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ABSTRACT: 

Identifying individual cells or nuclei is often the first step in the analysis of multiplex tissue 
imaging (MTI) data. Recent efforts to produce plug-and-play, end-to-end MTI analysis 
tools such as MCMICRO1– though groundbreaking in their usability and extensibility – 
are often unable to provide users guidance regarding the most appropriate models for 
their segmentation task among an endless proliferation of novel segmentation methods. 
Unfortunately, evaluating segmentation results on a user’s dataset without ground truth 
labels is either purely subjective or eventually amounts to the task of performing the 
original, time-intensive annotation. As a consequence, researchers rely on models pre-
trained on other large datasets for their unique tasks. Here, we propose a methodological 
approach for evaluating MTI nuclei segmentation methods in absence of ground truth 
labels by scoring relatively to a larger ensemble of segmentations. To avoid potential 
sensitivity to collective bias from the ensemble approach, we refine the ensemble via 
weighted average across segmentation methods, which we derive from a systematic 
model ablation study. First, we demonstrate a proof-of-concept and the feasibility of the 
proposed approach to evaluate segmentation performance in a small dataset with ground 
truth annotation. To validate the ensemble and demonstrate the importance of our 
method-specific weighting, we compare the ensemble’s detection and pixel-level 
predictions – derived without supervision - with the data’s ground truth labels. Second, 
we apply the methodology to an unlabeled larger tissue microarray (TMA) dataset, which 
includes a diverse set of breast cancer phenotypes, and provides decision guidelines for 
the general user to more easily choose the most suitable segmentation methods for their 
own dataset by systematically evaluating the performance of individual segmentation 
approaches in the entire dataset. 
 

INTRODUCTION 

Highly multiplexed tissue imaging (MTI) techniques allow visualization and quantification 
of the spatially resolved expression of various protein markers at single-cell resolution in 
tissues2–4. MTI downstream analyses including individual cell phenotyping, cell population, 
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and spatial analyses rely on cell and nuclei segmentation5. As segmentation is the 
downstream analyses cornerstone, it is necessary to evaluate and choose the most 
appropriate segmentation methods. Deep learning-based methods specifically pre-
trained for biomedical image segmentation are considered state-of-the-art and can 
provide good out-of-the-box results6–12. However, the published performance of the pre-
trained models may be untrustworthy on the user’s data or new types of data, especially 
when test images are very different from the training images because of the variability of 
biological samples.  

As shown in Figure 1A for the analysis of human tumor atlas network (HTAN) TNP-
TMA core G5 (see details Dataset in METHODS section), we often observe that 
segmentation results from different methods show inconsistencies and discrepancies in 
segmentation tasks and thus cause feature level differences; for example, 1) the number 
of segmented nuclei ranges widely, from the lowest number of 6,662 using Stardist6 to 
the highest number of 23,600 using UnMICST12, and 2) further, the Cellpose3- and 
UnMICST-based mean intensity histograms in core F4 show three distinct peaks for the 
pan-cytokeratin marker while only two are observed for other methods. As inaccurate 
segmentation introduces systematic error or bias in downstream analysis, it is important 
to evaluate segmentation methods and choose the most suitable one for a specific 
application.  

High-performance cell and nuclei segmentation tools are built with deep neural 
networks, which are typically trained in a fully supervised or semi-supervised fashion13. 
These algorithms typically rely on extensive training datasets of human-labeled 
images8,9,14 which are laborious to produce and cost or time-prohibitive in most settings. 
As a result, pre-trained models are often used for biological segmentation on user’s 
datasets without having ground truth labels. Thus, the evaluation of segmentation 
performance is based on the user’s visual inspection or requires additional manual 
annotations to quantitatively evaluate performance. Recent end-to-end pipelines such as 
MCMICRO1 can run multiple segmentation algorithms in parallel, allowing their 
performance to be compared directly, which is particularly useful and helpful for 
evaluating segmentation tasks but lacking in the ability to assist non-computational 
experts in choosing the most appropriate pre-trained model without having ground truth 
label. Thus, users still rely on their visual inspection with few selected regions of interest 
or samples, instead of using a systematic approach based on quantitative metrics to score 
individual performance in the entire dataset.  

Thus, challenges arise: how can users objectively evaluate individual 
segmentation methods for their own dataset without ground truth labels and choose the 
most suitable segmentation? Previous studies have suggested segmentation evaluation 
in absence of ground truth labels15–18. For example, reverse classification accuracy15 uses 
segmentation results as pseudo-ground truth labels to train a new segmentation model. 
The accuracy of the “reverse”-trained classifier is used as a proxy for the quality of 
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predicted segmentations (i.e., pseudo ground truth). The primary downside of this method 
is its reliance on the existence of annotated reference datasets from the same or similar 
domain as the unlabeled data. A similar approach is provided by training a regression 
model to predict segmentation error from hand-crafted features of the predicted 
segmentation mask16. As training is fully supervised, it requires several annotated 
datasets. All the approaches aforementioned require additional model training and are 
also based on existing labeled datasets from the same domain that may not even exist, 
making them slow and potentially unreliable. Another class of segmentation evaluation 
approach is based on a probabilistic, ensemble-based approach to compute precision 
and recall metrics in the context of a document retrieval task with missing or uncertain 
ground truth17. An ensemble of predictions is known to make better predictions and 
outperforms any single contributing model19. Scores are computed purely probabilistically 
without thresholding the ensemble average to estimate the ground truth. Recent study18 
proposed an approach that seeks to evaluate cell segmentation methods by providing an 
objective evaluation approach based on assumptions about the desired characteristics of 
good cell segmentation methods. Evaluation metrics rely on the similarity between two 
segmentation methods and an overall segmentation quality score for each method uses 
the metrics for all methods with and without perturbation (i.e., added noise and down-
sampling). Although this approach does not require reference segmentation, the quality 
score relies on simple statistics from the pre-defined features. 

Here, motivated by the previous work from Lamiroy et al.17, we developed 
algorithmic and software tools for evaluating segmentation tasks and selecting from 
several segmentation methods in absence of ground truth labels. We demonstrate that 
this approach can infer a pseudo ground truth label based on an ensemble of 
segmentation results from pre-trained models, and quantitatively evaluate the individual 
model performance by measuring precision and recall based on the inferred pseudo 
ground truth label. A framework acknowledges sensitivity to the “collective bias” of the 
ensemble and thus proposes a weighted ensemble in settings where a relative 
importance weighting across segmentation methods ameliorates this issue. We first 
perform these analyses on a small dataset with ground truth annotations to demonstrate 
the feasibility of the proposed approach. Second, we strengthen the validation by applying 
the proposed approach on an unlabeled larger tissue microarray (TMA) dataset and 
provide decision guidelines for the general user to choose the most suitable segmentation 
methods based on quantitative metrics to score individual performance in the entire 
dataset. 

RESULTS 

Generating masks and ground truth inference 

We propose to estimate a probabilistic ground truth label mask using a majority vote 
amongst an ensemble of segmentation results from different segmentation methods. 
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Figure 1B illustrates an overview of the proposed approach including consensus-based 
ground truth estimation, refinement, and segmentation evaluation. Our approximate 
ground truth can be understood as an ensemble of independent spatial point spread 
functions (PSF) from the identified centroid of individual cells or nuclei.  

To do this, we first started by running all segmentation methods on the entire 
dataset (Step 1, see METHODS section). Each segmentation method generated nuclear 
masks (Supplementary Figure 1A), and each method’s mask instances are used to define 
a single cell object's probability map so that there is a one-to-one correspondence 
between segmentation instance centroids and their probability distribution (Step 2). Each 
centroid of the segmented object from individual segmentation methods is used for 
generating a two-dimensional Gaussian probability distribution map based on the centroid 
position. The covariance matrix of each PSF component might be a fixed constant that 
varies a model hyperparameter or may be set according to instance morphological 
features. For example, fibroblasts are flat and spindle-shaped so that multivariate 
asymmetric gaussian distribution would fit better. Herein we simply use a fixed constant 
for the covariance matrix of each PSF component and this modification would be 
extended in future work. 

Once we have a probability distribution map (𝑃!) from each segmentation method 
for a given covariance, we estimate pseudo ground truth label masks (𝑃"#" ) by using a 
majority vote amongst an ensemble of probability distribution maps from individual 
segmentation results with the equal weighting factor (Step 3): 

𝑃"#" =
1
𝑁&𝑃!

$

!

 

where N is the number of segmentation methods. The underlying hypothesis is that when 
probability distribution maps of individual segmentation model results are correctly 
combined, we can obtain more accurate and/or robust probability distribution maps of the 
individual cell/nuclei location. It has been shown that ensemble methods usually 
aggregate heterogeneous predictions from the different models and produce more 
accurate solutions than a single model would19–21.  

 

Approximating ground truth pseudo probabilistic label mask and evaluation 

In practice, whole-slide MTI data can contain millions of cells/nuclei instances. Modeling, 
sampling from, and scoring values in such a PSF are computationally expensive. Thus, 
we simplify our probability model by constructing approximate, binary spatial densities for 
each segmentation result and taking the average across all methods to generate a 
pseudo ground truth probabilistic map.  

Concretely, for each segmentation we approximate a PSF by removing 
segmentation boundary information, retaining only an infinitesimally small seed at each 
cell centroid, and uniformly dilating each seed with a radius r. Stacking these binarized 
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masks, summing and normalizing along the channel dimension result in a spatial 
probabilistic map normalized between 0 and 1. Like the PSF’s covariance matrix, the 
dilation radius is a model hyperparameter and can be easily replaced by an ellipsoid 
dilation filter specific to cell instance morphology.  

The dilation radius effectively encodes an assumption of how dense the PSF’s 
probability mass is near the centroid. This assumption follows from the observation that 
each PSF component should retain most of its probability mass within the segmentation 
boundary. When increasing the dilation radius in densely populated cells of tissue 
samples, it is likely that a single segmentation instance from any method ends up 
composing multiple proxy ground truth objects (see Supplementary Figure 1B). To avoid 
overcounting, we enforce the additional constraint that each instance can vote for only 
one ground truth region.  

Finally, the approximate pseudo ground truth probability map is binarized such that 
spatial regions of majority agreement over all segmentation methods are retained and all 
others are dropped. The result is an approximate pseudo-ground truth against which we 
evaluate each segmentation method’s precision and recall scores as shown in Figure 1B 
(Step 4). An illustrative example of evaluation is shown in Figure 1C, where detection is 
defined as a single-pixel overlap.   
 
Systematic ablation study refines the ensemble via an adaptive weighting 

In Step 3, multiple models are used to infer the pseudo ground truth locations of cells or 
nuclei. The contribution of each model is considered as a separate vote and the pseudo 
ground truth inference we get from the majority of the models is used as the final 
estimation. However, we often observe that certain models might show poor 
segmentation performance, especially when images under study are very different from 
the training images of the pre-trained models. To address this, we use systematic model 
ablations to define the importance of each model for ground truth inference and further 
improve the ensemble method’s pseudo ground truth inference by assigning refined 
weights.  

To do this, we use the leave-one-out validation method on the ensemble to 
understand the individual effect of each segmentation method on precision and recall 
scores. New precision and recall scores are calculated by using the leave-one-out 
coupled with the calculation of performance change in precision and recall. The change 
in performance informs us about each specific segmentation method’s positive or 
negative effect on the ensemble estimation and performance. To calculate the change in 
the precision of a single method, the average of precision scores available for that method 
is calculated first. For example, when we compare N nuclei segmentation methods and if 
we consider the i-th method, we calculate N-1 precision scores (𝑝𝑟𝑒𝑐!

 #) by considering all 
possible leave-one-out (i.e., 𝑗  =   {1,   … ,  𝑁} where 𝑗  ≠ 𝑖	), and then take the average of 
these scores: 
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 𝑝𝑟𝑒𝑐! =
$

%&$
∑ 𝑝𝑟𝑒𝑐!

 #%
#'!  

Each precision score of the i-th method (𝑝𝑟𝑒𝑐!
 #) is subtracted from the average value 

(𝑝𝑟𝑒𝑐!), and then the result is divided by the average again to normalize it. For a given 
radius, the i-th method’s precision change can be calculated by 

Δ𝑝𝑟𝑒𝑐!
 #    =   ()*+!

 #&()*+!
()*+!

  

This is repeated for all the methods and for different dilation radii to study the contribution 
of dilation radius in the estimation. The change in recall (Δ𝑟𝑒𝑐𝑎𝑙𝑙!

 #) is also computed using 
the same method for precision change step respectively. 

Once the contribution of each method is calculated by using precision and recall 
score changes, we use a simple average of precision and recall score, and a SoftMax 
function is applied to calculate method-specific individual weights (𝑤!) as follows:  

𝑧!   =  
1

𝑁 − 1
7

1
2
9Δ 𝑝𝑟𝑒𝑐!

 #   +  Δ 𝑟𝑒𝑐𝑎𝑙𝑙!
 #;

%

#'!

 

𝑤! =
𝑒,!

∑ 𝑒,#%
#-$

 

By applying a Softmax or normalized exponential function, the ensemble of weights is 
normalized (sum equal to 1) and refined weights between methods are applied as shown 
in Figure 1B (Step 5). For instance, the method that decreases the precision and recall 
when removed positively affects the ground truth inference. On the other hand, one which 
increases the precision and recall when removed has a negative effect on the ground 
truth inference. Finally, the consensus-based ground truth is estimated by using refined 
weights (see Supplementary Figure 1B and 1C with varying radii), and precision and 
recall scores are re-evaluated. The method's overall performance (F1 score) is then 
calculated as the harmonic mean of the new precision and recall scores. 

 
Correlation between the proposed metric and Dice coefficient  
In this section, we demonstrate the feasibility of the proposed approach to evaluate 
segmentation performance in 5 tissue microarray (TMA) cores with human ground truth 
annotations (see details in METHODS section). 

We first investigate whether method-specific weighting via ablation study improves 
the ground truth inference. To test this, we calculate the Dice coefficient – often used to 
quantify the performance of image segmentation methods - between inferred pseudo-
ground truth labels from the ensemble of models and ground truth annotations. Figure 2A 
shows the Dice coefficient for four commonly used nuclei segmentation methods 
including Stardist2, Cellpose3, Mesmer11, and UnMICST12. The blue bars show results 
when using equal weights and a dilation radius optimally chosen as 12 pixels (7.5 µm). 
The inferred pseudo ground truth from the ensemble of segmentation results with equal 
weights shows a good dice (>0.8) with the ground truth annotations.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.02.23.529809doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Then, we evaluate the Dice coefficient based on the leave-one-out validation 
method in the ensemble and calculate a relative importance weighting as we proposed. 
Figure 2B summarizes the Dice coefficient when a specific segmentation method is 
dropped. The best performer is the method that reduces the Dice coefficient significantly 
when removed. As an example, for scene 002, when UnMICST is dropped, the overall 
Dice coefficient increases (i.e., 0.807, Δ+0.022) compared to the average Dice coefficient 
(0.785). On the other hand, if Mesmer is dropped, the overall Dice coefficient decreases 
(i.e., 0.772, Δ-0.013). Based on these observations, we calculate relative importance 
weights via ablation study and re-evaluate the overall Dice coefficient as shown in Figure 
2A (red bars). 4 TMA cores among 5 show improvements for Dice coefficient in the 
ensemble with refined weights. This suggests that the original inferred pseudo ground 
truth using the equal weights may be skewed by a poor segmentation method, but with 
refined weights, the corrected pseudo-ground truth is further closer to the ground truth 
annotations as shown in Figure 2A. 

We next rank individual segmentation methods by computing the overall 
performance thanks to the proposed approach and with respect to the ground truth 
annotations. The proposed approach with individually refined weights reports that 
Mesmer is the best method, followed by Cellpose, Stardist, and UnMICST (Figure 2C), 
which is consistent with the ground truth-based ranks (Figure 2D). Also, the overall 
performance trend of each TMA core matches with the results using the Dice coefficient 
with ground truth. Note that we use F1 score to measure overall performance for the 
proposed approach, and precision and recall scores are shown in Supplementary Figure 
2A; overall, all segmentation methods show good precision scores (>0.9), but with 
variable recall scores. Thus, the recall score is the most important metric when performing 
an F1 score-based classification, and this trend is consistent with the Dice coefficients 
observed in Figure 2D. 

In Figure 2E, we also compare the F1 scores obtained with equal and refined 
weights. With equal weight, Mesmer is ranked 3rd, but by refining the ensemble with 
weighting factors, it is ranked as the best performer. Thus, it is important to evaluate 
individual model contributions to the ensemble and refine the ensemble by using adaptive 
weighting. We show that the performance measured by the proposed approach is 
consistent with the Dice based on the ground truth annotation. We also report the 
performance with varying dilation radii (r =12, 16, and 20). Supplementary Figure 2B 
shows that the overall trend is similar, but as the dilation radius increases, the overall F1 
score decreases slightly. It is likely because a single segmentation method ends up 
composing multiple proxy ground truth objects as the dilation radius increases as shown 
in Supplementary Figures 1B and 1C.  
 
Performance comparison and evaluation without ground truth label 
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We further evaluate the proposed approach in a large TMA dataset without ground truth. 
We first determine the relative importance of weights via ablation study with varying 
dilation radii. Figure 3A shows performance change (i.e., F1 score) in the ablation study. 
Overall, we observe that U-Net22, and UnMICST show a negative effect on the 
performance, and Mesmer, Stardist, Cellpose show a positive effect on the overall 
performance similar to Mask R-CNN. Note that Mask R-CNN model was originally trained 
using 5 manually annotated TMA cores in the BC TMA dataset, so the performance of 
Mask R-CNN could be used as the reference for performance comparison (see details in 
METHODS section). 

With individually tuned weights via ablation study, Mesmer shows a relatively high 
recall and good precision score compared to Mask R-CNN performance. Also, we 
observe that with equal weights, U-Net and UnMICST show good precision scores but 
performance decreases with different weights (Figure 3B and 3C). This result is 
consistent with the performance change in the ablation study. Also, we observe that 
Mesmer shows a small variation of performance (i.e., precision and recall scores) across 
individual TMA cores compared with Cellpose, U-Net, and UnMICST. This indicates that 
Mesmer is robust to potential variations in cell types and staining of all cells across BC 
subtypes. Thus, for the BC TNP-TMA dataset, Mesmer would be the most suitable 
segmentation method among other methods we used in this study.  

In summary, the proposed approach provides accurate performance metrics 
across individual segmentation methods by inferring pseudo ground truth to help users 
select the most suitable segmentation methods for their own dataset without ground truth 
annotation. 
 
DISCUSSION 
We often observe large differences in segmentation performance between different pre-
trained deep learning models23, which is also true between human annotators7,24. 
Therefore, the variety of segmentation approaches cannot be captured by a single 
generalizable model although many recent deep learning models claim a generalist 
algorithm for segmentation7.  

This variability reflects fundamental aspects of biomedical imaging data, human 
annotation tasks, and segmentation models. Here, we have addressed how to ensure 
accurate segmentation among many existing segmentation models and evaluate 
performance especially when ground truth annotation is not available. We use a 
probabilistic, ensemble-based approach to capture the variety of biological segmentation 
styles and infer a pseudo ground truth from the different model segmentation results as 
there often exist multiple acceptable solutions23. 

As models in the ensemble exhibit performance discrepancies, we use a weighted 
ensemble to give individually tuned contributions depending on the inferred ground truth. 
A systematic ablation study identifies each segmentation model’s contribution to 
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performance change and refines the pseudo ground truth inference. We demonstrate that 
the ensemble via relative importance weights improves the ground truth inference and 
corrects the segmentation performance evaluation.  

Recent studies have suggested interactive approaches such as human-in-the-loop 
to retrain the imperfect model with their own annotations in the user’s dataset23,25. Future 
research can look into the deployment of the proposed approach in the human-in-the-
loop and iterative annotation and model re-training settings. For instance, the proposed 
approach can be extended to quantify the quality of additional annotation by scoring 
individual annotator contributions as well as the refined model evaluation in the ensemble 
setting. Finally, here we simply use circular dilation, but our future effort will be considering 
a probability distance map or an ellipsoidal dilation specific to cell instance morphology 
for further improvement. 
 
METHODS 

Segmentation models 

Here we test U-Net22, Stardist2, Cellpose3, Mesmer11, UnMICST12, and Mask R-CNN 
models for inferring ensemble-based ground truth labels and self-evaluating their 
performance. All methods were used by their default set-up with proper physical 
resolution information for conversion. For U-Net, a segmentation mask has been 
performed previously1 and thus we simply used the previously generated mask. For 
UnMICST, we used S3 segmenter (https://github.com/HMS-IDAC/S3segmenter) by 
default.  

Mask R-CNN26 is well known and widely used instance segmentation architecture. 
We used the model recommended and provided in the cycIFAAP pipeline 
(https://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html). This model is a Mask R-
CNN TorchVision implementation, and it was trained with 5 breast cancer (BC) HER2+ 
tissue microarray (TMA) cores (described in the Dataset section), using pseudo-randomly 
selected 512x512 crops with a high probability to keep non-empty crops coupled with a 
simple classical data augmentation (flipping and rotation). This model achieves 96.9% 
accuracy and 0.83 dice score on the training dataset using leave-one-out cross-validation. 

Datasets 

5 selected TMA cores  

This dataset is composed of 5 BC HER2+ TMA cores, containing an approximative total 
of 70K manually segmented nuclei. These images were manually segmented using 
Microscopy Image Browser (MIB) by a biomedical imaging expert. 

TNP-TMA dataset 
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The dataset used for evaluating segmentation methods is a BC TMA available on 
synapse from the Human Tumor Atlas Network (HTAN) TNP-TMA 
(https://www.synapse.org/#!Synapse:syn22041595). This BC TMA dataset is comprised 
of 88 cores and 6 different cancer subtypes: luminal A, luminal B, luminal B/HER+, Triple 
Negative, and Invasive Lobular Carcinoma. 

Code availability 

All software used in this manuscript is detailed in the article’s Results and Methods section 
and the associated scripts are freely available via GitHub as described at  
https://github.com/lstrgar/seg-eval. We provide an example Jupyter notebook to 
reproduce the analyses of Supplementary Figure 1 at: https://github.com/lstrgar/seg-
eval/blob/main/Segmentation Evaluation Methods Breakdown.ipynb 
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FIGURE LEGENDS 

Figure 1. An overview of consensus-based ground truth estimation, refinement, 
and segmentation evaluation. (A) examples of individual segmentation masks and 
feature level discrepancy between segmentation methods. (B) workflow of the proposed 
approach. (C) an illustrative example of ground truth estimation and evaluation. 

Figure 2. Method-specific weighting via ablation study avoids potential sensitivity 
to collective bias. (A) Dice coefficient between ground truth label and inferred ground 
truth with equal weights and different weights respectively. (B) Dice coefficient changes 
from the leave-one-out segmentation method. (C) F1 score based on the proposed 
approach with different weights across individual TMA cores. (D) Dice coefficient with 
ground truth labels across individual TMA cores. (E) averaged F1 score comparison 
between equal weights and different weights across 5 TMA cores.   

Figure 3. An example of a large TNP-TMA dataset with 6 different segmentation 
approaches. (A) ablation study determines method-specific weights. (B) precision and 
recall with equal weights and (C) precision and recall with different weights where an 
individual dot represents a single TMA core and the optimal radius is selected. 

 

SUPPLEMENTARY INFORMATION 

Supplement Figure 1. Example images of segmentation masks and resulting 
pseudo ground truth probability maps. (A) both the entire and zoomed-in sections of 
segmentation masks from the BC TMA dataset for each method. (B) binarized pseudo-
probability maps derived from the masks for different-sized radii (unit: pixels) (C) refined 
pseudo ground truth probability masks by only counting pixels where there is agreeance 
among at least 3 of the different methods from (B). 

Supplement Figure 2. Refined ensemble-derived scores. (A) precision and recall 
score in 5 TMA cores. (B) F1 score with varying dilation radii. 
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Figure 2.
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Figure 3.
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Supplement Figure 1.
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Supplement Figure 2.
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