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Abstract 16 

Anthropogenic climate change has a large impact on wildlife populations and the scale of the 17 

impacts have been increasing. In this study, we utilised ddRAD sequence data to investigate 18 

genetic divergence and identify the environmental drivers of genetic differentiation between 19 

12 populations of mountain chickadees, family Paridae, sampled across North America. To 20 

delineate populations and identify potential zones of hybridisation, we conducted a 21 

discriminant analysis of principal components (DAPC), admixture analysis, and calculated 22 

pairwise Fst values. The DAPC revealed four clusters: southern California, eastern Rocky 23 

Mountains, northwestern Rocky Mountains and Oregon/northern California. We then used 24 

BayeScEnv to highlight significant outlier SNPs associated with the five environmental 25 

variables. We identified over 150 genes linked to outlier SNPs associated with more than 15 26 

pathways, including stress response and circadian rhythm. We also found a strong signal of 27 

isolation by distance. Local temperature was highly correlated with genetic distance. Maxent 28 

simulations showed a northward range shift over the next 50 years and a decrease in suitable 29 

habitat, highlighting the need for immediate conservation action. 30 

 31 

Keywords: climate change; ddRAD; gene-environment interaction; Poecile gambeli; 32 

population genetics; species distribution models 33 
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Introduction 35 

Anthropogenic climate change is increasingly affecting ecosystems worldwide. The steady 36 

increase in temperature means and variability can affect the functioning of organisms and 37 

alter ecosystems that have existed on this planet for millennia. While most ecosystems are 38 

sensitive to changes in the environment, mountain ecosystems are particularly vulnerable to 39 

environmental changes (Beniston, 2003). Owing to increasing temperatures and reduced snow 40 

cover, organisms in mountainous regions may shift their elevational range to higher altitudes, 41 

potentially leading to population fragmentation and extinction (Calkins et al., 2012; McDonald & 42 

Brown, 1992; Parmesan, 2006; Wilson et al., 2007). Climate change also significantly affects 43 

phenology, such as the timing of flowering or breeding (Walther et al., 2002). The extent and 44 

effects of these changes are a current area of study, and the pace at which changes occur 45 

requires commensurate efforts in the form of conservation research to prevent the breakdown 46 

of ecosystems and extinction of organisms (Christmann & Menor, 2021; Payne et al., 2020). 47 

 48 

The North American landscape is full of physical barriers that affect species dispersal, and 49 

therefore causing genetic divergence (Antonelli, 2017; Boutilier et al., 2014; Machado et al., 50 

2018). In addition, the wide range of environmental conditions across the continent makes it 51 

an ideal area to study the effect of the environment on genetic differentiation. In particular, 52 

species with low migration rates could experience significant divergence (Keyghobadi et al., 53 

1999). Therefore, it is crucial to study the population genetics of these species to investigate 54 

their resilience to climate change (Hanski et al., 2006). Despite being able to traverse long 55 

distances, birds are unable to pass through certain barriers, makes them a good model for 56 

studying the effects of physical barriers on divergence (Greenwood & Harvey, 1982). 57 

 58 
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The mountain chickadee, Poecile gambeli, is found across western North America and 59 

primarily occupies coniferous forests. As many as seven subspecies have been described and 60 

are divided into two mtDNA groups, eastern and western, with limited contemporary gene 61 

flow observed between them (Hindley et al., 2018; Spellman et al., 2007). A recent study 62 

using microsatellite data identified Washington as a potential contact zone between two 63 

clades (Hindley et al., 2018). Ubiquitous across the west, the mountain chickadee has limited 64 

migratory capabilities, and high philopatry makes it an ideal candidate for studying the effects 65 

of geography and climate on genetic differentiation. 66 

 67 

In this study, we examined the population structure of mountain chickadees from populations 68 

across the range using double digest restriction-site associated DNA, ddRAD, data. In 69 

addition, we aimed to answer the following questions: (1) What are the environmental drivers 70 

of genetic differentiation? Previous studies using mtDNA have shown that isolation by 71 

distance influences differentiation (Hindley et al., 2018); however, more information is 72 

needed on the effects of other variables such as temperature and precipitation. (2) Which 73 

genes or pathways are undergoing selection across populations? Given the pace of climate 74 

change, it is essential to investigate the pathways undergoing selection to identify gene-75 

environment interactions. (3) How much will the changing climate affect the habitat of 76 

mountain chickadees over the next 50 years? Although we expect a northward shift in habitat 77 

or a shift in elevational range, understanding how a common species is affected by climate 78 

change can provide valuable insights to inform conservation decisions on other co-distributed 79 

species. 80 

 81 

Methods 82 
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Sampling and DNA extraction 83 

A total of 94 mountain chickadee samples were collected from 12 locations (Figure 1, Table 84 

1). Birds were caught using mist nets and either blood or feather samples were collected. 85 

Following Aljanabi et al. (1997), we used ~40 ul of blood to extract DNA from samples. 86 

Library preparation for ddRAD sequencing was done at the University of Laval using the 87 

enzymes Pstl, Nsil, and Mspl and sequencing was done at Genome Quebec on an Illumina 88 

NovaSeq 6000 S4 PE100. 89 

 90 

Bioinformatic pipeline 91 

Sabre was used to demultiplex the ddRAD data. Adapters were removed and fastq files were 92 

trimmed to 80 bp using Cutadapt (Martin, 2011). The fastq files with the trimmed sequences 93 

were aligned to a black-capped chickadee reference genome provided by Scott Taylor 94 

(University of Colorado, Boulder) with BWA-MEM using default settings (Branch et al., 2022; 95 

Li & Durbin, 2009; Wagner et al., 2020). The resulting bam files were used to identify SNPs with 96 

gstacks. The gstacks output was used to create a vcf file and calculate summary statistics with 97 

populations using the default parameters while limiting the SNPs to one per locus (Catchen et 98 

al., 2013). SNPs were subsequently filtered using Vcftools to keep bi-allelic SNPs with a 99 

minor allele frequency ≥ 0.05 (Danecek et al., 2011). SNPs with > 50% missing data and 100 

individuals with > 30% missing data were excluded. The filtered vcf files contained 28,600 101 

sites and 61 individuals from 11 populations; no individuals from NM remained after 102 

filtering. 103 

 104 

Population analyses 105 
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To analyse the population structure, we conducted a DAPC (discriminant analysis of principal 106 

components) in R using the packages ‘adegenet’,’ape’, ‘vcfR’, and ‘ade4’ (Dray & Dufour, 107 

2007; Jombart, 2008; Knaus & Grünwald, 2016; Paradis & Schliep, 2018). DAPC accounts for both 108 

within- and between-group differences when clustering individuals. After clustering, we 109 

plotted the linear discriminants in 2d and 3d plots using the packages ‘ggplot2’ and ‘plotly’ 110 

(Sievert, 2020; Wilkinson, 2011). 111 

 112 

To identify the number of ancestral populations, we used ADMIXTURE with default settings 113 

iteratively for K=1-7 (Alexander et al., 2009). Linkage disequilibrium pruning and vcf-to-bed 114 

conversion were performed using PLINK (Purcell et al., 2007). 115 

 116 

Pairwise Fst values between populations were calculated with Arlequin using the default 117 

settings (Excoffier & Lischer, 2010). Vcf-to-arp conversion was done using PGDSpider2 (Lischer 118 

& Excoffier, 2011). 119 

 120 

Outlier loci and environmental variation 121 

To identify the candidate loci under selection, we used BayeScan (Foll & Gaggiotti, 2008). 122 

BayeScan is a Bayesian algorithm based on the multinomial-Dirchlet model, which identifies 123 

loci under selection using differences in allele frequencies between populations. We set the 124 

pr_odds value at 350, with a total of 1,00,000 iterations. The pr_odds value defines the 125 

likelihood of the neutral model compared with the selection model. 126 

 127 

To identify divergence associated with environmental variation, we used BayeScEnv for five 128 

environmental variables: temperature, precipitation, altitude, temperature seasonality and 129 
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precipitation seasonality (Villemereuil & Gaggiotti, 2015). BayeScEnv, which is based on the F-130 

model, detects local adaptation linked to a given environmental variable using Bayesian 131 

methods. In this study, we set the pr_jump value at 0.05 with a total of 50,000 runs. The 132 

pr_jump value is similar to the pr_odds value used in BayeScan. Using the ‘sp’ and ‘raster’ 133 

packages, we extracted 30s resolution from https://www.worldclim.org/ for the following 134 

environmental variables: Annual Mean Temperature (BIO1), Temperature Seasonality 135 

(stdev×100)(BIO4), Annual Precipitation (BIO11), Precipitation Seasonality (Coefficient of 136 

Variation) (BIO11), and Elevation from the SRTM data (Bivand et al., 2013; Fick & Hijmans, 137 

2017; Hijmans, 2020). The environmental data were standardised before the BayeScEnv 138 

analysis. 139 

 140 

To test for isolation by distance and the effect of the above environmental variables on 141 

genetic differentiation, we conducted Mantel and partial Mantel tests using GenAlEx and the 142 

R package ‘vegan’ (Dixon, 2003; Mantel, 1967; Peakall & Smouse, 2012). Mantel tests are 143 

commonly used in population genetics to test for correlation between two matrices, while 144 

partial Mantel tests use a third matrix to account for another variable (Diniz-Filho et al., 145 

2013). 146 

 147 

Genes of interest 148 

We used the gff file for black-capped chickadees provided by Scott Taylor to identify genes 149 

under selection and investigate gene–environment interactions. We ran a custom R script to 150 

identify genes present within 100 kb of the outlier loci from the BayeScan/BayeScEnv 151 

analyses. Subsequently, to identify the pathways and functions associated with these genes, 152 
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we ran a gene ontology with ShinyGO using a human and zebra finch gene set. The genes 153 

were also analysed individually (Ge et al., 2019). 154 

 155 

Species distribution models 156 

To understand the distribution of the species in the past and future, we created species 157 

distribution models for the current distribution, the last glacial maxima, and four 158 

Representative Concentration Pathways (RCP) in 2050 and 2070. RCPs describe different 159 

climatic futures depending on the emission of greenhouse gases with the four main RCPs 160 

being RCP2.6, RCP4.5, RCP6, and RCP8.6 (van Vuuren et al., 2011). 161 

 162 

We used the Maxent algorithm in the ‘Wallace’ package (Kass et al., 2018). This algorithm 163 

uses occurrence data in conjunction with environmental layers to provide a potential 164 

distribution for a species. Presence data were obtained from iNaturalist observations over a 13 165 

year period from 2010-2022 (GBIF.org, 2022) which we spatially thinned using a 10 km 166 

threshold. These points were then partitioned into six clusters using the random k-fold method 167 

(Aiello-Lammens et al., 2015). Using these 5330 points, we created a SDM with 14 168 

environmental variables.  169 

 170 

We tested 12 models: linear (L), quadratic (Q), hinge (H), and linear-quadratic-hinge (LQH), 171 

with a regularization multiplier between 1-3 using a step value of 1. Model selection was done 172 

using AICc and AUC values (Kass et al., 2021; Phillips, 2017). The trained models were 173 

projected onto the LGM and RCP scenarios using environmental layers obtained from 174 

http://www.paleoclim.org and CCSM4, respectively using a 10% minimum training presence 175 

threshold (Brown et al., 2018; Hill, 2015; Karger et al., 2017; Pisias & Moore, 1981). 176 
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 177 

Results 178 

Population structure 179 

We looked at over 28,500 loci in 61 individuals from 11 populations after filtering. Prior to 180 

filtering, there were over 1,000,000 SNPs for 94 individuals from 12 populations. The DAPC, 181 

consistent with Hindley et al. (2018), revealed four distinct clusters: southern CA; northern 182 

CA/southern OR; eastern Rockies (MT, UT, SAB); and northwestern Rockies (WA, BCR, 183 

FTSJ, PG, NWBC) (Figure 2a). The first three linear discriminants (LD) explained 98.5% of 184 

the variance, while the fourth explained approximately 1.5%. Pairwise LD plots (Figure 2b) 185 

accounted for the effect of altitude on genetic differentiation. 186 

 187 

As ADMIXTURE does not predict the K value, we ran the analysis for K=1-7 (Figure 3a-b). 188 

Figure 3(b) shows the CV errors for each K value, where K=1-3 are strongly supported (CV 189 

error 0.668-0.696).  K=4-6 coincide with the DAPC despite having a slightly higher CV error 190 

(0.758-1.026). For K=4, the SCA population splits from the SOR/NCA population to form a 191 

separate cluster consistent with the DAPC analysis.  At K=5 WA separates from the other 192 

northwestern Rocky populations and BCR individuals and three FTSJ individuals show 193 

admixture with WA. 194 

 195 

The pairwise Fst values, consistent with the DAPC, showed four broad clusters, with the SCA 196 

population having the highest Fst values between every pair (Figure 4). The p-values were 197 

significant for most cases, except those that included NWBC, PG, or SAB populations. 198 

Within the northwestern Rockies group, WA was significantly different from all of the other 199 

populations except PG.  Pairwise Fst values ranged from 0.02 to 0.37, the highest significant 200 
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value is seen between BCR-SCA while the smallest are between the BCR-FTSJ and UT-MT 201 

populations. 202 

 203 

Outlier loci and gene-environment analysis 204 

To identify areas of genomic divergence and their association with environmental factors, we 205 

used BayeScan and BayeScEnv, two commonly used genome scan programs (Foll & Gaggiotti, 206 

2008; Villemereuil & Gaggiotti, 2015). Outlier loci associated with temperature (Temp), altitude 207 

(Alt), precipitation seasonality (PS), temperature seasonality (TS), and precipitation (Prec) 208 

were identified using BayeScEnv, whereas BayeScan was used to identify all possible 209 

outliers, regardless of their association with environmental variables. 210 

 211 

We identified 2251 outlier loci at a false discovery rate (FDR) of 0.0001 using BayeScan, 212 

despite using a conservative model with a pr_odds value of 350 (Figure 5a). Several SNPs 213 

had a false discovery rate of 0, which was converted to 10e-10 for visualisation. Similarly, the 214 

BayeScEnv analysis, with an FDR of 0.0001, showed 1564 outlier SNPs associated with 215 

temperature, 2060 with temperature seasonality, 805 with precipitation, 1090 with 216 

precipitation seasonality, and 1606 with altitude (Figure 5b-f). Several SNPs had a false 217 

discovery rate of 0, which was converted to 10e-6 for visualisation. We used different values 218 

for visualisation between the BayeScan and BayeScEnv analysis due to several SNPs having 219 

FDRs of 10e-6 in the former. 220 

 221 

To test whether the large number of outlier loci was due to the isolated SCA population, we 222 

ran the same tests for pairs of the identified DAPC clusters and with all populations except for 223 

SCA. We found a significant decrease in the number of outlier loci identified in the pairwise 224 
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cluster tests. The decrease differed amongst clusters, but the number of outlier loci ranged 225 

from 4-800. In the case of precipitation, the outliers ranged from 30-500 compared to 805.  226 

However, there was no change when we repeated the analysis with every population 227 

excluding the SCA population. 228 

 229 

We performed Mantel and partial Mantel tests to investigate the possibility of isolation by 230 

distance and the effect of the aforementioned environmental variables on divergence. 231 

Geographic distance (Rxy= 0.54) was most highly correlated with genetic distance, followed 232 

by temperature (Rxy= 0.40) (Figure 6a-b). All the results were statistically significant (p < 233 

0.0003). The partial Mantel tests highlighted a similar pattern; however, when the z-axis was 234 

either temperature, temperature seasonality, or geographic distance; the results for 235 

precipitation seasonality did not meet the cut-off criterion of p = 0.05. In addition, the results 236 

of temperature seasonality when the z-axis was geographic distance did not meet the cut-off 237 

criteria. 238 

 239 

Genes of interest 240 

We identified 181 genes within 100 kb of temperature-associated SNPs and 189 genes from 241 

the BayeScan outlier SNPs. Genes of interest were analysed only for these two cases because 242 

of the overlap in SNPs across environmental variables. ShinyGO identified 15 significant 243 

pathways (Supplementary, gene_SuppInfo.xlsx) for the BayeScan genes, which included 244 

thermogenesis (p = 4.58e-5).  245 

Subsequently, we grouped the genes based on their biological functions using ShinyGO (Ge 246 

et al., 2019). The BayeScan analysis revealed 37 genes associated with response to stress, 22 247 

genes related to immune system processes, and three genes associated with circadian rhythm. 248 
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CSNK1D, a clock gene, was one of the genes associated with circadian rhythm, which has 249 

been shown to play a role in migration (Steinmeyer et al., 2009). In addition, several genes 250 

affecting immune response, response to external stimuli, and growth were found to be 251 

associated with outlier SNPs. We also identified genes associated with the reproductive 252 

system in all the analyses. The JAM3 gene is known to play a role in spermatogenesis and the 253 

RNF212 gene has been shown to influence meiotic recombination. A similar grouping of 254 

genes was observed using the BayeScEnv temperature-associated SNPs, with the number of 255 

genes associated with each function differing. 256 

We obtained similar results when using the zebra finch genome, although the number of 257 

unmapped genes was higher than that in the human genome (BayeScan – 137 vs 87 258 

unmapped, BayeScEnv – 108 vs 64 unmapped). 259 

 260 

Species distribution models 261 

We created species distribution models to understand the effects of climate change on 262 

mountain chickadee habitat (Figure 7). We ran 12 models with a regularisation multiplier 263 

between 1-3 with a step value of one. While all models had an AUC value of 0.93 or above, 264 

the hinge model with regularisation multiplier 1 was chosen as the best model based on AICc 265 

and AUC values. 266 

The SDMs show a significant decrease in suitable habitat over the next five decades across all 267 

RCP scenarios except RCP2.6, which is an ideal projection of future climate. In addition, a 268 

northward shift in habitat is also observed. The SDM for the last glacial maximum is 269 

consistent with previous studies, with populations present near the coast and extending into 270 
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Mexico (Manthey et al., 2012) (Figure 7d). The SDMs for other RCPs, response curves, and 271 

model statistics are available in the supplementary material. 272 

 273 

Discussion 274 

In this study, apart from delineating population structure, we aimed to answer the following 275 

questions: (1) What are the environmental drivers of genetic differentiation? (2) Which genes 276 

or pathways are undergoing selection across populations? (3) How much will climate change 277 

affect the habitat of mountain chickadees over the next 50 years? 278 

 279 

DAPC revealed four primary clusters, which coincided with our ADMIXTURE and pairwise 280 

Fst values. The eastern Rocky Mountain cluster (UT, MT, SAB) is separated from the 281 

northwestern Rocky Mountain populations by the Rocky Mountains. These populations could 282 

have diverged because of the presence of physical barriers or differences in habitat on either 283 

side of the mountains. This is evident from the high, but not significant, pairwise Fst values 284 

between the BCR and SAB populations, which are geographically close (300 km), but 285 

separated by the Rockies. In addition, the SCA population is of particular interest because it is 286 

genetically isolated from all other populations. As indicated by the Mantel tests and previous 287 

studies, this could be due to its distance from other populations or due to 288 

geographic/environmental features within its habitat (Spellman et al., 2007; Hindley et al., 289 

2018). 290 

 291 

Our outlier SNP analysis revealed several loci under selection associated with environmental 292 

conditions. Despite the use of conservative models, we identified several outlier loci 293 
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highlighting the genetic diversity of the species. However, because the large number of loci 294 

could have been due to the isolated SCA population, we conducted the same analyses by (1) 295 

excluding the SCA population and (2) between the DAPC clusters. There were no significant 296 

differences in the first case, whereas we observed a decrease in the second case. This decrease 297 

can be attributed to the low genetic distances between populations within the same cluster. 298 

Additionally, the overlap of SNPs across analyses and the existence of several SNPs with an 299 

FDR of zero highlights the genetic diversity present in the species. Divergence across 300 

populations is expected because of the reduced gene flow among them due to the non-301 

migratory nature of the species (Templeton, 2006; Eckert et al., 2008; McCallum et al., 2020). 302 

 303 

Consistent with mtDNA and microsatellite studies, genetic diversity is highly influenced by 304 

geographic distance (Hindley et al., 2018). The strong correlation between geographic and 305 

genetic distance (Rxy = 0.55) indicates isolation by distance. However, we cannot discount the 306 

role of habitat differences, given that local temperature (Rxy = 0.4), temperature seasonality 307 

(Rxy = 0.23), and altitude (Rxy = 0.2) are also significantly correlated with genetic distance. 308 

The rapid increase in global temperatures could affect the genetic isolation in the coming 309 

years. Additionally, an increase in temperature forces species to shift their elevational range. 310 

Precipitation and precipitation seasonality are predicted to increase with rising temperatures, 311 

resulting in more extreme climate scenarios (Boer, 2009; Pendergrass et al., 2017). As a 312 

result, despite their weak correlation with divergence, these factors could play a major role in 313 

the future of these species. 314 

 315 

We identified genes associated with SNPs undergoing selection. Over 30 genes linked to 316 

stress response were found to be near with SNPs associated with temperature. We also found 317 
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over 19 genes linked to response to external stimuli, and ShinyGO analysis revealed that the 318 

thermogenesis pathway had a significant number of genes involved. Previous studies have 319 

shown that increasing temperatures are linked to the activation of the stress response in birds 320 

in the form of thermoregulatory strategies such as panting and increased glucocorticoid levels 321 

(Bohler et al., 2021; Mentesana & Hau, 2022; Siegel, 1980). This is of particular concern because 322 

of rising global temperatures, which could lead to negative consequences for the species.  In 323 

addition, the selection of a clock gene, CSNK1D, could imply a change in phenology in 324 

response to rising temperatures (Milligan et al., 2009). 325 

 326 

We observed a northward shift in suitable habitat over the next five decades with the SDM. 327 

This pattern was observed for all RCP scenarios, except for RCP2.6. However, RCP2.6 is an 328 

ideal scenario where all expected climate change goals are fulfilled, and temperatures increase 329 

by 1°C above pre-industrial levels by the year 2050 and remain the same in 2070 (van Vuuren 330 

et al., 2011). While shifting to cooler habitats is a normal thermoregulatory response, the 331 

massive decrease in suitable habitats for such a common species is worrying (Siegel, 1980). 332 

Additionally, because the model does not account for other factors, such as human-induced 333 

habitat loss, competition, and invasion; the amount of suitable habitat could be much less than 334 

predicted. This could lead to a further population decline in this species. 335 

 336 

Conclusions 337 

Mountain chickadee genetic distance is highly correlated with geographical distance and 338 

temperature. Genes affecting several essential functions associated with outlier SNPs were 339 

identified, highlighting the genetic diversity and selection pressure faced by the species. The 340 
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identification of genes related to circadian rhythm may underlie changes in phenology. In 341 

addition, the large decrease in suitable habitat over the next five decades for a common 342 

species highlights the need for immediate action to protect this species and other species from 343 

extinction.  344 
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Tables 560 

Table 1 List of sampling sites and sample sizes for mountain chickadees used in this study.  561 

See Fig 1 for location. 562 

Location Abbreviation Sample size 
Revelstoke, BC BCR 4 

Fort St James, BC FTSJ 8 
Northwest British Columbia NWBC 2 

Prince George, BC PG 2 
Washington WA 8 

Montana MT 7 
Utah UT 10 

Southern Alberta SAB 2 
Southern Oregon SOR 10 

Northern California NCA 5 
Southern California SCA 3 

 563 

Figure Legends: 564 

Figure 1 Mountain chickadee sampling sites in western North America along with the range 565 

map from the IUCN Red List (pink) 566 

Figure 2 (a) 3d DAPC plot showing four distinct clusters(b) LD1 vs LD2 (c) LD1 vs LD3 (d) 567 

LD1 vs LD4 568 

 569 

Figure 3 (a) Admixture plot for K=2-7 (b) Cross validation errors for K=1-7 570 

 571 

Figure 4 Pairwise Fst values for 11 populations. Asterisks indicate non-significant 572 

observations (p-values >0.05). 573 

Figure 5 BayeScan and BayScEnv plots with correlation q-values for genetic divergence 574 

where q-value = -log(FDR). (a) BayeScan plot (N=2251, FDR=0.001). (b) BayScEnv 575 

Temperature plot (N=1564, FDR=10-4). (c) BayScEnv Temperature Seasonality plot 576 

(N=2060, FDR=10-4). (d) BayScEnv Precipitation plot (N=805, FDR=10-4). (e) BayScEnv 577 

Precipitation Seasonality plot (N=1090, FDR=10e-4). (f) BayScEnv altitude plot (N=1606, 578 

FDR=10e-4). 579 

 580 

Figure 6 (a) Mantel test Rxy and p-values. Geographic distance-Dist, Precipitation-Prec, 581 

Precipitation seasonality-PS, Temp -Temperature, Temperature Seasonality-TS, Altitude-Alt 582 

(b) Geographic vs genetic distance plot. 583 

 584 

Figure 7 Species distribution models of mountain chickadees using the 10th percentile training 585 

presence threshold. Legend: green-presence, brown-absence (a) Current distribution. (b) 2050 586 

distribution under RCP 8.5 (c) 2070 distribution under RCP 8.5. (d) Distribution during the 587 

last glacial maxima 21 kya.  588 
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