations; specifically,  

critical parameters in MTI are the number of multiplexed biomarkers and spatial resolution, which are mainly 

determined by the platform hardware.  

Optical microscope-based platforms such as cyclic immunofluorescence (t-CyCIF)2, multiplex 

immunofluorescence (MxIF)3, multiplexed immunohistochemistry (mIHC)4, and CODetection by indEXing 

(CODEX)5 are optical microscope-based methods that usually have a high imaging resolution (0.05 to 0.25 

μm2 per pixel). However, all these platforms achieve multiplex, ie. detection of multiple markers, via 

repeating the cycles of ‘antibody incubation’ – ‘imaging’ – ‘antibody removal’ in a sequential iterative 

process that usually takes 6 to 8 hours per cycle with repeated heating and cooling of the slide. The process, 

therefore, is prone to artifacts including autofluorescence (if detection is fluorescence-based), micro-

shrinkage, expansion or loss of the tissue, and batch effect, which are exacerbated by the increasing 

number of cycles and markers. It becomes a critical issue especially when processing larger tissues (on 

the scale of cm2) as the micro-shrinkage and expansion are becoming non-negligible. It results in grave 

difficulties in downstream image registration and introduces significant errors. Moreover, autofluorescence 

and experimental batch effects also introduce biases into the data and may mask the true underlying 

biological signals6–10.  

In contrast to the optical microscope-based MTI methods, mass spectrometry-based platforms such 

as imaging mass cytometry (IMC)11 and multiplexed ion beam imaging (MIBI)12 use metal isotope-

conjugated antibodies and detect all markers in one round and raw images of all markers are acquired 
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simultaneously. It is therefore free of the aforementioned artifacts that are caused by the repeated 

sequential cycles. Furthermore, these platforms have a significant advantage of low background signal, no 

autofluorescence, and no batch effect as the marker detection is not based on fluorescence intensity but 

time-of-flight (TOF) of the evaporating metal isotopes when the tissue is being ablated11. However, IMC 

has a much lower spatial resolution (1 μm2 per pixel) that hampers accurate cell segmentation, resulting in 

inaccurate single-cell feature extraction and hindering accurate cell phenotyping13,14. Baars and colleagues 

published a method that used high-resolution IF as a segmentation called MATISSE (iMaging mAss 

cytometry mIcroscopy Single cell SegmEntation)15. However, this method is still restricted by the confined 

IMC field of view (FOV), as the platform hardware only acquires mm2-sized rectangular regions. For larger 

cm2-sized tissue, the acquisition needs to be broken into a number of smaller separate rectangular FOVs, 

which greatly limits its application in studying large whole-tissue cellular landscapes, such as an entire 

patient tumor or an intact mouse cerebrum.    

Here, we developed a comprehensive solution that not only significantly improved the accuracy of cell 

segmentation but also was able to reconstruct multiple separately acquired IMC FOVs to a single WSI so 

the tissue’s cellular composition and spatial landscape could be studied as a whole. We demonstrated the 

method using endoscopic mucosal resection (EMR) specimens that contained esophageal 

adenocarcinoma and adjacent precancerous Barrett's esophagus. The results faithfully recapitulated the 

pathological transition of the cellular landscape between Barrett's esophagus, dysplasia, and 

adenocarcinoma that was only possible to study as a whole in WSI.  

 

RESULTS  

Our method aimed to combine the advantages of IF and IMC by dual-modality imaging of the same tissue, 

and then reconstruct the small rectangle IMC FOVs to WSI based on the IF reference to analyze the whole 

tissue with both high-dimensional and high-resolution imaging data (Figure 1A). To demonstrate its 

applicability in different tissue types, we stained large endoscopic mucosal resection (EMR) tissues of early 

esophageal adenocarcinoma with adjacent precancerous Barrett’s esophagus, which represents various 

histologic features, including squamous and glandular epithelia and stromal tissue, and pathological 
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progress from normal tissues to metaplastic precancerous lesion, dysplasia, and cancer in a large area 

measuring approximately 0.5 cm x 2 cm (Supplementary Figure S1).  

 

Staining and dual-modality imaging of IF and IMC  

Briefly, we stained the slide for two rounds: first with the primary IF antibodies (E-Cadherin, CD45), and 

second with the secondary IF antibodies and a cocktail of metal isotope-conjugated IMC antibodies (36 

markers, Supplementary Table S1). The slides were stained with DAPI before temporarily being mounted 

for whole slide fluorescent scanning for IF markers, followed by dismount and air drying, and acquisition of 

multiple small rectangle FOVs of IMC (Figure 1B and METHOD). The hands-on time for the benchwork 

was approximately 2 hours, and the full preparation of the slide could be finished in one day. 

 

Computational integration pipeline of IF and IMC images  

It has been difficult to digitally stitch separately acquired FOV IMC images even if they were adjacent 

because, in IMC, imaged areas are destroyed during acquisition therefore there are no overlapping areas 

that could be used as references. We developed a computational approach to map mm2-sized smaller FOV 

IMC images onto cm2-sized larger WSI IF images, and then register and stitch them together (Figure 2A). 

Briefly, we first determined the global coordinates of small FOV IMC images by identifying high pixel-level 

correlation with the reference IF WSI and then refined the registration locally between small FOV IMC and 

IF. By using our registration method (see METHOD), we successfully registered high-dimensional IMC 

images with 36 markers (Supplementary Figure S2) onto WSI IF with a high subcellular resolution (Figure 

2B).    

 

Generation of customizable region of interest (ROI) masks from WSI IMC images 

Once the whole tissue was reconstructed for both IF and IMC, we further registered the image with an 

adjacent slide stained for hematoxylin and eosin (H&E). The registered H&E image is important for clinical 

samples that pathologists, who rely on H&E images to make the final diagnosis, are able to define a 

disease-specific region. For example, different pathological stages with any shapes (Figure 3A). These 
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areas could then be extracted from the WSI IMC images and individually studied for their cellular 

composition (Figure 3B). 

 

Generation of accurate cell masks using registered IF 

In order to establish accurate cell segmentation for low-resolution IMC images, we generated cell masks 

using MESMER, a deep learning-based algorithm for nuclear and whole-cell segmentation16, from the 

registered high-resolution IF using IF DAPI for the nuclear marker and IF E-Cadherin for the epithelial cell 

membrane marker. We registered IF-based cell segmentation masks with IMC images so that we could 

extract high-dimensional, autofluorescence-free IMC marker intensity features from accurate cell 

segmentation boundaries for downstream analysis (Figure 4).   

We then compared segmentation masks generated from high-resolution IF versus low-resolution IMC 

and found the IF mask resulted in highly accurate demarcation of the true boundaries for both cell and 

nucleus across all tissue types and disease stages (Figure 5A and Supplementary Figure S3). In addition, 

cytoplasmic areas were more clearly delineated in IF-based cell segmentation than in IMC-based (Figure 

5A).  

We further compared the accuracy of IF-based and IMC-based segmentation masks by evaluating the 

inverted nucleus-to-cytoplasmic (N/C) ratio in different disease statuses. Histomorphologically, the inverted 

N/C ratio decreases along with disease progression from intestinal metaplasia to dysplasia and 

adenocarcinoma17, which was faithfully recapitulated by the IF-based cell segmentation but not IMC-based 

(Figure 5B), indicating that IF-based segmentation is sufficiently sensitive for subcellular phenotyping, 

especially for clinical samples. 

The robustness of cell segmentation was further evaluated by biaxial plots of mutually exclusive marker 

pairs, such as PanCK (epithelial cells) and αSMA (vascular, fibroblast, smooth muscle cells), whereby 

double positivity indicates marker spillage that is usually caused by imperfect segmentation. Interestingly, 

both IF-based and IMC-based cell segmentation showed very low double positivity on two mutually 

exclusive marker pairs, PanCK/αSMA and PanCK/CD4 (Supplementary Figure S5). However, IF-based 

segmentation was able to detect 199,425 cells from the tested region while the IMC-based detected 

120,543 cells, which generally suggested that IF-based segmentation was more sensitive to distinguish 
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individual cells that were particularly important when studying tissues with densely packed cells, such as 

tumor. 

Finally, we evaluated the batch effect in IF and IMC by assessing the signals of the same markers that 

were acquired on different experiment dates. While each experiment was strictly controlled that staining 

and imaging were performed with the same parameters, we found the batch effect was inevitable for IF 

markers that varied intensities were observed in different batches (Figure 6A). On the other hand, the signal 

intensity of IMC markers was highly consistent and free of batch effect (Figure 6B), indicating IMC image 

data, even acquired in different batches, could be analyzed together with little need for batch correction, 

which highlights the advantage of IMC for studies with larger sample cohorts that image data need to be 

acquired in multiple batches. 

 

Accurate cell phenotyping results based on IF-based cell mask 

We compared IF-based versus IMC-based segmentation in downstream analysis. Briefly, single cells 

extracted from the same high-dimensional image dataset using either IF-based or IMC-based segmentation 

were pooled together and analyzed for cell phenotyping using the GPU-boosted implementation of 

PhenoGraph (unsupervised clustering approach)7. All the cells were grouped into 19 clusters. Interestingly, 

IF-based segmentation was able to detect a higher number of Cluster 5 (highlighted in Figure 7A). Cluster 

5 showed high PanCK, and moderate CD1a and CCR7 expression. To further confirm the cell identity, we 

visualized the in situ distribution of cluster 5 using the open-source visualization tool Napari 

(https://github.com/napari/napari) (Figure 7B) and found the cells are enriched in the suprabasal layers in 

the squamous epithelium of the normal esophagus, which were likely to be the Langerhans cells or a 

Langerhans cell subset18. It was clear that the high-resolution IF-based segmentation provided a more 

accurate cellular basis for high-dimensional downstream phenotyping that the details of cell location and 

morphology were maintained. 

 

DISCUSSION  

Summary of this study 
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In this study, we present a highly practical approach that integrates mass spectrometry-based IMC with 

optical microscope-based IF that exploits the technical advantages of both imaging platforms while 

overcoming their own limitations. Our method is capable of analyzing tissues of varying sizes and shapes 

with highly accurate cell segmentation (based on IF images) and high dimensional and large-scale 

phenotyping (> 30 markers based on WSI IMC images) without introducing autofluorescence or batch 

effects. By stitching smaller FOVs to obtain a larger WSI, our method overcomes the main limitation in IMC 

which only acquires small rectangular FOVs with low resolution. 

 

A practical solution of integrating IF into the IMC imaging system  

Our staining protocol enables dual staining of IMC and IF on the same slide, which was enabled by a 

relatively simple tweak of the mounting method; also, our computational integration tool was designed 

based on a widely used open-access computational platform, which is easy and convenient for IMC users 

to employ our tool in their analysis. In addition, compared with metal-conjugated IMC antibodies, IF 

antibodies are highly available and widely validated. In our system, key markers could be detected by IF 

antibodies if the IMC antibodies are not available. Also, user-conjugated IMC antibodies with a new metal 

tag can be validated using the corresponding IF staining on the same slide, which facilitates the 

development of new antibody panels in IMC.   

 

Advantages of large-size reconstructed IMC images  

The registered and stitched WSI IMC images with adjacent H&E enable pathologists to examine and 

understand the semantic, structural, and spatial context with regard to the sequential progression of 

diseases, especially the subtle and transitional changes that appear across large areas. WSI IMC images 

also allow the selection of representative and customizable ROIs of the researcher’s interest, instead of 

using small and rectangle FOV of IMC images. The shape of an ROI, such as a concave shape, can 

significantly affect spatial analysis, including neighborhood enrichment analysis and shortest average 

distance. It is therefore important to have customizable area masks that avoid this bias. In addition, the cell 

population composition or cell number can be accurately compared for a meticulously drawn ROI via 
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pathologic semantic evaluation from large WSI-level IMC, thus enabling robust comparison between 

different tumor microenvironments.   

 

Advantage of the integration of IF and IMC modality in terms of imaging processing time  

Our new integration method is time-efficient in acquiring image data for WSI. In optical microscope-based 

platforms such as t-CyCIF2, the maximal number of antibodies for one cycle is usually 3-5 markers, and 

one channel should be nuclei staining such as DAPI as it is required for image registration. Therefore, for 

staining a large tissue with 36 markers, 9 rounds with 4 antibodies each are needed. Moreover, as a 

stripping-out process is needed between scanning and new staining during the cycles, it takes multiple 

days for image acquisition19,20.  

In this regard, IMC has a significant advantage over cyclic multiplexing imaging in terms of image 

acquisition time and automation. Unlike the cyclic imaging modality, IMC is an all-in-one staining and all-in-

one imaging method using a single master mix of metal-conjugated primary antibodies and does not require 

repeated sequential steps such as antibody staining, image acquisition, and antibody removal21. A complete 

set of antibodies with more than 50 markers can be applied simultaneously, and there is no need for manual 

intervention during the acquisition. In addition, there is no tissue loss or micro-expansion issue from 

repeated antibody removal steps. As the hands-on time for the benchwork is approximately 2 hours, 

acquiring multiple FOVs for WSI imaging can be completed within one day (time for acquiring 0.5 mm x 0.5 

mm area at 1-μm resolution: ~3.5 hours); in our case, about 1.5 days were needed for the entire processing 

of IMC imaging for a whole slide with 36 antibody markers. In addition, unlike slides generated from 

fluorescence-based imaging modalities, slides stained with IMC can be stored for a long time without 

degradation.  

 

IF combination improved the accuracy of cell segmentation and downstream analysis  

Although IMC has many advantages, IMC images have a relatively low resolution (cellular resolution: 1 

μm/pixel11) compared to high-resolution optical-based images such as CyCIF or MxIF (cellular resolution: 

0.325 μm/pixel). Low-resolution images hamper accurate cell segmentation, induce lateral spillage of cell 

surface expression from neighboring cells, and result in inaccurate single-cell feature extraction. As a result, 
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mutually exclusive markers are often detected in one cell (i.e., false-double positive cells), which hinder 

accurate cell phenotyping14 and subsequent downstream analysis. To avoid this issue, a recent study 

(REDSEA) proposed a new method for correcting cell phenotyping by assigning the signal in the cell 

boundary to each cell. However, there are still many difficulties in detecting accurate cell boundaries with 

low-resolution IMC images14. In this regard, our results showed that IF-based cell segmentation lowered 

the rate of double-positive cells (Supplementary Figure 5).   

Nuclear imaging of IF DAPI most effectively revealed the nuclear structure at high resolution, 

delineating nuclear contour and nucleus texture even in densely packed cells, intermixed immune cells, 

and membrane imaging of IF E-Cadherin delineated stratified normal squamous epithelium without a 

nucleus (Figure 5A). IF DAPI is considered the empirical ground truth as the most widely used marker in 

nuclear segmentation and image registration9. We were able to generate accurate nuclei and cell masks 

using high-resolution IF DAPI and E-Cadherin images and register them with IMC images, which enabled 

us to analyze high-dimensional IMC images using accurate IF-based cell masks.  

 

Comparison with other multiplexed methods using integrated imaging modalities 

A few new spatial multiplexed technologies have integrated multiple platforms to improve research 

outcomes. NanoString Digital Spatial Profiling (DSP)22 uses sequencing instead of an imaging-based 

method to analyze RNA or protein (oligo-tagged antibodies). IF imaging is used to define specific ROIs, 

such as pan-cytokeratin stained epithelial area or CD45 stained immune cell area, from which multiplexed 

tags and/or oligos could be retrieved and sequenced, therefore the spatial profiling is achieved. It is 

noteworthy that the smallest spatial region NanoString DSP can analyze is 40 to 800 μm, therefore it does 

not achieve a single-cell level. On the other hand, image results from our method could be analyzed to the 

subcellular level thanks to the high-resolution IF. MATISSE (iMaging mAss cytometry mIcroscopy Single 

cell SegmEntation)15 uses a similar concept that integrated IF with IMC to increase image resolution for cell 

segmentation. However, it used only nuclear marker IF DAPI and was still restricted by the small rectangle 

FOV in IMC. In our method, DAPI and other IF markers could be included, such as lineage and/or 

membrane markers such as E-Cadherin and CD45 that greatly facilitate the downstream cell segmentation 

or specific markers of interest that are not available in IMC. It’s also noteworthy that our method allows the 
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reconstruction of large whole tissues of high-resolution IF and high-dimensional IMC images with a 

registered H&E image. This is a great advantage in studying large clinical tissues that detailed pathological 

review is needed.  

 

Limitations of Study  

There are limitations in this study that is also shared by many spatial multiplexed imaging technologies, 

whereby cells, which are three-dimensional, round, and voluminous, are cut with a microtome into two-

dimensional planes for imaging analysis. It inevitably leads to variations in the observed morphology 

depending on which plane the cells are cut from. Therefore, there was a limitation in fully evaluating the cell 

morphology, such as the N/C ratio, even under high-resolution images. This may be resolved by further 

development of three-dimensional spatial imaging technologies. 
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Figure titles and legends  

 

Figure 1. Experimental benchwork workflow for integrating dual-modality imaging 

A. The method principle: the same tissue sample was imaged for both IF and IMC. IF images provided a 

high-resolution image for accurate cell segmentation and whole tissue reference, yet only for up to three 

markers; IMC images provided a high-dimensional image dataset for complex spatial cell phenotyping but 

were acquired as separated small rectangle FOVs that depends on the tissue shape and size. We combined 

the advantages of the two imaging modalities with accurate cell segmentation and reconstruction of high-

dimensional image data for whole tissue. 

B. Experimental procedure: the tissue slide was stained first for IF E-Cadherin and CD45, followed by 

staining of 36 metal-tagged IMC antibodies. Then, a temporary mounting was performed to scan the IF 

images. IF optical scanning was performed to obtain high-resolution (0.3 μm per pixel), whole-area IF 

images. After dismounting and air drying, IMC markers were acquired as separate small rectangle FOVs 

(1.0 μm per pixel). The two datasets were then processed for cell segmentation and FOV stitching. 

 

Figure 2. Image registration and stitching of IMC to IF  

A. Computational workflow for registration and stitching of IMC to IF images    

(a) Whole slide IMC images are generated by stitching and registering small FOV IMC images to large-

sized IF images as a reference. (b) 3 IF markers and 36 IMC markers are visualized on one slide by 

registration. (c) Registration of H&E images to the IF and IMC 

B. Registration of IF (DAPI, E cadherin, CD45) and IMC images (36 antibodies) at subcellular levels.  

(a) IF images of E-Cadherin, DAPI, and CD45. (b) IMC images of 36 markers. (c) Subcellular registration 

of IF and IMC images   

 

Figure 3. Generation of the ROI Mask according to the disease status from whole slide IMC 

A. Generation of a new disease status mask from the co-registered H&E slide.  

B. Application of the disease status mask to IMC images and reconstruction of IMC images according to 

the disease sequence.  
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Figure 4. Generation of accurate cell masks using registered IF 

(a) High-resolution IF images (IF; DAPI, and E Cadherin). (b) Generation of accurate cell segmentation 

masks from high-resolution IF images. (c) Multidimensional IMC images of 36 markers. (d) Application of 

cell masks generated from IF to IMC images. (e) Application of cell masks to high-dimensional IMC images 

for obtaining a high-dimensional feature table at the single cell level.    

 

Figure 5. Comparison of the cell and nuclear masks between IF and IMC images 

A. Cell and nuclear segmentation from high-resolution IF and low-resolution IMC. (i) High-resolution IF 

images (gray, IF DAPI, red, E cadherin). (ii) Cell (green) and nuclear (white) masks from high-resolution IF 

images. (iii) Low-resolution IMC images (gray, IMC DNA, red, IMC E-Cadherin). (iv) Cell (green) and 

nuclear (white) masks from low-resolution IMC images. 

B. Cytoplasmic/Nuclear ratio (inverted N/C ratio) across disease progression in selected regions of interest. 

 

Figure 6. Batch effect of IF vs. IMC 

A. Scatter plot of mean intensity between IF CD45 and IF αSMA according to the image acquisition date.  

B. Scatter plot of mean intensity between IMC CD45RO and IMC αSMA according to the image acquisition 

date.   

The batch effect was found only in IF (A) and not in IMC (B).   

 

Figure 7. Comparison of the downstream analysis of unsupervised clustering results between IF-

based cell mask and IMC-based cell mask   

A. Unsupervised clustering using GPU-boosted implementation of PhenoGraph from the extracted mean 

intensity from the IF mask (gray) and the IMC mask (light brown).  

B. Mapping of cluster 5 on the IF cell mask and the IMC cell mask.  
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STAR METHODS 

Ethics statement  

The studies involving human participants were reviewed and approved by the East of England - Cambridge 

Central Research Ethics Committee. The patients/participants provided their written informed consent to 

participate in this study. 

 

Resource availability 

The imaging data generated during this study are available at https://doi.org/10.5281/zenodo.7576005. The 

published article includes all datasets generated or analyzed during this study. Lead contact Further 

information on methodology and code should be requested and will be fulfilled by the lead contact, Young 

Hwan Chang (chanyo@ohsu.edu). 

 

Materials availability  

The original contributions presented in the study are included in the article/Supplementary Material. Further 

inquiries can be directed to the corresponding authors. 

 

Data and Code Availability 

All software used in this manuscript is detailed in the article’s Methods section. Our code (in Matlab and 

Python) is available at https://github.com/enkim/IMC-IF. 

 

METHOD DETAILS  

1. Tissue samples  

We used endoscopic mucosal resection (EMR) samples from a pilot cohort of early EAC with Barrett’s 

metaplasia (n=3) and normal esophagus (n=2) from tissue donations. The EMR tissues contain sequential 

stages of tumorigenesis including normal esophageal squamous epithelium (NSQ), Barrett intestinal 

metaplasia (NDBE), low-and-high grade dysplasia (Dys), and esophageal adenocarcinoma (EAC, 

Supplementary Figure 1). The study was approved by the Institutional Ethics Committees and all subjects 

provided informed consent for the use of their tissue samples for research purposes (REC 01/149). 
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2. Pathology diagnosis for Barrett's esophagus  

Surgical pathologists independently assessed the pathology as described in our previous study23. The H&E 

slides were scanned and printed out. Two experienced gastrointestinal pathologists (M.T. and A.M.) 

independently assessed the H&E slides using the definitions and histological criteria for NSQ, NDBE, Dys, 

and EAC recommended by The Royal College of Pathologists24 and guidelines by the British Society of 

Gastroenterology on the diagnosis and management of Barrett's esophagus25. High- and low-grade 

dysplasia were grouped together as dysplasia.  

 

3. Antibody  

We used three IF antibodies (CD45, E-Cadherin, Pan-cytokeratin) and 36 IMC antibodies targeting lineage 

markers (Pan-cytokeratin, E-Cadherin, Alpha-SMA, Col1, CD31), cell status markers (P53, Ki67), and 

immune cell phenotyping markers (CD45RO, CD3, CD4, CCR3, CCR7, CD56, CD8a, Granzyme B, ICOS, 

TIM3, LAG-3, CTLA4, FoxP3, PD-1, CD20, CD38, CD11b, CD16, Mast cell tryptase, CD11c, CD14, HLA-

DR, CD68, CD163, Mannose Receptor, CD1a, CSF-1-R, PD-L1, VISTA, Supplementary Table 1).  

 

4. Antibody validation 

A full panel validation was performed21. All antibodies underwent extensive validation prior to multiplexing. 

A pathologist visually evaluated and validated the staining pattern of all IMC and IF antibodies by comparing 

the alleged positive and negative controls from the human protein atlas (https://www.proteinatlas.org). We 

assessed whether single-plex IHC using identical antibodies and 36-plex imaging mass cytometry analysis 

yielded the corresponding results11 between unlabeled and metal-labeled antibodies. Antibodies were 

individually validated to verify target specificity.  

 

5. New mounting technique for dual-modality imaging  

We developed a new staining/mounting technique that allows both IMC (36 markers) and IF (DAPI/CD45/E-

Cadherin) in the same slide section without harming/destroying the tissue. The proposed approach consists 

of a benchwork for image data acquisition and a computational pipeline for image data integration. The 
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benchwork (Figure 1A) is a practical tweak of the IF and IMC staining protocols in which the slide is stained 

for three rounds of antibodies in the order of primary cell surface marker antibodies (E-Cadherin in this 

study), secondary fluorescent antibodies (Alexa fluor 647 in this study) and a cocktail of metal isotope-

conjugated IMC antibodies (36 markers in this study). The slides are temporarily mounted for whole-slide 

fluorescent scanning, followed by dismounting and air drying; the dried slides can be stored for months at 

4°C. In addition, depending on the slide scanner, two more markers can usually be added for other cell 

types, such as CD45 for immune cells or CD31 for endothelial cells. The hands-on time for the benchwork 

is approximately 2 hours. For optimal results, we recommend incubating the primary antibodies at 4°C. 

However, the incubation may be reduced to 1 to 2 hours per round so that full preparation of the slide could 

be finished in one day. 

a. IF staining. Dewax and antigen retrieval were performed on formalin-fixed paraffin-embedded (FFPE) 

EMR tissues section as described23. The slides were blocked by 5% BSA in PBS for 45 minutes at room 

temperature, followed by incubation of IF primary antibodies of CD45 (#13917, Cell Signaling Technology, 

1:100) and E-Cadherin (#14472, Cell Signaling Technology, 1:100) that diluted in PBS-TB (PBS 

supplemented with 0.05% Tween 20 and .05% BSA) overnight at 4C. It was advised to prepare all buffers 

and reagents in plastic containers instead of glass bottles to avoid contamination of metal traces.  

b. IMC antibody staining with 36 markers. The slides were washed in PBS for 3 x 5 minutes, followed by 

incubation of IF secondary antibodies for CD45 (Thermo Fisher Scientific, A21428, 1:200) and E-Cadherin 

(Thermo Fisher Scientific, A21240, 1:200) for 1 hour at room temperature. The slides were then washed 

for 3 x 5 minutes and stained for IMC antibody cocktail that was prepared in PBS-TB overnight at 4C.  

c. Temporary mounting. The slides were washed for 3 x 5 minutes and incubated with Intercalator-Ir (Cell-

ID™, 201192B, Standard BioTools Inc, 1:400) and DAPI (final concentration of 0.5 μg/mL) in PBS-TB for 5 

minutes at room temperature. The slides were briefly washed once in PBS and mounted in 5% BSA in PBS. 

The edge of the coverslips was sealed with rubber cement (29010017000, Marabu Fixogum) and then air 

dried for 20 minutes. 

d. IF image acquisition. The slides were then scanned in Zeiss Axio Scan Z1 for IF images for CD45, E-

Cadherin, and DAPI. In this study, we chose a 20X objective for an image resolution of 0.325 μm per pixel. 

The image acquisition took approximately 45 minutes for one EMR tissue with a 0.5 x 1 cm size. 40x 
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objective for a resolution of 0.163 μm per pixel was also available. The IF images were exported as TIFF 

format using ZenLite software.   

e. Dismount. The dried rubber cement was stripped using forceps and the slides were submerged in PBS-

T (PBS supplemented with 0.05% Tween 20) to dismount the coverslips. The slides were then washed in 

PBS-T for 3 minutes and then in Milli-Q water for 3 minutes. The slides were then air-dried for 15 minutes 

at room temperature and stored at 4C until IMC acquisition.     

f. IMC data acquisition and processing (1 μm per pixel): Images were acquired using the Hyperion Imaging 

System (Standard BioTools Inc, previously Fluidigm). Each field of view (FOV), which was an adjacent 

plane of the EMR section, was ablated with a laser (400 Hz).  

 

6. Stitching & registration of IMC images to IF images  

We developed a two-step approach for the stitching and registering of dual-modality imaging data. For each 

small FOV of IMC, the normalized cross-correlation of the IMC DNA image and IF DAPI is first calculated. 

The peak of the cross-correlation matrix identifies the location where the small FOV IMC image is best 

correlated with the subregion of WSI IF. Then, feature-based image registration is performed by identifying 

matched features from each imaging modality26. Each FOV image can be mapped onto WSI IF and stitched 

together. High-resolution of the segmentation mask from IF image is also registered by matching the 

resolution of the IMC image. 

 

7. Visualization  

The registered IF images (n=3) and IMC images (n=36) were simultaneously visualized by open-source 

visualization software, Napari (https://github.com/napari/napari, Supplementary Figure 2)  

 

8. Single-cell segmentation  

We performed cell and nuclear segmentation using Mesmer16 using a nuclear marker (DAPI for IF and DNA 

for IMC) and an epithelial membrane marker (E-Cadherin, Figure 4).  

 

9. Feature extraction 
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We used a cell segmentation mask made from IF images to obtain the mean intensity of high-dimensional 

IMC image sets (Figure 4). By applying the newly selected region of interest corresponding to each disease 

status (Figure 3A, B), we extracted the mean intensity of 36 IMC antibodies using a single cell mask 

generated from high-resolution IF images (Figure 4E). Feature extraction was performed using the Skimage 

python library (https://scikit-image.org). More cells were segmented using IF masks (DAPI, E-Cadherin, 

total: 199,425 cells) than by using IMC masks (DNA, E-Cadherin, total: 120,643 cells)   

 

10. Unsupervised clustering:  

We performed cell phenotyping from the single-cell data using a GPU-boosted implementation of 

PhenoGraph7 (Figure 7A).  

 

Supplemental information titles and legends  

 

Supplementary Figure 1. Representative H&E image of EMR section. A. Normal esophagus with squamous 

epithelium. B. Early EAC arising from Barrett’s esophagus   

 

Supplementary Figure 2. Visualization for 36 antibodies of IMC markers  

 

Supplementary Figure 3. Segmented cell mask comparison between IF-based and IMC-based according 

to disease progression A. Normal squamous epithelium (NSQ), B. Nondysplastic Barrett esophagus 

(NDBE), C. Dysplasia (Dys), D, esophageal adenocarcinoma (EAC)   

 

Supplementary Figure 4. Cytoplasmic/Nuclear ratio (inverted NC ratio) across disease progression in all 

regions 

 

Supplementary Figure 5. Biaxial scatter plot of mean intensity 

 

Supplementary Figure 6. Nuclear area vs. cytoplasmic area according to the disease status  
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Figures, supplemental information, and the key resources  

  

KEY RESOURCES TABLE 

 

Supplementary Table 1. 36 metal-tagged antibodies for IMC 

Class No. Metal Clone Type Cat No. Antibody Name Comments 

1. Epithelial 

cell 

9 Nd 148 C11 Human 3148020D Pan-

Keratin 

panK  Epithelial cells 

18 Gd 158 24E10 Cross 3158029D E-

Cadherin 

E-Cad  Epithelial cells 

3. Stromal - 

vascular cell 

2 Pr 141 1A4 Human 3141017D Alpha-

SMA 

aSMA Vascular, 

fibroblast, 

smooth muscle 

29 Tm 169 Polyclonal Human 3169023D Col 1 Col1 Extracellular 

matrix 

3 Nd 142 EPR3094 Rabbit 

IgG 

ab207090 CD31 CD31 endothelial cells 

2. P53 

mutation 

proliferating 

tumor cells  

4 Nd 143 DO-7 Human 3143026D p53 p53 p53 protein 

accumulation 

28 Er 168 B56 Cross 3168022D Ki-67 Ki67 Proliferating 

cells 

4. Lymphoid 

Lineage (T 

cell)  

33 Yb 173 UCHL1 Cross 3173016D CD45RO CD45RO Memory T cells 

30 Er 170 Polyclonal, 

C-Terminal 

Human 3170019D CD3 CD3 pan T cells 

17 Gd 156 EPR6855 Human 3156033D CD4 CD4 Helper T cells 

10 Sm 149 Y31 Rabbit 

IgG 

ab228341 CCR3 CCR3 Helper T cell : 

Th9 cells  

32 Yb 172 Y59 Rabbit 

IgG 

ab221209 CCR7 CCR7 Naïve T cell/ 

Memory(high) T 

cells  

35 Lu 175 EP2567Y Rabbit 

IgG 

ab215981 CD56  CD56 NK cell, NK/T 

cells  
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5. T cell, 

Functioning 

Cell  

22 Dy 162 C8/144B Human 3162034D CD8a CD8a Cytotoxic T cells  

27 Er 167 EPR20129-

217 

Human 3167021D Granzyme 

B 

GranB Activated T 

cells/NK cells  

6. Lymphoid 

cells  

- regulatory 

or exhausted 

20 Gd 160 EPR20560 Rabbit 

IgG 

ab225577 ICOS ICOS Helper T cell : 

TFH cell s 

34 Yb 174 EPR22241 Rabbit 

IgG 

ab242080 TIM 3 TIM3 Exhausted T 

cells 

12 Eu 151 EPR20261 Rabbit 

IgG 

ab227579 LAG-3 LAG3 Exhausted T 

cells 

26 Er 166 CAL49 Rabbit 

IgG 

ab251599 CTLA4 CTLA4 Regulatory T 

cells 

16 Gd 155 236A/E7 Human 3155016D FoxP3 Foxp3 Regulatory T 

cells 

24 Dy 164 D4W2J Rabbit 

IgG 

86163BF PD-1 PD1 TFH cell, 

Exhausted T 

cells  

7. Lymphoid 

cells 

 - B 

cell/plasma 

cell lineage 

21 Dy 161 H1 Human 3161029D CD20 CD20 B cells 

6 Nd 145 EPR4106 Rabbit 

IgG 

ab176886 CD38 CD38 NK cells, 

monocytes, 

activated B 

cells/T cells  

8. Myeloid 

- Neutrophil, 

mast cell  

5 Nd 144 EPR1344 Rabbit 

IgG 

ab209970 CD11b CD11b Pan-myeloid 

cells 

7 Nd 146 EPR16784 Rabbit 

IgG 

ab215977 CD16 CD16 Neutrophil 

31 Yb 171 EPR9522 Rabbit 

IgG 

ab271916 Mast Cell 

Tryptase 

Tryptas Myeloid- mast 

cells 

9. Myeloid  

- 

macrophage 

36 Yb 176 EP1347Y Rabbit 

IgG 

ab216655 CD11c CD11c Dendritic cells  

1 Qdot 

800 

112/114 EPR3653 Rabbit 

IgG 

ab226121 CD14  CD14 Monocytes 

23 Dy 163 EPR3692 Rabbit 

IgG 

ab215985 HLA-DR HLA-DR macrophage-

APC (MHC II)   
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19 Tb 159 KP1 Human 3159035D CD68 CD68 Macrophages  

8 Sm 147 Edhu-1 Human 3147021D CD163 CD163 Macrophages-

M2   

14 Eu 153 EPR22489-

7 

Rabbit 

IgG 

ab254471 Mannose 

Receptor  

CD206 Macrophage  

13 Eu 152 O10 Mouse 

IgG1 

ab212980 CD1a CD1a Langerhans 

cells 

15 Sm 154 SP211 Rabbit 

IgG 

ab240265 CSF-1-R  CSF1R CSF1R 

macrophages 

10. T cell 

inhibition 

11 Nd 150 E1L3N Human 3150031D PD-L1 PDL1 Immune 

checkpoint 

Ligand,Inhibit T 

cells  

25 Ho 165 EPR21050 Rabbit 

IgG 

ab238886 VISTA VISTA Inhibit T cells/ 

inhibit myeloid 

cell  
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Figure 1. Experimental benchwork workflow for integrating dual-modality imaging 
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Figure 5. Comparison of the cell and nuclear masks between IF and IMC images 
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Figure 6. Batch effect of IF vs IMC 
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Figure 7. Comparison of the downstream analysis of cell phenotyping  between IF based cell mask and 
IMC based cell mask  
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Supplementary Figure S1. Representative HE image of EMR section 
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Supplementary Figure S4. Cytoplasmic / Nuclear ratio (inverted NC ratio) across 
disease progression in all regions. 

IF
IMC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.23.529718doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529718
http://creativecommons.org/licenses/by-nc-nd/4.0/


Log2 

n = 199,425 n = 120,543

4.5 % 4.7 %

31.9 % 34.3 % 
42.3 % 39.5 % 

21.2 % 21.4 % 

Log2 

IF mask IMC mask 

42.4 % 39.6 % 

PanCK PanCK

aS
M

A

aS
M

A

2.5 %

44.2 % 44.4 %

9.0 % 2.9 %

45.0 % 41.2 %

10.9 %

CD
4

Log2 Log2 

CD
4

PanCK PanCK

IF mask IMC mask 

Supplementary Figure S5. Biaxial scatter plot of mean intensity

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.23.529718doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529718
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S6. Nuclear area vs cytoplasmic area according to the disease status 
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