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Abstract 8 

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. 9 

In this context, this yeast species performs alcoholic fermentation to convert sugars from the grape 10 

must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum 11 

theoretical yield of conversion. Primary metabolites produced during fermentation stand for a great 12 

importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but 13 

others too, which are found in lower concentrations: glycerol, succinate, acetate, ⍺-ketoglutarate… 14 

Their production, which can be characterised by a yield according to the amount of sugars consumed, 15 

is known to differ from one strain to another. S. cerevisiae is known for its great genetic diversity and 16 

plasticity that is directly related to its living environment, natural or technological and therefore to 17 

domestication. This leads to a great phenotypic diversity of metabolites production. However, the 18 

range of metabolic diversity is variable and depends on the pathway considered. In the aim to improve 19 

wine quality, the selection, development and use of strains with dedicated metabolites production 20 

without genetic modifications can rely on the natural diversity that already exists. Here we detail a 21 

screening that aims to assess this diversity of primary metabolites production in a set of 51 S. 22 

cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To 23 
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approach winemaking conditions, we used a synthetic grape must as fermentation medium and 24 

measured by HPLC five main metabolites. Results obtained pointed out great yield differences 25 

between strains and that variability is dependent on the metabolite considered. Ethanol appears as 26 

the one with the smallest variation among our set of strains, despite it’s by far the most produced. A 27 

clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol 28 

synthesis as a good lever to impact ethanol yield. Genetic groups have been identified as linked to 29 

high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine 30 

strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context 31 

and supports the use of ways of development of new strains exploiting natural diversity. Finally, it 32 

provides a detailed data set usable to study diversity of primary metabolites production, including 33 

common commercial wine strains. 34 

 35 

Abbreviations 36 

CCM: Carbon Central Metabolism; GM: Genetically Modified; CV: Coefficient of Variation; α−KG: 37 

Alpha-Ketoglutarate; MLF: Malo-Lactic Fermentation; TCA: Tricarboxylic Acid 38 
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 53 

Introduction 54 

 55 

Fermented products stand today for a great importance in human society both on an economic and a 56 

social point of view. Historically, human and fermentation share a long story: first trace of cereals 57 

fermentation has been found in Israel and estimated back to 13000 B.C. (Liu et al., 2018) and the first 58 

trace of fermented beverage from rice, honey, and a fruit, is known back to 7000 B.C. in China 59 

(McGovern et al., 2004). Since then, fermentation uses have expanded to a wide diversity of processes 60 

and products, like food, beverages or more recently biofuels. In alcoholic beverages, alcoholic 61 

fermentation is the main step of elaboration and is mostly carried by yeast from the Saccharomyces 62 

genus, especially Saccharomyces cerevisiae species. A perfect example is wine, which is the result of 63 

the alcoholic fermentation of grapes or grape juice. In a technological point of view, wine fermentation 64 

is the biotransformation of glucose and fructose, existing in equal proportions in grapes, in carbon 65 

dioxide and ethanol which brings new characteristics to the product: sensory qualities, stability… 66 

Alcoholic fermentation is of high technological interest as well as metabolic importance for 67 

Saccharomyces cerevisiae. Through the glycolysis, this biological process results in generation of 68 

pyruvate and energy in the form of ATP. Pyruvate, which is a central metabolite, is then converted in 69 

two steps in ethanol and carbon dioxide, which ensure a quick re-oxidation of enzymatic cofactors 70 

used in glycolysis, making alcoholic fermentation the most efficient way to promptly provide energy 71 

to the cell (Bakker et al., 2001). Moreover, in typical wine conditions, it is the only way for S. cerevisiae 72 

to produce ATP, respiration being repressed by the Crabtree effect or impossible due to the absence 73 

of dioxygen (De Deken, 1966; Pfeiffer and Morlay, 2014). Both fermentation main products, ethanol 74 

and carbon dioxide, are by far the most produced metabolites during alcoholic fermentation and 75 
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therefore in wine making (Nidelet et al., 2016). A simple way to compare these productions between 76 

species, strains or fermentation conditions is to define a yield, mass or molar, of metabolite produced 77 

by substrate consumed. Ethanol yield of wine fermentation carried by S. cerevisiae is known to be 78 

around 0.47 gram per gram of hexoses consumed, which represent 92% of the maximum theoretical 79 

yield (calculated as one mole of glucose give two moles of ethanol) (Tilloy et al., 2015). The major part 80 

of remaining hexoses is used as a carbon source for cell multiplication and production of other 81 

metabolites in minor concentrations, such as glycerol, acetate, succinate, acetaldehyde, etc. These 82 

metabolites count for largely smaller carbon fluxes, but can stand for significant technological value. 83 

Glycerol, which is linked to stress resistance, can impact the mouthfeel of wine from a certain 84 

concentration (Albertyn et al., 1994; Noble and Bursick 1984). It has been identified as the second 85 

most produced metabolite in fermentation and as the flux with the greatest impact on ethanol 86 

production (Goold et al., 2017). Acetate, which is a way to restore redox balance and a metabolic 87 

intermediary, is a major off-flavour linked compound and subject to legal limits (Vilela-Moura et al., 88 

2008). It appears that yields of fermentation metabolites like ethanol, glycerol or acetate are linked 89 

to domestication degree of strains (Tapia et al., 2018). 90 

For all compounds, yield values differ among strains and environmental conditions of fermentation 91 

(oxygenation, temperature, nutrients concentrations, presence of other microorganisms…) (Du et al., 92 

2012; Tronchoni et al., 2022) but the range of variation stays very limited for ethanol compared to 93 

biomass or other metabolites. In their work, Nidelet et al., (2016) have compared 43 strains from six 94 

different ecological origins and shown that the coefficient of variation of carbon flux toward ethanol 95 

synthesis following glycolysis and alcoholic fermentation is only between 2 and 3 %. In a contrasting 96 

way, yields of glycerol or acetate have a respective variation around 10 and 30 % while representing 97 

a significantly lower carbon flux for the cell (Camarasa et al., 2011; Nidelet et al., 2016). Generally, 98 

global yields are calculated at fixed points of the fermentation: 80% of hexoses consumed, exponential 99 

phase…  One of the reason of these choices is that ethanol yield is not constant during fermentation 100 

and that the flux is difficult to calculate beside the exponential growth phase which is the only stage 101 
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with a quasi-steady state (Celton et al., 2012; Nidelet et al., 2016; Quirós et al., 2013).  However, in a 102 

wine production context, the definition of a yield per strain needs to be done when the fermentation 103 

is completed, which means that all hexoses have been used. 104 

Representing a very small percentage of the carbon fluxes in the cell, metabolites with very low 105 

concentrations are produced too. However, they can still have a significant impact on the final 106 

fermented product, like organic acids, higher alcohols and esters, and so their production is 107 

considerably studied (Antonelli et al., 1999; Regodón Mateos et al., 2006). 108 

The last thirty years have seen considerable research efforts concentrated on understanding and 109 

impacting primary metabolism, mainly with the aim of reducing the final ethanol content of wines. 110 

Besides physical or chemical methods, many microbial strategies have been developed to modify 111 

ethanol production during fermentation. We can cite here genetically modified yeast strains, hybrids 112 

strains, optimisation through adaptive laboratory evolution… (reviewed in Varela and Varela, 2019). 113 

Beside this, modulation of the carbon central metabolism (CCM) without disturbing the cell balance 114 

still remains complex to operate in wine context, mostly because of the multigenic character of the 115 

associated traits (Bro et al., 2006; Hubmann, Foulquié-Moreno, et al., 2013; Hubmann, Mathé, et al., 116 

2013; Salinas et al., 2012). 117 

Nevertheless, elaborate strategies to develop S. cerevisiae strains with a modified glycerol or ethanol 118 

yields in wine fermentation requires to clearly identify the diversity of the CCM metabolism as well as 119 

its constraints and trade-offs. 120 

Here we present results from a screening strategy of 51 strains from different origins that aims to 121 

identify the variability of yield of primary fermentation metabolites in laboratory wine-like conditions 122 

among the S. cerevisiae species. 123 

 124 
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Materials and methods 125 

Strains 126 

51 strains have been used. Information is available in supplementary data (S1). 127 

Strains selection has been made considering results from precedent works of the laboratory, with the 128 

aim to have a lot of diversity in fermentation profiles (Camarasa et al., 2011; Legras et al., 2018; 129 

Nidelet et al., 2016). EC1118 has been chosen as a reference strain to estimate block effect. 130 

Genetically modified (GM) and laboratory evolved strains for precise CCM traits have been included 131 

too. Strains were conserved at −80 °C in 20% glycerol YPD medium (10 g/l yeast extract, 20 g/l 132 

peptone, 20 g/l glucose) and cultivated on YPD agar plate (YPD + 20 g/l agar). 133 

Genetic groups constitution 134 

Strains from various genetic backgrounds, but all linked to fermented beverages, are represented in 135 

the set, known using previous work on S. cerevisiae genome sequencing (Akao et al., 2011; Eder et al., 136 

2018; Fay and Benavides, 2005; Liti et al., 2009; Marsit et al., 2015; Novo et al., 2009; Schacherer et 137 

al., 2009). To classify and organise this intraspecific diversity, two works have been used to define the 138 

following genetic groups: wine, rum, West African, sake and flor (Legras et al., 2018; Peter et al., 2018). 139 

Genomic data to establish these groups are available for 39 strains. Strains without information have 140 

been labelled as “Unknown”. A supplementary group, labelled as “Miscellaneous”, has been used to 141 

gather strains with mosaic, very singular or unclassifiable genomes, but it will not be used as a 142 

consistent group like others. 143 

Fermentation conditions 144 

Fermentation conditions have been chosen to ensure a quick and complete alcoholic fermentation. 145 

One colony has been grown on an overnight culture of YPD medium as pre-culture. Then 106 cells/ml 146 

of these pre-culture have been inoculated in a 280 ml fermenter. A synthetic medium that mimics 147 

grape must composition has been used containing 90g/l of glucose, 90 g/l of fructose, 425 mg/l of 148 
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assimilable nitrogen (as a mixture of amino acids and ammonium) and a set of nutrients reflecting 149 

grape juice composition (Bely et al., 1990). Fermentations have been carried at 28°C with agitation. 150 

Fermenter weight has been measured twice a day to observe fermentation progress. Fermentations 151 

carried at the same time represent a fermentation block. Three replicates have been made for each 152 

strain (except LMD17, LMD37, LMD39, performed in six replicates due to their use in a parallel project 153 

and EC1118 performed in duplicate per block, i. e. 28 replicates in total).  154 

Metabolite analysis 155 

Fermentation metabolites concentrations have been measured using high performance liquid 156 

chromatography as described in Deroite et al. (2018) and analysing chromatograms on OPEN LAB 2X 157 

software. Fermentation samples have been centrifuged 5 min at 3500 rpm at 4 °C and kept at -18°C. 158 

Before analysis, samples have been diluted to 1/6 with 0.005 N H2SO4 and then centrifuged 5 min at 159 

13000 rpm at 4 °C. The supernatant has been kept at -18°C until being analysed. The HPLC method 160 

allows to measure concentrations of glucose, fructose, ethanol, glycerol, acetate, succinate, pyruvate 161 

and alpha-ketoglutarate. Analyses were performed in duplicate and the mean has been calculated for 162 

each sample and used in results analysis. 163 

Quantification has been made with a Rezex ROA column (Phenomenex, Torrance, California, USA) set 164 

at 60 °C on a HPLC (HPLC 1260 Infinity, Agilent Technologies, Santa Clara, California, USA). It has been 165 

resolved isocratically with 0.005 N H2SO4 at a flow rate of 0.6 mL/min. Concentration of acetate and 166 

pyruvate have been measured with a UVmeter at 210 nm and other compounds with a refractive 167 

index detector at 35°. 168 

 169 

For each fermentation, two measures have been done: in the must before fermentation (done for 170 

each block) and at the end of the fermentation. All analyses have been conducted on finished 171 

fermentation, i.e. when combined fructose and glucose concentration fall under 3 g/l, or when 172 

fermenter weight stays constant during 24h. 173 
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Yield has been calculated for each metabolite as following: 174 

 175 

𝑌𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 =  
𝐶𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒

𝐶𝑔𝑙𝑢𝑐𝑜𝑠𝑒+𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒;𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  𝐶𝑔𝑙𝑢𝑐𝑜𝑠𝑒+𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒;𝑓𝑖𝑛𝑎𝑙
 176 

 177 

Each concentration is expressed in g/l or mg/l, leading to yields expressed in g/g or mg/g. When 178 

necessary, values of yield are expressed as follows: mean ± standard error. 179 

Statistical analysis 180 

Statistical analysis has been made using R studio software (version: 1.4.1106). The R script used for 181 

analysis is available as supplementary data (S3) as well as the raw data set (S2) and the final ones that 182 

arose from the analysis (S4 and S5). 183 

 184 

EC1118 has been used in each block in order to evaluate a possible block’s effect. It has been 185 

estimated on EC1118 data using the following model:  186 

𝑌𝑙𝑚 =  𝜇 + 𝐵𝑙𝑜𝑐𝑘𝑙 + 𝐸𝑙𝑚 187 

 188 

With: Y the phenotype (yield for a given metabolite) for the block l (1-51) and the replicate m (1-2). µ 189 

represent the mean of the considered phenotype and E the residual error, with E ∼ N(0, σ2). 190 

 191 

A block effect has been observed on EC1118 data. This has been corrected by calculating a variation 192 

factor on EC1118 metabolite values. This correction (raw value - correction coefficient) has been 193 

applied on glucose, fructose, ethanol, glycerol, succinate, acetate and alpha-ketoglutarate 194 

concentrations data for all strains following their fermentation block. 195 

 196 

The block effect being exempted yields can be expressed with the following model: 197 

 198 
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𝑌𝑖𝑘 =  𝜇 + 𝑆𝑖 + 𝐸𝑖𝑘 199 

 200 

𝑌𝑗𝑘 =  𝜇 + 𝐺𝑗 + 𝐸𝑗𝑘 201 

 202 

𝑌𝑖𝑗𝑘 =  𝜇 + 𝐺𝑗 + 𝑆𝑖(𝐺𝑗) + 𝐸𝑖𝑗𝑘  203 

 204 

With: Y the phenotype (yield for a given metabolite) corrected for block effect for the strain i (1-51), 205 

the genetic group j (1-5) and for the replicate k (1-28). µ represent the mean of the considered 206 

phenotype, S the effect of the strain i, G the effect of the genetic group j and E the residual error, with 207 

E ∼ N(0, σ2). 208 

 209 

To express the variation of yield of a metabolite among a group of strains, the variation coefficient has 210 

been used (Albatineh et al., 2014). A correction according to the number of strains in a group has been 211 

applied, allowing us to compare groups of different sizes. The correction has been applied as follows: 212 

 213 

𝐶𝑉𝑐𝑜𝑟𝑟 =  
𝜎

µ
× (1 −

1

4(𝑛 − 1)
+

1

𝑛
(

𝜎

µ
) ² +

1

2(𝑛 − 1)2
) × 100 214 

 215 

With, for a group of strains and a metabolic yield: µ the mean, σ the standard deviation, n the size of 216 

the group and CVcorr the corrected coefficient of variation, expressed as percentage. 217 

 218 

Results 219 

 220 

Here we present results obtained for 51 strains following the fermentation of a synthetic grape must. 221 

Concentrations have been measured for 5 main compounds from the CCM: ethanol, glycerol, 222 

succinate, acetate and alpha-ketoglutarate, determined by HPLC. After a correction of block effect and 223 
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yield calculation for each compound (expressed as gram of metabolite measured per gram of hexoses 224 

consumed), strains have been compared between each other. All strains have been able to consume 225 

entirely glucose and fructose from the must within 5 days. 226 

We detail the analysis of the 51 strains set of the metabolic yields for 5 metabolites a global analysis 227 

by PCA, an analysis of correlation between metabolic yields and the impact of strains’ genetic origins. 228 

Among our set of strains, 5 have been genetically modified or obtained using adaptive laboratory 229 

evolution methods aiming to modify the CCM: 5074, LMD13, LMD14, LMD41 and LMD45. These 230 

strains will be used as a sort of control and will be discarded in correlation studies between 231 

metabolites, the 46 other strains being gathered in a group called “wild”. 232 

Ethanol 233 

In the first place, we took a look at the major produced metabolite during alcoholic fermentation: 234 

ethanol (Figure 1). We observed significant differences of yield between all strains. (F50, 136 = 38.8, p-235 

value << 10e-3). The highest producer of ethanol, the strain LMD41, with a yield of 0.4978 ± 0.0005 236 

g/g, is a GM strain optimised to maximise ethanol production while reducing glycerol synthesis in 237 

bioethanol context. The lowest ethanol producer is the strain 5074, with a yield of 0.4368 ± 0.0008 238 

g/g, a haploid segregant obtained by an adaptive evolution strategy aiming at reducing ethanol 239 

production while increasing glycerol. Results from this evolution have been used to build the second 240 

lowest producer of ethanol: the commercial wine strain LMD14, which shows a yield value of 0.4515 241 

± 0.0007 g/g. 242 

For wild strains, ethanol yield values are all contained in a smaller range: between 0.47 and 0.49 g/g, 243 

but still show significant differences (F45, 126 = 7.3585, p-value << 10e-3). This range represents a 244 

variation inferior to 4%, with concentrations between 80.7 g/l for the lowest producer and 83.9 g/l for 245 

the highest. 246 

Correlation between ethanol yield and genetic group belonging of strains has been studied. We used 247 

for that only values of strains from defined and homogenous groups: wine, flor, rum, sake and west 248 
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African. Means of each group have been calculated for each metabolite, using the average  values of 249 

all strains included in the group. 250 

No significant difference of yield between genetic groups has been observed (F4, 27 = 0.1448 and p-251 

value = NS). 252 

 253 

Figure 1 - Average ethanol yield for each strain (A) and for main genetic groups (B) 254 

Standard error as error bars. Different letters represent significant differences between two means 255 

(Tukey’s test, p<0.05) 256 

Glycerol 257 

The second more important metabolite by flux in CCM is known to be glycerol. Results can be seen in 258 

Figure 2. Here, yield values are distributed between 0.092 and 0.025 g/g considering all strains, and 259 

between 0.032 and 0.049 g/g considering only wild strains, with in both cases significant differences 260 

between strains (with respectively F50, 136 = 504.77 and F45, 126 = 75.403 and p-values << 10e-3 for both). 261 
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The haploid segregant obtained following an adaptive laboratory evolution aiming to improve glycerol 262 

production (strain 5074) is the strain with the highest glycerol yield: 0.0914 ± 0,0005 g/g. It is followed 263 

by the commercial high glycerol producing strain LMD14 with a yield of 0.0723 ± 0.0016 g/g.  264 

The genetically modified strain LMD41, with maximised ethanol production and reduced glycerol 265 

production, is the one producing the lowest glycerol, with a yield below 0.03 g/g. Another modified 266 

strain, LMD45 shows a similar glycerol yield: it has been built for low by-product production, which 267 

means low glycerol and acetate yields. 268 

As detailed for ethanol, we looked for correlation between strains' genetic origin and glycerol yield. 269 

No significant difference between genetic groups has been observed for glycerol yield (F4, 27 = 0.585, 270 

p-value = NS). 271 

 272 
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Figure 2 - Average glycerol yield for each strain (A) and for main genetic groups (B) 273 

Standard error as error bars. Different letters represent significant differences between two means 274 

(Tukey’s test, p<0.05) 275 

Acetate 276 

Acetate is an important metabolite in wine context: it's the third most produced metabolite in 277 

fermentation after ethanol and glycerol and, besides its low concentration, it is directly linked to off-278 

flavour and subject to legal limits. Thus, its production is always characterised in wine strains studies. 279 

Results can be seen in Figure 3. Significant differences have been observed between strains of our set, 280 

all strains taken into account or only wild ones (respectively F50, 136 = 444.66 and F45,126 = 441.49, both 281 

p-values << 10e-3). 282 

Acetate yields are included in a range of 0.6 to 7.9 mg/g, with a mean of 3.41 ± 0.23 mg/g. We can 283 

observe a great diversity for acetate yield among strains, with many strains significantly different from 284 

each other. The highest acetate producer is Yllc17_E5 with a yield culminating at 7.85 ± 0.28 mg/g. 285 

This yield value corresponds to a concentration of 1.35 g/l of acetate, which places this strain above 286 

the maximum limit in wine. 287 

LMD45, known as a genetically modified strain for low fermentation by-product, shows the second 288 

lowest acetate yield: 0.68 ± 0.02 mg/g, which is a value more than 10 times lower than the highest 289 

acetate producer of the set. 290 

In an interesting way, our two extreme strains for ethanol and glycerol yields are extremely close with 291 

a medium acetate yield. 292 

Contrary to previous metabolites, the strains’ genetic origins have a significant effect on acetate yield 293 

(p-value = 0.019). Indeed, we spotted that flor and west African strains, with an average yield of 294 

respectively 4.53 ± 0.53 mg/g and 4.74 ± 0.81 mg/g, have higher acetate yield than wine strains with 295 

2.69 ± 0.32 mg/g. 296 
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 297 

Figure 3 - Average acetate yield for each strain (A) and for main genetic groups (B) 298 

Standard error as error bars. Different letters represent significant differences between two means 299 

(Tukey’s test, p<0.05) 300 

Succinate 301 

Succinate can be seen as a metabolite with positive impact in wine, but is rarely considered due to its 302 

low production by wine yeast. 303 

Succinate yield values show significant differences between strains too (F50, 136 = 61.8 with all strains 304 

and F45, 126 = 61.1 with only wild ones, p-value << 10e-3 for both) (Figure 4). 305 

These values range from 3.1 to 32.8 mg/g, with GUF54 as the lowest producer and LMD41 as the 306 

highest. These yield values correspond to concentration ranging from 0.54 to 5.62 g/l. 307 

A large part of the strain set has low and non-significant differences of succinate yield, except the 308 

three higher producers, LMD41, LMD44 and LMD43, that show a gap with the rest of the set. The 309 
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highest yield measured is LMD41 with 32.8 ± 3.8 mg/g. As for acetate, we also highlighted a significant 310 

impact of strains’ genetic origins on succinate yields (F4, 27 = 4.8, p-value = 0.005).  Rum strains, with a 311 

yield of 8.4 ± 1.2 mg/g produce more succinate than flor strains that show an average yield of 4.0 ± 312 

0.5 mg/g (p-value = 0.016, obtained with a Welch two sample t-test). 313 

 314 

Figure 4 - Average succinate yield for each strain (A) and for main genetic groups (B) 315 

Standard error as error bars. Different letters represent significant differences between two means 316 

(Tukey’s test, p<0.05) 317 

α−ketoglutarate 318 

α-ketoglutarate (α−KG) is a low concentration metabolite of the CCM produced during fermentation, 319 

but stands for a great importance in the nitrogen metabolism, especially in wine fermentation. In our 320 

set, significant differences of α-KG yield between strains can be observed (F50, 136 = 72.103 for all strains 321 

and F45,126 = 47.299 for wild ones, both p-values << 10e-3). Values of yield range between 0.08 mg/g 322 
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and 2.7 mg/g with the highest producer being by far LMD14 (2.69 ± 0.16 mg/g) and the lowest 323 

DBVPG6044 (0.09 ± 0.03 mg/g) (Figure 5). 324 

A correlation between genetic groups and α−KG yield have been spotted too (F4, 27 = 6.23, p-value = 325 

0.001). Indeed, wine strains are higher producers of α−KG compared to rum, sake, or flor strains. 326 

 327 

Figure 5 - Average α-ketoglutarate yield for each strain (A) and for main genetic groups (B) 328 

Standard error as error bars. Different letters represent significant differences between two means 329 

(Tukey’s test, p<0.05) 330 

Comparison of all metabolites yield variation 331 

In the aim to have a better comparison of metabolic yields between them and between strain groups, 332 

we decided to calculate the coefficient of variation for each metabolite (Figure 6). 333 

With a variation coefficient of 1.8% when all strains are considered, ethanol is the metabolite with the 334 

yield presenting the lowest variation. With only wild strains, the coefficient of variation is even lower, 335 
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dropping to 0.9 %. Other metabolites have a more important variation among our selection of strains, 336 

with a peak for succinate and alpha-ketoglutarate around 75%. Overall, variation is higher when all 337 

strains are considered. Acetate is the only exception, with a similar coefficient of variation for all 338 

strains group and wine group (respectively 48 and 47 %). 339 

 340 

Figure 6 - Variation coefficient of each metabolite for all strains, wild strains, wine strains and rum 341 

strains 342 

Calculated using all replicates means of each strain for rum, wine, natural and all strains groups 343 

Metabolic yields correlation 344 

After considering metabolic yields one by one, correlations between them have been looked at. The 345 

strongest one is a negative correlation between glycerol and ethanol yields in the complete set of 346 

strains (R² = 0.859, F1,49 = 297.7, p-value << 10e-3). However, this correlation seems driven by modified 347 
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and evolved strains because of their extreme yield values. Without these strains, the correlation is still 348 

relevant but with a larger dispersion (R² = 0.332, F1,44 = 21.86,  p-value << 10e-3) (Figure 7). 349 

Correlation have been identified too for others metabolic yields : 350 

- A positive correlation exists between glycerol and succinate yields if we consider only wild 351 

strains (F1,44 =  9.0559,  p-value = 0.0043) but with a very high dispersion (R² = 0.1707) 352 

- A negative correlation exists between acetate and alpha-ketoglutarate yields both in all strains 353 

and wild strains sets (respectively F1,49 = 12.2 and F1,44 = 12.55, p-value = 0.00102 and 0.00095), 354 

but again with very high dispersion (respectively R² = 0.1994 and R² = 0.2219). 355 

No other significant correlation has been observed between metabolic yields, considering all strains 356 

or only wild ones. 357 

 358 

Figure 7 - Relation between ethanol and glycerol yields, all strains considered (A) or only wild strains 359 

(B) 360 
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Global analysis and hierarchical clustering 361 

To obtain a global view of our data set, a Principal Component Analysis (PCA) has been performed 362 

with yields values of ethanol, glycerol, acetate, succinate and alpha-ketoglutarate (Figure 8). This 363 

analysis allows us to situate strains in relation to each other and investigate the effect of the genetic 364 

background. PCA has been performed with only wild strains to avoid bias induced by GM and evolved 365 

strains. We also performed a Hierarchical Clustering on Principal Components (HCPC) on wild strains, 366 

allowing us to define 4 clusters of strains. We chose this number because it is the smallest that better 367 

represents the distribution. The clustering showed a good superposition with the genetic group and 368 

reflects observations already made in metabolite by metabolite analysis. For example, the wine strains 369 

group is quite homogenous and seems mainly driven by the alpha-ketoglutarate and acetate yields 370 

(except the strain DBVPG1373). The first cluster gathers almost all wine strains (except DBVPG1373). 371 

LMD1, which is a wine strain, is located in cluster 3 but is very close to cluster 1 in PCA representation. 372 

The second cluster gathers 3 flor strains, EC1118 being located closer to wine strains, in cluster 1. The 373 

third cluster represents strains with no relation with each other and which are quite dispersed. The 374 

last cluster is only composed of 2 strains, that are characterised by their very high yield of succinate: 375 

LMD44 and LMD43. Sake, rum and west African groups don’t show any consistency in clustering. Strain 376 

LMD12, LMD30, LMD38 and LMD39, which are commercialised for wine fermentation, are clustered 377 

with wine genetic strains. The last commercial wine strain, LMD32, is clustered with flor strains. 378 

 379 

In variable representation, negative correlation of glycerol and ethanol can be seen. Acetate, succinate 380 

and α-KG appear to be not or weakly correlated with glycerol or ethanol, enforcing the idea that their 381 

variations are more related to genetic groups specificities than to major CCM fluctuations. 382 
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 383 

Figure 8 - Principal Component Analysis on natural strains for ethanol, glycerol, acetate, succinate 384 

and α−KG yields, individual and variable plot, with Hierarchical Clustering on Principal Components 385 

Coloured points represent strain, tinted by origin. 4 clusters have been defined: 1 (red), 2 (green), 3 386 

(blue) and 4 (purple) 387 

 388 

Discussion 389 

 390 

Our analyses on a diverse set of strains allow us a broad view of primary metabolic diversity. As it has 391 

already been observed, our results confirm our main hypothesis: wild variations exist among the 392 

Saccharomyces cerevisiae species concerning yields of primary metabolites and our experimental 393 

design allows us to assess it. Moreover, this methodology brings more accuracy in metabolic yield 394 

assessment and generates robust and standardised data that can be reused in other studies on yeast 395 
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metabolism. It allows to precisely define yields in a wine-like context, using synthetic gape must with 396 

metabolite assessment at fermentation final stage. 397 

The medium used in this study is a very close imitation of grape must, so it is perfectly suited to study 398 

wine strain metabolism, but also for every strain able to ferment a complex medium with high sugar 399 

concentrations (Bely et al., 1990). The use of an internal reference, the strain EC1118, adds another 400 

advantage: new strains can be added in the set as long as the same reference is used in each 401 

fermentation block and in the same fermentation conditions.  402 

Time of fermentation being dependent of nitrogen level and temperature, we carried fermentation at 403 

28°C with a must containing a relatively low concentration of sugars and a high concentration of 404 

usually limiting nutrients (assimilable nitrogen, vitamins, anaerobic growth factors…) to ensure a quick 405 

and total hexose conversion to ethanol (Rollero et al., 2015). These conditions allow fermentations to 406 

be completed within 3 days. 407 

Our methodology allows a medium throughput screening, which is a good balance between 408 

phenotyping a large number of strains and having a high accuracy measure enabling to distinguish 409 

traits with low variation. 410 

GM or evolved strains have also been included in the selection as a kind of “controls”. Indeed, these 411 

five strains have been selected for defined characteristics linked to the CCM. . We observed that the 412 

two strains which show the highest glycerol yield and the lowest ethanol yield among all strains are 413 

LMD14 and 5074. Both are strains obtained following an adaptive evolution aiming to reduce their 414 

ethanol production while enhancing glycerol (Tilloy et al., 2014). At the other end of the spectrum, 415 

LMD41, modified to enhance ethanol production while cutting glycerol production, represents the 416 

highest value of ethanol yield and the lowest for glycerol. Finally, the last GM strain, LMD45, shows 417 

the second lowest acetate and glycerol yields, which is consistent with its modifications aiming to 418 

reduce fermentation by-product synthesis. All these features clearly represent the already known  419 

characteristics of  the selected strains, for which they have been modified or evolved, and validate our 420 

methodology. 421 
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If we compare metabolites with each other, great differences of yield exist. Ethanol is the most 422 

produced compound, with a yield ten times higher than glycerol, which has a yield ten times higher 423 

than acetate. α-ketoglutarate has the lowest yield values but is still close to acetate. Significant 424 

variations of yield have been assessed between strains, wild or not, for each metabolite, proving that 425 

our conditions allow us to discriminate strains between them for their primary metabolite yields. 426 

However, variations among yields are not equal and differ depending on the considered metabolite.  427 

Ethanol and glycerol are the most produced metabolites during alcoholic fermentation. With a 428 

variation coefficient inferior to 2%, ethanol yield shows a very low variation, and even less considering 429 

only wild strains. Glycerol yield varies more than ethanol, showing a variation coefficient around 25%, 430 

allowing a better differentiation of strains in a set. The same variation ranking can be observed in 431 

Nidelet et al. (2016) results, obtained in a similar medium using 43 strains (including 20 common to 432 

our set), with ethanol being the most constant flux, followed by glycerol and then acetate, succinate 433 

and α-KG as the most variable.  This observation can be found in many other different works about 434 

CCM too. Tronchoni et al. (2022), performed a screening in wine-like media in aerobic conditions using 435 

25 S. cerevisiae strains. Ethanol yields are lower than our results, that is consistent with aerobic 436 

conditions, but the range of variation is very similar: no great observable differences and significant 437 

differences only between strains with extreme values. Another comparable screening can be found in 438 

the work of Nieuwoudt et al. (2006) on 15 strains (commercial or not) and 19 hybrids. Fermentation 439 

media used are natural and synthetic laboratory must. On both media, similar results have been 440 

obtained: a higher range of variation is observable for glycerol than for ethanol. As well, Hubmann, 441 

Foulquié-Moreno, et al. (2013) performed a relevant screening on 52 beer and distillery S. cerevisiae 442 

strains for their ethanol and glycerol yields, on a YPD like medium. All these data present a larger 443 

diversity between strains for glycerol than for ethanol. 444 

Even if their yield values and variations are different, literature demonstrates a clear negative 445 

correlation between ethanol and glycerol productions or yields and our data show that this correlation 446 

is visible but not obvious in a small range of yield, represented here by wild strains. The correlation is 447 
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clearer when extreme values from modified and evolved strains are considered, but three values 448 

(strains 5074, LMD14 and LMD41) are driving it. 449 

No relation between genetic group belonging and yield of glycerol or ethanol have been found in our 450 

data. This goes against precedent observation that states wine strains are defined as high glycerol 451 

producers compared to other groups (Camarasa et al., 2011). Nevertheless, it is worth noting that in 452 

the study of Camarasa et al. (2011), groups are based on the environmental origin and our groups on 453 

genetic origin, and that these two origins don’t always match (as an example, strain Y55 used to be 454 

classified as a laboratory strain isolated from a wine environment, but Liti et al. (2009) showed that 455 

this strain is in fact closer to a West African genetic lineage).  456 

Globally, glycerol, considering its concentration and variation range and the strong negative 457 

correlation with ethanol yield, is confirmed to be the best candidate to impact carbon fluxes in the 458 

cell. 459 

 460 

Succinate is produced in minor concentrations compared to ethanol or glycerol and its production 461 

doesn't seem correlated with them. However, it shows a larger diversity of yield. Succinate is one of 462 

the metabolites with the widest range of variation according to its yield, but this variation is mainly 463 

driven by exceptionally high producing strains LMD41, LMD44 and LMD43, all commercially used in 464 

bioethanol production. This result goes against the main goal of maximising ethanol production 465 

without by-products, but high succinate production can be explained by the antibacterial character of 466 

this metabolite (particularly against lactic acid bacteria). This trait has been selected over-time to limit 467 

contamination which can reduce the global yield of the bioethanol production process (the so-called 468 

“rum” group contains numerous Brazilian bioethanol strains) (Dorta et al., 2005; Dong et al., 2015). 469 

High succinate yield has been observed on wild strains with known genetic group affiliation, but two 470 

of the highest succinate producers are the commercial strains LMD43 and LMD44. Both are used in 471 

distillery context, no information about their genome is currently available and therefore they are not 472 

classified in genetic groups. If we suppose that they are potentially part of the rum genetic group, this 473 
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will confirm our hypothesis of a characteristic link between high succinate yield and the rum group. In 474 

an interesting manner, the genetically modified strain LMD41 is both the best succinate and ethanol 475 

producer of all the set. As far as we know, genetic modifications aimed only to enhance ethanol yield 476 

but a side effect on succinate can be considered. This high succinate production can also arise from 477 

the original strain which is already used in bioethanol production. On the other hand, wine strains are 478 

very low producers of succinate, even if it can be considered as a desirable metabolite in wine, 479 

positively-linked to final quality (Chidi et al., 2018). This reduced succinate production in the wine 480 

group can be explained once again by its inhibitory effect on lactic acid bacteria, which are main actors 481 

of the malo-lactic fermentation (MLF). MLF being an important step of wine making to modulate 482 

acidity, a possible hypothesis is that wine yeasts have been selected, willingly or not, to be compatible 483 

with MLF (Caridi and Corte, 1997; Son et al., 2009; Torres-Guardado et al., 2022). 484 

 485 

Acetate is responsible for major off-flavour in wine, and so is subject to legal limits (Paraggio and Fiore, 486 

2004; Vilela-Moura et al., 2008). It presents a large variation of yield among our strain set and no 487 

correlation has been found with more produced metabolites ethanol and glycerol. The wine genetic 488 

group shows a very low acetate yield, which is most likely a direct consequence of the selection for 489 

low acetate produced in wine fermentation. In contrast, flor group strains appear to be high producers 490 

of acetate, maybe due to their more oxidative metabolism (Moreno-García et al., 2017). 491 

 492 

Another metabolite that showed interesting results is α-KG, especially for its link with genetic groups: 493 

wine strains have a higher yield than other groups. One of the main hypotheses is that it is explained 494 

by the strong relation between this metabolite and the nitrogen metabolism. Indeed, α-KG is mainly 495 

used in the cell to assimilate ammonium and then synthesise glutamate. This amino acid being 496 

prominent in grape must (and therefore in the synthetic must we used), α-KG is not used and simply 497 

released in the medium (Avendaño et al., 1997; DeLuna et al., 2001; Camarasa et al., 2003; Magyar et 498 

al., 2014). Glutamate synthesis uses NADPH cofactor, which needs to be regenerated subsequently. 499 
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One of the ways to produce NADPH from NADP+ is the conversion of acetaldehyde to acetate (Saint-500 

Prix et al., 2004). In addition, we observed that strains from the wine groups display a low acetate 501 

yield on average (if we exclude DBVPG1373 which shows abnormal values compared to the rest of the 502 

group). In the work of Nidelet et al. (2016), it has been observed that acetate flux in fermentation is 503 

negatively correlated to biomass synthesis, itself negatively correlated to α-KG. Even with no biomass 504 

data, the negative link between acetate and α-KG on our set confirms these results. Another 505 

explanation can be linked to the low succinate production of wine strains. This metabolite being the 506 

final step of the TCA cycle oxidative branch in fermentation conditions, α-KG is then produced and 507 

released as succinate is not. 508 

 509 

Global tendencies in our data set are consistent with conclusions drawn in other publications, 510 

including those used to select our set of strains (Camarasa et al., 2011; Nidelet et al., 2016, Legras et 511 

al., 2018). Strains from the west African genetic group (which gathers strains from palm wine and 512 

other traditional african beverages making processes) and from the flor group have been identified as 513 

very high acetate and low succinate producers. Acetate shows a great diversity, larger than glycerol 514 

or ethanol, in our set, which has already been shown by Tronchoni et al. (2022). Many comparable 515 

tendencies exist between work of Salinas et al. (2012) and ours for 5 strains: EC1118, L1374, L1528, 516 

DBVPG6765 and DBVPG6044. Like in our results, DBVPG6044 is a very high producer of acetate in 517 

fermentation (the second highest in our set) and the other strains have a significantly lower 518 

production with very close values. Concerning succinate, EC1118 and DBVPG6044 show low 519 

production and DBVPG6765 a higher one. If absolute values of yield or production differ, relative 520 

differences between strains seem preserved among experiments. 521 

 522 

The metabolite by metabolite approach highlighted interesting correlations and furthermore the PCA 523 

confirmed them and proved to be a good tool to group strains by their primary metabolites 524 

production. For wine strains, metabolic clusters on the PCA match with the genetic groups except the 525 
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strain DBVPG1373. However, although this strain belongs to the wine group, it was isolated from soil 526 

which may explain its location. PCA reveals other noticeable results: Yllc17_E5, which is quite aside in 527 

the phylogenetic tree (Legras et al. 2018), is very isolated in PCA results. EC1118, which is a commercial 528 

wine strain, has been identified as an intraspecific hybrid between strains from the wine and flor 529 

groups (Coi et al., 2017). This particularity can be directly observed in our results: EC1118 is located in 530 

the wine cluster but close to the flor cluster, and shows intermediate succinate and acetate yields. 531 

LMD32 is a commercial strain with unknown classification mainly used for wine stuck fermentation 532 

restart. In PCA, it appears very close to the flor genetic group. The hypothesis that LMD32 is genetically 533 

related to the flor group would make sense because it is supposed to be used in the same condition 534 

as EC1118, which is known to be related to flor strain and appears very close to cluster 2 where other 535 

flor strains are located. Even if it has been identified as an uncommon strain (classified in rum group, 536 

but closer to laboratory and Mediterranean oak groups in Legras et al.  (2018) and considered as part 537 

of a “Mosaic beer” group in Peter et al. (2018), CBS7957 shows results that bring it close to other rum 538 

strains in PCA results. 539 

Even if the capacity of conducting a wine-like fermentation is considerably linked to domestication 540 

and genetic origin (strains from bread or from natural environments like oak trees are most of the 541 

time unable to perform a wine-like alcoholic fermentation (Camarasa et al., 2011; Legras et al., 2018; 542 

Tapia et al., 2018), a complementary set of strains, wider and more balanced between genetic groups, 543 

can bring more diversity and enforce our determination of natural yield variations. 544 

This work presents yield values of pure strain in fermentation: we used a pasteurised medium. No 545 

competition with bacteria or other yeasts can interfere in fermentation unlike in natural musts, where 546 

other species can impact primary metabolites yield (Tristezza et al., 2016; Ciani et al., 2022). The 547 

temperature used, 28°C, is common for red wine-making, but high for white wine standards which are 548 

usually fermented at colder temperatures. For strains from other genetic groups than wine, synthetic 549 

grape must can represent conditions very far from their usual environment. However, despite these 550 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.02.24.529865doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.24.529865
http://creativecommons.org/licenses/by/4.0/


27 

27 

differences that can be overcome in scale adjustment, our methodology gives keys to identify strains 551 

with good potentialities for wine-like fermentation. 552 

Multiple studies have compared numerous strains for their primary metabolites production in 553 

fermentation. However, our study compares strains from different genetic groups on a wine-like 554 

media only focusing on complete fermentation concentrations. Here we confirm precedent 555 

observations but also provide a robust comparative methodology and a data set easily usable on 51 556 

strains from various genetic backgrounds. This screening helps to define and confirm the existing 557 

phenotypic variations for wine fermentation products among the S. cerevisiae species and set the 558 

potential of improvement for these traits. 559 

However, we only took a look at five metabolites from primary carbon metabolism so we don’t have 560 

any data on notable aromatic metabolites, positively or negatively, for wine fermentation 561 

(acetaldehyde, esters, higher alcohols, acetoin…). Completing this analysis with other metabolite 562 

production information would enforce the clustering and reveal strain relevance for further strain 563 

development projects, for wine or other fields. 564 

 565 

To conclude, our screening answers the main question asked: a diversity, weak but significant, exists 566 

in ethanol yield among the S. cerevisiae species. Larger fluxes, like ethanol or glycerol, are the most 567 

constraint and not linked to genetic origins, while in contrast smaller fluxes show larger variations and 568 

clear links with genetic origin. This represents improvement potentialities of wine strains for these 569 

characteristics with non-GM methods (such as adaptive laboratory evolution, positive selection, 570 

breeding…). 571 

If the two major produced metabolites, ethanol and glycerol, are linked in their production, the yield 572 

of minor metabolites is more related to the genetic background of strains which is shaped by selection 573 

in a defined environment. 574 

 575 
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