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Abstract 19 
Automated and accurate profiling of microscopy images from small-scale to high-throughput 20 

is becoming an essential procedure in basic and applied biological research. Here, we present 21 
Microsnoop, a novel deep learning-based representation tool trained on large-scale microscopy 22 
images using masked self-supervised learning, which eliminates the need for manual annotation. 23 
Microsnoop is able to unbiasedly profile a wide range of complex and heterogeneous images, 24 
including single-cell, fully-imaged and batch-experiment data. We evaluated the performance of 25 
Microsnoop using seven high-quality datasets, containing over 358,000 images and 1,270,000 26 
single cells with varying resolutions and channels from cellular organelles to tissues. Our results 27 
demonstrate Microsnoop's robustness and state-of-the-art performance in all biological 28 
applications, outperforming previous generalist and even custom algorithms. Furthermore, we 29 
presented its potential contribution for multi-modal studies. Microsnoop is highly inclusive of 30 
GPU and CPU capabilities, and can be freely and easily deployed on local or cloud computing 31 
platforms. 32 
 33 

MAIN TEXT 34 

 35 

Introduction 36 

Automated quantitative profiling of microscopy images has become increasingly prevalent in 37 
a wide range of biological studies, from small-scale to high-throughput research1. Visual 38 
phenotype or image representation, which entails profiling rich information from images, has 39 
proven to be beneficial in various areas of biology2, such as identifying protein localization3, 40 
classifying cell cycle stages4, predicting mechanisms of action (MoA)5, and high-content drug 41 
discovery6. Moreover, the growth of spatial omics has triggered new demand for the 42 
quantification of microscopy images.  For instance, spatial proteomics technologies can image 43 
more than 50 disease-related proteins in a single tissue slice7, while spatial transcriptomics allow 44 
for the simultaneous acquisition of image data and transcriptional profiles8. These advancements 45 
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necessitate the development of a high-performance, generalist representation tool that is capable 46 
of handling heterogeneous microscopy images. 47 

The profiling of microscopy images has been traditionally performed through extracting 48 
predefined morphological features, such as intensity, shape, texture, granularity, and 49 
colocalization9-10. However, these engineered features have limitations, including low 50 
computational efficiency, potential information loss, and sensitivity to image quality11. To address 51 
these deficiencies, recent advances in computer vision and deep learning have led to the 52 
development of learning-based feature extraction methods using representation learning, which 53 
involves pre-training a model on pretext tasks and then using part of the network as a feature 54 
extractor for downstream analysis. These methods can be divided into two categories: task-55 
oriented custom methods and generalist methods. Task-oriented methods4, 12-15 are pre-trained on 56 
data from the same source and developed specifically for biological research like cell cycle stage 57 
prediction. On the other hand, generalist methods require training data that are not focused on a 58 
particular biological problem. One of the most commonly used approaches is using models 59 
trained for ImageNet16 (a natural image classification task), which continues to be used in recent 60 
multi-modal research17. However, whether the extent to which the feature extraction patterns are 61 
learned from natural images is sufficient for capturing the subtle phenotypes of microscopy 62 
images has not been fully validated by comparative research. In an effort to better match the 63 
feature domain to downstream microscopy image profiling tasks, the CytoImageNet18 study was 64 
conducted, where image representation was learned based on a microscopy image classification 65 
task (890K images, 894 classes). Although this study demonstrated comparable performance to 66 
ImageNet, it still relied on the supervised learning approach that can be labor-intensive, prone to 67 
biases from semantic annotations, and potentially increase the difficulty to achieve higher 68 
representation performance. 69 

The development of a high-performance, unbiased, generalist image representation tool can 70 
significantly increase the potential for advancement in the field of microscopy image analysis. 71 
Beyond facilitating accurate downstream analysis, such a tool would enable unsupervised analysis 72 
for identifying new phenotypes. It can facilitate the separation of feature extraction and 73 
downstream analysis process, allowing for downstream analysis conducted on computers with 74 
limited computing power. The representations of images that are much smaller than the original 75 
images can be easily stored and transferred, and private data can be shared securely through these 76 
representations without disclosing the original images. In addition, secondary analysis becomes 77 
possible, such as the creation of large image databases or joint analysis with other data 78 
representations. However, despite the above potential advantages, the complexity and diversity of 79 
microscopy images presents significant challenges in this tool development process. 80 

Self-supervised representation learning offers the prospect of unbiased image representation 81 
by allowing the model to learn directly from the pixels without relying on pre-defined semantic 82 
annotations. This approach involves applying a transformation step to the original images and 83 
training the model to learn the mapping between the transformed and the original image. 84 
Transformation can take various forms, such as a direct copy19, partial channel drop20, or image 85 
masking21, with masked visual representation learning being a particularly popular method in 86 
natural image studies22-24. Furthermore, recent advances in cell segmentation algorithms have 87 
indicated that networks trained on generalized data can possess remarkable generalization 88 
ability25-27. Despite these promising developments, there are several challenges to tackle to 89 
develop a universal tool for microscopy image profiling. These include handling images with 90 
varying resolutions and channel numbers (such as 1, 2, 3, 5 and 56)3-4, 7, 26, 28; requiring a single 91 
model to learn joint representation patterns for multiple image styles; processing various image 92 
types such as single-cell or fully-imaged images; or addressing technical variations in high-93 
content experiments which may introduce batch effects in the feature space29-30. 94 
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In this study, we present Microsnoop, a generalist tool for the unbiased representation of 95 
microscopy images based on masked self-supervised learning. Our pipeline was designed to 96 
handle heterogeneous images and includes a task distribution module to support users with 97 
different levels of computing power. To accommodate a broad range of image profiling needs, we 98 
have categorized images into three types and developed corresponding pipelines. We evaluated 99 
the performance of Microsnoop using seven evaluation datasets from diverse biological studies, 100 
comparing it to both generalist and custom algorithms. The results demonstrate the powerful 101 
feature extraction ability of Microsnoop and its potential for the analysis of multi-modal 102 
biological data. Our tool is freely available at https://github.com/cellimnet/microsnoop-publish. 103 
 104 
 105 

Results  106 

The design of a generalist representation tool. 107 

It has been proved that a large and diverse dataset is beneficial for the training of generalist 108 
models. Herein, we collected and curated 10458 high-quality microscopy images published by the 109 
cell segmentation community25-27, 31-33. These images were taken using different technologies and 110 
have different resolutions and channel numbers, with channels ranging from cellular organelles to 111 
tissues. The four main types of images include fluorescence, phase-contrast, tissue and 112 
histopathology images (Fig. 1a(i) and Supplementary Table 1). To accommodate the variable 113 
number of image channels, the input to the neural network was set as one-channel images (related 114 
to one-channel feature concatenation strategy below). All images channels in the training set were 115 
split out and further selected to form a one-channel data pool (Methods). Before training, images 116 
in each batch were preprocessed in three steps: (1) Sample: randomly select one batch of images 117 
from the four types in turn to reduce the effects of unequal amounts of data; (2) Augment: 118 
randomly crop a 224*224 region (pad if smaller) from each image, then normalize, random rotate 119 
and scale the image, with the result serving as the network target; (3) Transform: randomly mask 120 
a portion of the target image patches, with the result serving as the network input. In terms of 121 
network architecture design, this study employed a CNN-based34 (convolution neural network) 122 
architecture, despite the growing interest in Transformer-based architectures35 for natural image 123 
analysis. This choice was motivated by the superior performance observed for the CNN 124 
architecture in our preliminary evaluations (Extended Data Fig. 1 and Methods). This 125 
performance disparity may be attributed to the difference in the amount of training data provided. 126 
Typically, the pre-training of a ViT architecture36 requires a large corpus of data, with over 1 127 
million or even 1 billion images used in the case of natural image studies21. However, our 128 
microscopy image dataset involved a relatively smaller set of training data, which may not have 129 
been sufficient to provide adequate training for the Transformer-based architecture. 130 

We employed a masked self-supervised learning strategy to train the network, where a 131 
randomly selected percentage of image patches are masked and used as inputs. The network was 132 
then tasked with reconstructing the original, unmasked images. During training, masked images 133 
are encoded into high-level features through four consecutive downsampling steps, and the 134 
process of image reconstruction is accomplished through mirror-symmetric upsampling (Fig. 135 
1a(ii)). The learning process is guided by minimizing the self-supervision loss function (Methods), 136 
which promotes the model to learn useful features that enable it to recover the masked parts of the 137 
images based on the information present in the remaining parts. This is a challenging task, which 138 
necessitates a comprehensive understanding that transcends simple low-level image statistics. 139 

At test time, a generalist tool needs to face a range of image processing needs. To cater for 140 
this condition, we chose to categorize images based on the image profiling process itself, rather 141 
than solely on their biological applications that may be limited in scope. Our categorization 142 
comprises three types: single-cell images, fully-imaged images, and batch-experiment images. 143 
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(Fig. 1b(i)). The images to be processed are first managed by an in-built task distribution module 144 
(below), and then fed into the pre-trained encoder on a batch-by-batch basis for feature extraction. 145 
The output smallest convolutional maps are processed through global average pooling to produce 146 
initial 256-dimensional feature embeddings. Subsequently, feature aggregation is performed in 147 
accordance with different profiling tasks (details provided below). The final image 148 
representations can be used for various downstream analyses (Fig. 1b(ii)). 149 
 150 
Diversified evaluation datasets. 151 

In prior studies, attention was primarily focused on a limited number of specific datasets5, 37-152 
39. In our work, to give a more comprehensive evaluation of our generalist tool, we collected and 153 
curated 7 evaluation datasets, encompassing commonly used datasets along with some novel 154 
additions, comprising over 358,000 images and 1,270,000 single cells (Methods and Extended 155 
Data Fig. 2). These images showcase a diverse array of characteristics, including various 156 
resolutions, image types, number of channels, and biological applications, such as protein 157 
localization estimation, cell cycle stage identification, and MoA prediction (Supplementary Table 158 
2). In our study, four of the seven evaluation datasets focused on single-cell images. The 159 
performance of the model on fluorescent images, including bright-field channels, was assessed by 160 
COOS7 Test 1-439, CYCLoPs3 and BBBC0484. For the assessment of the model's ability to 161 
handle more challenging histopathology images, we employed the CoNSeP40 dataset. The 162 
LIVECell Test26 and TissueNet Test27 datasets were designed to evaluate a model's performance 163 
on fully-imaged image classification tasks, involving phase-contrast and tissue image 164 
representation, respectively. Lastly, the BBBC02141 dataset was employed to evaluate the 165 
representation ability of the model for batch-experiment images. 166 
 167 
Microsnoop accurately reconstructs the masked input images. 168 

In the investigation of optimal mask ratio for learning features from microscopy images, we 169 
found that a 25% mask was optimal for this task. This was determined by testing 8 different mask 170 
ratios (5%, 15%, 25%, 35%, 45%, 55%, 65% and 75%) and comparing the results (Extended Data 171 
Fig. 3). To get a qualitative sense of the reconstruction task, we showed an example of each 172 
image type from the validation set (Fig. 2a). By inputting the 25% masked image into the pre-173 
trained network, we were able to produce a reconstructed image that closely resembles the 174 
original, with only some detailed textures lost. This level of detail recovery is not easily 175 
achievable by humans. The reconstruction results on single-cell images from the evaluation 176 
datasets were even more impressive, with the reconstructed image being nearly indistinguishable 177 
from the original image (Fig. 2b and Extended Data Fig. 4). The improved performance on single-178 
cell images in comparison to fully-imaged ones can be attributed to cellular heterogeneity, which 179 
results in diverse cell phenotypes. The abundance of reference information from single-cell 180 
images allows for the more successful recovery of a limited number of instances. These results 181 
demonstrate that the pre-trained Microsnoop network, has learned good representations of the 182 
microscopy images. 183 
 184 
Microsnoop profile of single-cell images with one-channel feature concatenation. 185 

Single-cell images can be produced directly by an imaging instrument such as imaging flow 186 
cytometry (IFC)42, or obtained through cell segmentation processing on fully-imaged images. To 187 
accommodate the variable number of channels, we devised a one-channel feature concatenation 188 
strategy (Fig. 3a). Each channel of the multi-channel image is processed independently by 189 
Microsnoop, and the resulting embeddings are concatenated in an orderly manner. To prevent 190 
confusion during processing, a unique index is assigned to each image when multiple images are 191 
being processed. To address potential memory overflow issues when processing large batches of 192 
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data, we established a task distribution module. This module efficiently manages image pathways 193 
and distributes images for processing, read into the CPU and transferred to the GPU as needed. 194 
The user is empowered to optimize performance by adjusting parameters according to the 195 
available memory capacity of both the CPU and GPU. Furthermore, our system features a 196 
scalable, distributed design, which is capable of supporting multiple GPUs, providing a solution 197 
for increasing data demands. 198 

In our benchmark, we included three previous developed generalist methods in the 199 
comparisons: EfficientNetB043, Inception V344, CytoImageNet18, and custom methods that are 200 
accessible (Methods). For the COOS7 Test 1-4, CYCLoPs and CoNSeP, we evaluated 201 
performance with the K-Nearest Neighbor (KNN) classification accuracy (match between 202 
prediction and ground truth using the KNN classifier, which has been utilized in prior study18). 203 
For the dataset BBBC048, we used fivefold cross-validation for dataset split and evaluated the 204 
performance with the multilayer perceptron (MLP) classification accuracy (match between 205 
prediction and ground truth using the MLP classifier, as employed in the original paper4). Our 206 
evaluations revealed the exceptional performance of Microsnoop, which consistently 207 
outperformed all other methods. In the majority of cases, Microsnoop achieved significant 208 
improvements of more than 6%, and up to 10% (Fig. 3b-f). Notably, for the 7-classification task 209 
of BBBC048, Microsnoop achieved an accuracy of 85.62% without using any data from the 210 
dataset, surpassing the custom supervised learning algorithm in the original paper by 5.02%. 211 
 212 
Microsnoop profile of fully-imaged images with cell region cropping. 213 

Fully-imaged images are a common format directly obtained from most microscopes. Cell 214 
segmentation is usually the first step of phenotype profiling due to the inherent heterogeneity of 215 
cells. Although various generalist segmentation algorithms25-27 have been developed along with 216 
some fine-tuning strategies45-46, they may still introduce unwanted segmentation errors. For 217 
instance, in a large drug screening experiment, cell body images can present a range of 218 
phenotypes, and a segmentation algorithm may perform well on some but poorly on others 219 
(Extended Data Fig. 5a), potentially leading to unpredictable impacts on downstream analysis. To 220 
mitigate these issues, we introduced a cell region cropping strategy, where the segmentation 221 
algorithm is applied only on the easiest channel, such as the nucleus channel, which presents more 222 
robust segmentation results (Extended Data Fig. 5b). Cell regions are computed and cropped 223 
based on the segmentation masks and rescale constant (Fig. 4a(i) and Methods). Then, 224 
Microsnoop extracts features from the cropped single-cell images as described above (Fig. 4a(ii)). 225 
Finally, the resulting single-cell level embeddings are aggregated by computing their mean to 226 
obtain the fully-imaged level representations (Fig. 4a(iii)). 227 

We evaluated the representation ability of Microsnoop on two fully-imaged image phenotype 228 
classification tasks, and tested previously mentioned generalist algorithms for comparison. Both 229 
tasks were evaluated using the KNN classification accuracy. The results showed that Microsnoop 230 
again outperformed other methods, and even a 41.93% improvement was obtained on the 231 
LIVECell Test dataset (Fig. 4b-c). Furthermore, Microsnoop showed strong inclusiveness to 232 
various image styles, with an accuracy of 98.08% on the LIVECell Test dataset and 96.64% on 233 
TissueNet Test. 234 
 235 
Microsnoop profile of batch-experiment images with sphering batch correction. 236 

In high-content screening experiments, batch effects due to technical variability can affect 237 
downstream analysis29-30, 37-38 (Fig. 5a). To address this issue, we employed a sphering batch 238 
correction method47. This assumes that the large variations observed in negative controls are 239 
associated with confounders, and any variation that is not observed in controls is associated with 240 
phenotypes. Sphering transformation aims to separate phenotypic variation from confounders. In 241 
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our image representation pipeline for batch-experiment images, Microsnoop first extracts features 242 
from the fully-imaged images (as described above), and the resulting fully-imaged level 243 
representations are corrected via sphering transformation (Fig. 5b). Finally, the fully-imaged level 244 
representations are aggregated to treatment level representations by computing their mean (Fig. 245 
5c). 246 

We evaluated the representation ability of Microsnoop on the classic BBBC021 dataset, 247 
while including previously reported results of generalist and custom methods in the comparisons. 248 
We assessed the performance with the Not-Same-Compound (NSC) and Not-Same-Compound-249 
or-Batch (NSCB) KNN classification accuracy. Microsnoop still achieved state-of-the-art 250 
performance without using any data from the dataset, even if compared with the methods 251 
exclusively studied on it (Fig. 5d-e). 252 
 253 
Two other fully-imaged image profile modes and the robustness of cell region cropping 254 
mode. 255 

In addition to the cell region cropping mode, we provided two alternative modes for 256 
processing fully-imaged datasets: rescaling and tile mode. In the rescaling mode, the shape of the 257 
fully-imaged images is directly rescaled to the input size (224*224) as inputs (Extended Data Fig. 258 
6a-b). In the tile mode, the original image is cropped into multiple 224x224 tiles, and the fully-259 
imaged level representations are aggregated by computing the mean over all tiles (Extended Data 260 
Fig. 6c). We evaluated the performance of these three processing modes, including different 261 
rescale constants for the cell region cropping mode, on both the fully-imaged and batch-262 
experiment datasets (Extended Data Fig. 6d-g and Methods). The rescaling and tile modes 263 
outperformed the single-cell mode on LIVECell and TissueNet tests; however, both modes 264 
displayed a significant performance decline on the BBBC021 dataset. The reason for the 265 
underperformance of the rescaling mode could be attributed to the fact that it discards high-266 
resolution phenotypic information during the rescaling process. On the other hand, the decline in 267 
performance observed with the tile mode may be due to the fact that it averages out important 268 
subtle phenotype variations present in certain regions of fully-imaged images. In contrast, the cell 269 
region cropping mode displayed robust performance across a range of parameters on all three 270 
datasets. Although the single-cell mode is more robust and efficient, it requires more time and 271 
memory compared to the other two modes. (Extended Data Fig. 6h-i). 272 
 273 
Microsnoop improves the performance of the multi-modal structured embedding algorithm. 274 

A recent study of the multi-modal structured embedding algorithm (MUSE17) has shown 275 
impressive results for the integrative spatial analysis of image and transcriptional data. The 276 
authors conducted a simulation experiment to assess the performance of MUSE when 277 
transcriptional data quality is degraded. Here, we focused on the impact of image feature quality, 278 
and the results of our simulation experiment showed that with the quality improvement of image 279 
representations, the performance of MUSE can also be significantly improved (Extended Data 280 
Fig. 7). Next, we tested Microsnoop on the real-world dataset seqFISH+8 in comparison with the 281 
representation method used in the original paper. After acquiring the image representations, we 282 
use principal component analysis (PCA) performing feature dimensionality reduction to match the 283 
latent space dimensions of MUSE (Fig. 6a). We employed the silhouette coefficient48 to evaluate 284 
the feature quality. Microsnoop demonstrated better image representation quality and greater 285 
improvement in the performance of MUSE (Fig. 6b). 286 
 287 

Discussion  288 
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Advances in imaging technology, such as phase-contrast microscopy, imaging flow 289 
cytometry, automated high-throughput microscopy and microscopy combined with spatial omics 290 
techniques have created a massive demand to solve the complex challenge of microscopy image 291 
representation. In this study, we present Microsnoop, an innovative deep learning tool that 292 
effectively addresses this challenge. The accurate analysis of heterogeneous microscopy images, 293 
as a critical aspect of both fundamental and applied biological research, is highly valued by the 294 
microscopy image analysis community49-50. Our proposed solution offers promising 295 
advancements to this field. Microsnoop was trained on large-scale high-quality data using a 296 
masked self-supervised pretext task, allowing it to learn valuable and unbiased features for image 297 
representation. The one-channel feature concatenation strategy, efficient task distribution module, 298 
and rational classification mode of profiling needs make our tool flexible to meet various user 299 
needs. In addition, Microsnoop is capable of processing complex fully-imaged images through 300 
cell region cropping and mitigating batch effects in batch-experiment images through sphering 301 
transformation. For fully-imaged images, our results show that the single-cell analysis mode is 302 
more robust compared to other modes, reinstating the importance of considering cellular 303 
heterogeneity in biological research. Our benchmark results demonstrate robust and state-of-the-304 
art performance on all evaluated datasets, eliminating the need to use of any evaluation data for 305 
fine-tuning. Furthermore, the enhanced representation of unimodal image data leads to significant 306 
improvements in the performance of multi-modal algorithms. 307 

In our methodology experiments, we found that a mask ratio of 25% is optimal for 308 
microscopy images, which is significantly lower than the 75% that has been found optimal for 309 
natural images21. The difference is primarily due to the smaller size and erratic content of 310 
instances in microscopy images, which may result in lost information if too much reference 311 
information is masked. Compared with the CytoImageNet18 study that utilized a supervised 312 
classification task as the pretext task, our masked self-supervised learning approach only requires 313 
raw images without any manual annotation and yields unbiased and more capable representations. 314 
Recently, a similar self-supervised representation learning study has also been reported as useful 315 
in learning the representations of protein subcellular location images through a pretext task that 316 
requires the network to directly reconstruct original images and images corresponding to similar 317 
proteins having similar representations19. In contrast, the uniqueness of our method is that ours do 318 
not require domain-specific knowledge and is developed for generalist image representation. Our 319 
benchmark study has shown that a single network is capable of handling heterogeneous 320 
microscopy images, which is in line with the conclusion reached in the sister domain of cell 321 
segmentation25. Furthermore, our pretext task was trained on the same network structure as 322 
Cellpose. This is reminiscent of the recent success of  large pre-trained language models in the 323 
field of natural language processing51-53. With continued advancements in the understanding of 324 
computer vision and the further development of models for microscopy image representation and 325 
other image processing tasks, such as cell segmentation, it may be possible to merge these models 326 
into a single, unified model in the future. 327 

While Microsnoop is a powerful tool, there are several areas for improvement. For example, 328 
further evaluation is needed to determine the efficacy of our approach of one-channel feature 329 
concatenation and feature aggregation in 3D and time-series imaging datasets in comparison to 330 
training a network to directly extract spatial or temporal information. To enhance the capabilities 331 
of Microsnoop, future work could include incorporating additional self-supervised pretext tasks 332 
for multi-task learning, optimizing the quality of the training dataset and refining the single-cell 333 
level feature aggregation methods. Moreover, the current training images are still limited in size 334 
compared to natural images, and a larger training data volume combined with the Transformer 335 
architecture can be studied to improve the performance. Last but not least, deploying our model 336 
on mobile devices to aid rapid detection could be a valuable application scenario54. 337 
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Overall, we have developed an impressive, generalist tool for microscopy image 338 
representation. We anticipate its positive impact on the microscopy image analysis community, 339 
facilitating new phenotype discovery, data sharing, and the establishment of large image 340 
databases, among other benefits. Furthermore, we envision that Microsnoop can be effectively 341 
utilized in multi-modal studies such as combining molecular and image representation for MoA 342 
prediction55-56 or exploring the relationship between gene expression and image representation for 343 
drug discovery57. 344 

  345 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 9 of 30 
 

References 346 
1. Caicedo, J. C., Singh, S. & Carpenter, A. E. Applications in image-based profiling of 347 

perturbations. Curr. Opin. Biotechnol. 39, 134-142 (2016). 348 
2. Pratapa, A., Doron, M. & Caicedo, J. C. Image-based cell phenotyping with deep learning. 349 

Curr. Opin. Chem. Biol. 65, 9-17 (2021). 350 
3. Lu, A. X. et al. Integrating images from multiple microscopy screens reveals diverse patterns 351 

of change in the subcellular localization of proteins. eLife 7, e31872 (2018). 352 
4. Eulenberg, P. et al. Reconstructing cell cycle and disease progression using deep learning. Nat. 353 

Commun. 8, 463 (2017). 354 
5. Pawlowski, N., Caicedo, J. C., Singh, S., Carpenter, A. E. & Storkey, A. Automating 355 

Morphological Profiling with Generic Deep Convolutional Networks. Preprint at 356 
http://biorxiv.org/lookup/doi/10.1101/085118 (2016). 357 

6. Cuccarese, M. F. et al. Functional immune mapping with deep-learning enabled phenomics 358 
applied to immunomodulatory and COVID-19 drug discovery. Preprint at 359 
http://biorxiv.org/lookup/doi/10.1101/2020.08.02.233064 (2020). 360 

7. Schürch, C. M. et al. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity 361 
at the Colorectal Cancer Invasive Front. Cell 182, 1341-1359 (2020). 362 

8. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. 363 
Nature 568, 235-239 (2019). 364 

9. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying  365 
cell phenotypes. Genome Biol. 7, R100 (2006). 366 

10. Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage--an R package for image 367 
processing with applications to cellular phenotypes. Bioinformatics 26, 979-981 (2010). 368 

11. Singh, S., Bray, M.-A., Jones, T. R. & Carpenter, A. E. Pipeline for illumination correction of 369 
images for high�throughput microscopy. J. Microsc. 256, 231-236 (2014). 370 

12. Caicedo, J. C., McQuin, C., Goodman, A., Singh, S. & Carpenter, A. E. Weakly Supervised 371 
Learning of Single-Cell Feature Embeddings. In Proc. IEEE Conference on Computer Vision 372 
and Pattern Recognition 9309-9318 (IEEE, 2018). 373 

13. Lu, A. X., Kraus, O. Z., Cooper, S. & Moses, A. M. Learning unsupervised feature 374 
representations for single cell microscopy images with paired cell inpainting. PLoS Comput. 375 
Biol. 15, e1007348 (2019). 376 

14. Adnan, M., Kalra, S. & Tizhoosh, H. R. Representation Learning of Histopathology Images 377 
Using Graph Neural Networks. In Proc. IEEE Conference on Computer Vision and Pattern 378 
Recognition 988-989 (IEEE, 2020). 379 

15. Perakis, A. et al. Contrastive Learning of Single-Cell Phenotypic Representations for 380 
Treatment Classification. In Machine Learning in Medical Imaging (eds. Lian, C., Cao, X., 381 
Rekik, I., Xu, X. & Yan, P.) 12966, 565–575 (Springer, 2021). 382 

16. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. 383 
Vis. 115, 211-252 (2015). 384 

17. Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with 385 
MUSE. Nat. Biotechnol. 40, 1200-1209 (2022). 386 

18. Hua, S. B. Z., Lu, A. X. & Moses, A. M. CytoImageNet: A large-scale pretraining dataset for 387 
bioimage transfer learning. In Proc. Advances in Neural Information Processing Systems 388 
(Curran Associates, 2021). 389 

19. Kobayashi, H., Cheveralls, K. C., Leonetti, M. D. & Royer, L. A. Self-supervised deep 390 
learning encodes high-resolution features of protein subcellular localization. Nat. Methods 19, 391 
995-1003 (2022). 392 

20. Wong, D. R. et al. Trans-channel fluorescence learning improves high-content screening for 393 
Alzheimer’s disease therapeutics. Nat. Mach. Intell. 4, 583-595 (2022). 394 

21. He, K. et al. Masked Autoencoders Are Scalable Vision Learners. In Proc. IEEE Conference 395 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 10 of 30 
 

on Computer Vision and Pattern Recognition 16000-16009 (IEEE, 2022). 396 
22. Liu, X., Zhou, J., Kong, T., Lin, X. & Ji, R. Exploring Target Representations for Masked 397 

Autoencoders. Preprint at https://arxiv.org/abs/2209.03917 (2022). 398 
23. Li, Z. et al. MST: Masked Self-Supervised Transformer for Visual Representation. In Proc. 399 

Advances in Neural Information Processing Systems 35 (Curran Associates, 2021). 400 
24. Wei, C. et al. Masked Feature Prediction for Self-Supervised Visual Pre-Training. In Proc. 401 

IEEE Conference on Computer Vision and Pattern Recognition 14668-14678 (IEEE, 2022). 402 
25. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for 403 

cellular segmentation. Nat. Methods 18, 100-106 (2021). 404 
26. Edlund, C. et al. LIVECell-A large-scale dataset for label-free live cell segmentation. Nat. 405 

Methods 18, 1038-1045 (2021). 406 
27. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level 407 

performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555-408 
565 (2021). 409 

28. Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological profiling 410 
using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757-1774 (2016). 411 

29. Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-412 
throughput data. Nat. Rev. Genet. 11, 733-739 (2010). 413 

30. Lin, A. & Lu, A. X. Incorporating knowledge of plates in batch normalization improves 414 
generalization of deep learning for microscopy images. In Proc. International Conference on 415 
Machine Learning 74-93 (PMLR, 2022). 416 

31. Kumar, N. et al. A Multi-Organ Nucleus Segmentation Challenge. IEEE Trans. Med. Imaging. 417 
39, 1380-1391 (2020). 418 

32. Verma, R. et al. MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification 419 
Challenge. IEEE Trans. Med. Imaging. 40, 3413-3423 (2021). 420 

33. Amgad, M. et al. NuCLS: A scalable crowdsourcing, deep learning approach and dataset for 421 
nucleus classification, localization and segmentation. Gigascience 11, giac037 (2022). 422 

34. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical 423 
Image Segmentation. In Proc. International Conference on Medical Image Computing and 424 
Computer-Assisted Intervention 234-241 (Springer, 2015). 425 

35. Vaswani, A. et al. Attention is All you Need. In Proc. Advances in Neural Information 426 
Processing Systems 30 (Curran Associates, 2017). 427 

36. Dosovitskiy, A. et al. An Image is Worth 16x16 Words: Transformers for Image Recognition 428 
at Scale. In International Conference on Learning Representations (ICLR, 2021). 429 

37. Ando, D. M., McLean, C. Y. & Berndl, M. Improving Phenotypic Measurements in High-430 
Content Imaging Screens. Preprint at http://biorxiv.org/lookup/doi/10.1101/161422 (2017). 431 

38. Bray, M.-A. et al. High-content cellular screen image analysis benchmark study. Preprint at 432 
https://www.biorxiv.org/content/10.1101/2022.05.15.491989v1.abstract (2022). 433 

39. Lu, A. et al. The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-434 
sample generalization of image classifiers. In Proc. Advances in Neural Information 435 
Processing Systems 32 (Curran Associates, 2019). 436 

40. Graham, S. et al. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-437 
tissue histology images. Med. Image Anal. 58, 101563 (2019). 438 

41. Caie, P. D. et al. High-Content Phenotypic Profiling of Drug Response Signatures across 439 
Distinct Cancer Cells. Mol. Cancer Ther. 9, 1913-1926 (2010). 440 

42. Schraivogel, D. et al. High-speed fluorescence image-enabled cell sorting. Science 375, 315-441 
320 (2022). 442 

43. Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural 443 
Networks. In Proc. International Conference on Machine Learning 6105-6114 (PMLR, 2019). 444 

44. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception 445 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 11 of 30 
 

Architecture for Computer Vision. In Proc. IEEE Conference on Computer Vision and Pattern 446 
Recognition 2818-2826 (IEEE, 2016). 447 

45. Xun, D. et al. Scellseg: A style-aware deep learning tool for adaptive cell instance 448 
segmentation by contrastive fine-tuning. iScience 25, 105506 (2022). 449 

46. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 450 
1634-1641 (2022). 451 

47. Moshkov, N. et al. Learning representations for image-based profiling of perturbations. 452 
Preprint at http://biorxiv.org/lookup/doi/10.1101/2022.08.12.503783 (2022). 453 

48. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster 454 
analysis. J. Comput. Appl. Math. 20, 53-65 (1987). 455 

49. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 456 
849-863 (2017). 457 

50. Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based profiling 458 
for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug. Discov. 20, 145-159 459 
(2020). 460 

51. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional 461 
Transformers for Language Understanding. Preprint at https://arxiv.org/abs/1810.04805 462 
(2018). 463 

52. Brown, T. B. et al. Language Models are Few-Shot Learners. In Proc. Advances in Neural 464 
Information Processing Systems 33 (Curran Associates, 2020). 465 

53. Min, B. et al. Recent Advances in Natural Language Processing via Large Pre-Trained 466 
Language Models: A Survey. Preprint at http://arxiv.org/abs/2111.01243 (2021). 467 

54. Wang, B. et al. Smartphone-based platforms implementing microfluidic detection with image-468 
based artificial intelligence. Nat. Commun. 14, 1341 (2023). 469 

55. Sanchez-Fernandez, A., Rumetshofer, E. & Hochreiter, S. CONTRASTIVE LEARNING OF 470 
IMAGE- AND STRUCTURE- BASED REPRESENTATIONS IN DRUG DISCOVERY. In 471 
International Conference on Learning Representations (ICLR, 2022). 472 

56. Tian, G., Harrison, P. J., Sreenivasan, A. P., Puigvert, J. C. & Spjuth, O. Combining molecular 473 
and cell painting image data for mechanism of action prediction. Preprint at 474 
http://biorxiv.org/lookup/doi/10.1101/2022.10.04.510834 (2022). 475 

57. Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional 476 
gene expression and morphology profiles of cells across 28,000 genetic and chemical 477 
perturbations. Nat. Methods 19, 1550-1557 (2022). 478 

58. Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated high-throughput microscopy image 479 
sets for validation. Nat. Methods 9, 637-637 (2012). 480 

59. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193-218 (1985). 481 
60. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image 482 

analysis. Nat. Methods 9, 671-675 (2012). 483 
61. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In 484 

Proc. Advances in Neural Information Processing Systems 32 (Curran Associates, 2019). 485 
  486 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 12 of 30 
 

Methods 487 

Training set. 488 
The training set consisted of four diverse image types from seven published datasets: 489 

Cellpose, LIVECell, TissueNet, and Histo, which includes MoNuSeg, MoNuSAC, and NuCLS. 490 
Firstly, all channels of the images were separated. For Cellpose and TissueNet, only the cell body 491 
channel was utilized, while the original RGB images of Histo were transformed into grayscale. 492 
The original training-validation dataset split was maintained for Cellpose, LIVECell, and 493 
TissueNet, while the images from the three Histo subsets were mixed and 20% were randomly 494 
reserved for validation purposes. Finally, the training set was organized into a one-channel image 495 
data pool. A comprehensive summary of the training set can be found in Supplementary Table 1. 496 
 497 
Model architecture. 498 

The network architecture was based on a refined version of the classic U-Net34, as utilized in 499 
Cellpose. The standard convolutional blocks were replaced with residual blocks and style 500 
embeddings were incorporated into the concatenation stages. The downsampling scale was set as 501 
32, 64, 128 and 256, and the upsampling scale was mirror symmetry. Both the input and output 502 
tensors were of shape batch_size*1*224*224 (in Pytorch tensor format, where batch_size is 503 
described below). 504 
 505 
Masked self-supervised learning. 506 

In the masked self-supervised learning approach, the network is tasked with reconstructing 507 
the original image from partial masked images. Our implementation involved dividing the target 508 
image (after normalization and augmentation) into 16*16 non-overlapping patches. Subsequently, 509 
a portion of these patches were randomly replaced with black patches of size 16*16, where every 510 
pixel was zero. Different from the original MAE built on a Transformer architecture, the 511 
transformed patches were restored to the image format to accommodate the input format of the 512 
CNN architecture. 513 
 514 
Model training. 515 

The self-supervision loss was set as the mean square error loss (MSE), which calculates the 516 
difference in both the masked and unmasked areas. The network was optimized by AdamW 517 
optimizer from the torch.optim Python package. In our implementation, we adopted a different 518 
definition of an epoch, in which one epoch corresponds to a complete iteration through all the 519 
sampled data, rather than through all the training data, as is commonly defined. During each 520 
epoch, we randomly sampled 12000 images from the four different types of training data in turn. 521 
The batch size was set as 16. The initial learning rate was set as 0.001, and we used a learning rate 522 
(LR) warmup trick: at the first 40 epochs, the LR was computed as: 523 

LR � 0.001 � epoch
40  

after 40 epochs, the LR was computed as: 524 

LR � 0.001 � 0.5 � �1 � cos � epoch � 40
nepoch � 40 � π�� 

where nepoch represents the epoch size of the training process, here it was set as 1000. 525 
 526 
One-channel feature concatenation strategy for multi-channel image representation. 527 

In our implementation of Microsnoop for feature extraction, we assumed that the input data 528 
comprised multi-channel images with the same number of channels, represented as (c, h, w), 529 
where c denotes the number of channels, and h and w denote the height and width, respectively. 530 
In the event that images had different h and w, we padded them with zeros to obtain a consistent 531 
shape. The task distribution module is then used to read the images into CPU memory, where they 532 
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are transformed into an array with shape (n, c, h, w), where n denotes the number of images read. 533 
This array is then reshaped into (n*c, 1, h, w), with each image assigned a unique index 534 
represented as a shape (n*c, ) vector. For each batch of size b, the task distribution module 535 
transfers b images into the GPU memory, resulting in a tensor of shape (b, 1, h, w). After 536 
Microsnoop processes all n*c images, the CPU cache is cleared using the collect function from 537 
the gc Python package, and the next n images are read. The resulting embedding array had the 538 
shape of (N*c, 256), where N denotes the total number of processed images, and 256 is the pre-539 
set dimensionality of the feature vector for a one-channel image in Microsnoop. These 540 
embeddings are then concatenated in channel to obtain a final feature embedding array of shape 541 
(N, 256*c). 542 
 543 
Evaluation datasets. 544 

We curated seven evaluation datasets, four of which were directly available from public 545 
sources and three (CoNSeP, LIVECell Test and TissueNet Test) were processed by us based on 546 
publicly acquired images. The summary of these datasets can be seen in Supplementary Table 2. 547 
 548 
COOS7. This dataset contains 132,209 single-cell fluorescence images, including a training set 549 
and four test sets that vary in different factors. The training set consists of images from 4 550 
independent plates, while Test 1 includes randomly held-out images from the same plates as the 551 
training set, Test 2 includes images from the same plates but different wells, Test3 comprises 552 
images produced months later, and Test 4 has images produced by other instruments. The images 553 
were downloaded through the link provided by Stanley Bryan Z. Hua18. Each image takes the 554 
shape of 2*64*64 and is a pixel crop centered around a unique mouse cell. One channel marks the 555 
protein targeting a specific component of the cell and the other marks the nucleus. There are 7 556 
protein location classes in each set: Endoplasmic Reticulum, Inner Mitochondrial Membrane, 557 
Golgi, Peroxisomes, Early Endosome, Cytosol and Nuclear Envelope, and the evaluation task 558 
requires the model to accurately predict the protein location.  559 
 560 
CYCLoPs. This dataset consists of 28,166 single-cell fluorescence images from the CYCLoPs 561 
database, and we downloaded the data through the link provided by Stanley Bryan Z. Hua18. Each 562 
image has a shape of 2*64*64 and is a pixel crop centered around a unique yeast cell. One 563 
channel marks the protein location and the other marks the cytosol. There are 17 protein location 564 
classes: ACTIN, BUDNECK, BUDTIP, CELLPERIPHERY, CYTOPLASM, ENDOSOME, ER, 565 
GOLGI, MITOCHONDRIA, NUCLEARPERIPHERY, NUCLEI, NUCLEOLUS, 566 
PEROXISOME, SPINDLE, SPINDLEPOLE, VACUOLARMEMBRANE and VACUOLE. The 567 
aim of the evaluation is to accurately predict the protein localization. 568 
 569 
CoNSeP. This dataset has 41 H&E stained fully-imaged images with a shape of 3*1000*1000 570 
pixels. 14 of these are test images and 27 are training images. The raw data were obtained from 571 
https://warwick.ac.uk/fac/sci/dcs/research/tia/data and then transformed into grayscale format. 572 
Each cell was cropped based on the provided segmentation mask, resulting in 8777 single-cell test 573 
images and 15554 single-cell training images with a shape of 1*112*112 pixels. In cases where 574 
the cells were smaller, padding was applied to obtain the desired size. The class information was 575 
extracted from the classification mask, with 4 classes: Other, Inflammatory, Epithelial, Spindle-576 
shaped. The evaluation task requires the model to accurately predict the cell types. 577 
 578 
BBBC048. This dataset contains 32,266 single-cell images from the Broad Bioimage Benchmark 579 
Collection58. These single-cell images of Jurkat cells were directly captured with the ImageStream 580 
imaging flow cytometer. Each image has a shape of 3*66*66 pixels, with a brightfield channel 581 
and two fluorescence channels. There are 7 cell phases: G1, S, G2, Prophase, Metaphase, 582 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 14 of 30 
 

Anaphase and Telophase. Another 5-phase case considers G1, S and G2 phase as a single class. 583 
The evaluation task requires the model to accurately predict the cell cycle stages. 584 
 585 
LIVECell Test. This dataset comprises 1512 fully-imaged phase-contrast images provided by 586 
Christoffer Edlund26, where each image has a shape of 1*520*704 pixels. There are 8 cell types: 587 
A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3 and SKOV3. The evaluation task requires 588 
the model to accurately predict the cell types of full-imaged images. 589 
 590 
TissueNet Test. This dataset comprises 1249 fully-imaged tissue images provided by Noah F. 591 
Greenwald�. Each image has a shape of 2*256*256 pixels, one channel marks the membrane or 592 
cytoplasm and the other marks the nucleus. We extracted the tissue type information from the 593 
metadata provided. There are 6 tissue types: Breast, Gi, Immune, Lung, Pancreas and Skin. The 594 
evaluation task requires the model to accurately predict the tissue types of full-imaged images. 595 
 596 
BBBC021. This dataset includes 3848 fully-imaged fluorescence images, a subset from the Broad 597 
Bioimage Benchmark Collection58. The images are of MCF-7 breast cancer cells with a collection 598 
of 113 small molecules at different concentrations and a DMSO negative control. Each image has 599 
a shape of 3*1024*1280 pixels, and different channels respectively mark the DNA, F-actin and B-600 
tubulin. There are 12 mechanisms: Actin disruptors, Aurora kinase inhibitors, Cholesterol-601 
lowering, DNA damage, DNA replication, Eg5 inhibitors, Epithelial, Kinase inhibitors, 602 
Microtubule destabilizers, Microtubule stabilizers, Protein degradation and Protein synthesis. The 603 
evaluation task requires the model to accurately predict the MoA of different treatments. 604 
 605 
Three modes for the profile of fully-imaged images. 606 
Cell region cropping mode. We utilized the generalist tool Cellpose on the easiest channel (such 607 
as the nucleus channel) to perform cell segmentation. For each image, following the acquisition of 608 
the segmentation mask, we extract all the (x, y) pixel coordinates of each cell, and compute the 609 
region of each cell as follows: 610 

� � ���� � ���� ;  h � ���� � ���� 
�� � ���� � 0.5 � w ;  y� � ���� � 0.5 � h 

Rs � min!max!w, h% � Rc, Sta � 0.5% 
bbox� � max !�� � )*, 0% ; bbox� � max !�� � )*, 0% 

bbox	 � min! �� � )* , W% ; bbox
 � min! �� � )* , H% 
where ����, ����, ���� , ����  denote the max/min x/y, respectively, among all the pixels 611 

coordinates; �� , �� denote the coordinates of centroid; Rc denotes the rescale constant (it is set by 612 
user according to the average size of cell bodies); Sta denotes the side length of cropped image 613 
(here we set it as 224, the input size of Microsnoop); Rs denotes the crop size (it cannot be more 614 
than half of Sta); W, H denote the width and height of the fully-imaged image, respectively. 615 

bbox�, bbox�, bbox	, bbox
 denote the left, up, right, down of the cropped region in the original 616 
image, respectively, and they cannot go beyond the boundaries of the image. Finally, single-cell 617 
images are cropped on all channels and padded to (c, Sta, Sta) with zero pixels if smaller, where c 618 
denotes the number of channels. The fully-imaged level embedding of the image is obtained by 619 
computing the mean of all single-cell image embeddings. 620 
 621 
Rescaling mode. In the case that the height of the image is not equal to its width, the initial step is 622 
to pad the image with zeros to create a square shape. The fully-imaged images are then rescaled to 623 
input size using the resize function from the cv2 Python package. The fully-imaged level 624 
embedding of the image is directly obtained through this process. 625 
 626 
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Tile mode. The fully-imaged images are cropped into tiles using the make_tiles function from the 627 
cellpose.transforms Python package. The parameter bsize was set as the input size, and the 628 
parameter tile_overlap was set as 0.1. The fully-imaged level embedding of the image is obtained 629 
by computing the mean of all tile embeddings. 630 
 631 
Sphering transformation for the profile of batch-experiment images. 632 

The detailed description can be found in ref. 47. Here, we fitted the ZCA_corr transformer 633 
from https://github.com/jump-634 
cellpainting/2021_Chandrasekaran_submitted/blob/main/benchmark/old_notebooks/utils.py on 635 
the embeddings of negative control, and then used the fitted transformer to correct the embeddings 636 
of each batch. 637 
 638 
Benchmarking. 639 

For BBBC021, we directly adopted the previously published state-of-the-art (SOTA) results 640 
from the curated resource at https://bbbc.broadinstitute.org/BBBC021. We also included the 641 
results of recently reported generalist methods. All results were formatted to two decimal places. 642 

For other datasets, we compared with three generalist deep-learning methods: 643 
EfficiententNetB0, Inception V3 and CytoImageNet. EfficiententNetB0 was pretrained on the 644 
ImageNet and was included in the comparison in CytoImageNet. The famous project 645 
DeepProfiler47 also used this network for the profiling of microscopy imaging data. Inception V3, 646 
which was also pre-trained on ImageNet, had been utilized in the MUSE project, a study of 647 
advanced multimodal algorithms. CytoImageNet, a recently published generalist microscopy 648 
image representation learning algorithm, was pre-trained using a self-constructed microscopy 649 
image classification dataset. 650 

The results of EfficiententNetB0 and CytoImageNet on COOS7 and CYCLoPs have been 651 
previously reported18 and were directly adopted from the relevant publication. For BBBC048, we 652 
also included the custom algorithm results reported in the original paper. The remaining results 653 
presented in this paper were generated by the authors. 654 

EfficiententNetB0 and CytoImageNet were established using the EfficientNetB0 class from 655 
the tenforflow.keras.applications Python package, with different weights loaded 656 
(EfficiententNetB0 used the ImageNet weights and CytoImageNet used the weights published by 657 
Stanley Bryan Z. Hua). Inception V3 was established using inception_v3 class from the 658 
torchvision.models Python package. We dropped the last classification layer and used the 659 
remaining network for feature extraction. Because these network architectures are presented in 660 
natural RGB image study, at test time, each one-channel image is copied three times to mimic 661 
RGB images (also used in ref. 18, 37). The other steps, such as data preprocessing and feature 662 
aggregation, are identical to those used in the Microsnoop protocol. 663 

For LIVECell and TissueNet Test, we directly used the provided segmentation masks 664 
(nucleus channel for the TissueNet) without applying the cell segmentation algorithm in the cell 665 
region cropping mode. For the COOS7, CYCLoPs and BBBC021 datasets, the number of nearest 666 
neighbors (k) in the KNN classifier was set to 11, 11, and 1, respectively, in accordance with the 667 
ref. 18. For BBBC048, the MLP was conducted using the MLPClassifier class from the 668 
sklearn.neural_network Python package, and the parameter max_iter was set as 1000. 669 
 670 
Joint use of Microsnoop and MUSE. 671 

In the simulation experiment, we utilized the simulation_tool.multi_modal_simulator 672 
function from the MUSE project to generate the transcriptional and image representations along 673 
with the corresponding ground truth. We used the adjusted Rand index (ARI)59 to assess the 674 
ability of discovering true subpopulations. For the analysis of seqFISH+ data, the microscopy 675 
images were provided by the authors of the seqFISH+ paper. Each cell region of the images was 676 
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determined by the coordinates of the cell centroid provided. We used Microsnoop and Inception 677 
V3 to conduct feature extraction on the Nissl and DAPI stained images separately. The shape of 678 
each single-cell embedding output was 512 (256*2), then we used PCA to reduce the feature 679 
dimensionality to 500. The process of the transcript data was the same as MUSE. We used the 680 
silhouette coefficient to assess feature quality by the compactness of the clusters, which was 681 
conducted using the silhouette_score function from the sklearn.metrics Python package. 682 
 683 

Graph plotting 684 

All bar graphs were plotted using GraphPad PRISM 8.0 software (GraphPad Software, Inc., 685 
CA, USA). Fig. 1b(i) and Fig. 5a were created using resources from BioRender.com. The sources 686 
of images in Fig. 1 also included https://www.rxrx.ai/rxrx2, in addition to those listed in the 687 
supplementary Table 1 & 2. Some microscopy images in the figures have been processed using 688 
“Enhance Contrast…” from ImageJ60 for better presentation. 689 
 690 

Software and hardware 691 

The programming was conducted using Python v.3.7. Training and all evaluations were 692 
performed on NVIDIA GeForce RTX 3090 GPUs. The deep learning framework of Microsnoop 693 
used PyTorch61 v.1.10. 694 
 695 

Data availability 696 

The links to download the raw data of training set and evaluation datasets are provided in 697 
Supplementary Table 1-2. The new evaluation datasets generated by this study will be made 698 
available on figshare: 699 
https://figshare.com/articles/dataset/Microsnoop_a_generalist_tool_for_the_unbiased_representati700 
on_of_heterogeneous_microscopy_images/22197607 upon publication. 701 

SeqFISH+ mouse cortex dataset: Transcript data were downloaded from 702 
https://github.com/CaiGroup/seqFISH-PLUS. Image data were provided by the authors of the 703 
seqFISH+ paper. 704 

All data in this study are available from the corresponding author upon reasonable request. 705 
 706 

Code availability 707 

Source code for Microsnoop, including detailed tutorial, will be made available on GitHub 708 
(https://github.com/cellimnet/microsnoop-publish) upon publication. A configured Amazon 709 
Machine Image (AMI) will be made available upon publication for quickly and conveniently 710 
deploying Microsnoop for microscopy image analysis. 711 
 712 
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Figures and Tables 733 

  734 

  735 
Fig. 1 | Design of Microsnoop for microscopy image representation. a, Schematic of 736 
the learning process. (i) Example of the four main category images are shown. The 737 
channels range from cellular organelles to tissues. (ii) A masked self-supervised learning 738 
strategy was employed and only images are required for training without additional 739 
manual annotation. One-channel masked images were set as the input and the Encoder- 740 
Decoder were required to reconstruct the original images. b, At test time, (i) Example 741 
images from various downstream tasks are shown, with different resolutions, number of 742 
channels and image types. These microscopy images are categorized into 3 types to ensure 743 
the broad coverage of image profiling needs. (ii) Application of Microsnoop. Firstly, 744 
images are managed by an in-built task distribution module (Fig. 3a), which generates one 745 
batch one-channel images for feature extraction. Each batch of images is fed into the pre-746 
trained encoder, and the output smallest convolutional maps are processed by average 747 
pooling. Then, all extracted embeddings are processed according to different profiling 748 
tasks (introduced in the following section). The potential downstream analyses of our 749 
generalist representation tool are shown in the panel. 750 
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 752 

 753 
Fig. 2 | Reconstruction results with Microsnoop. a, Example results for images from the 754 
validation set, with a masking ratio of 25% applied on inputs. One representative image is 755 
selected for each image type. b, Example results for single-cell images from evaluated 756 
data, with a masking ratio of 25% applied on inputs. The left two columns are from 757 
COOS7 and the right two are from CYCLoPs. Two representative images (different 758 
imaging channels of the same cell) are selected for each dataset. Example results on other 759 
evaluated datasets are shown in Extended Data Figs. 4. 760 

  761 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 20 of 30 
 

 762 

 763 
Fig. 3 | Profiling with Microsnoop on single-cell images. a, Pipeline. Every channel of 764 
the single-cell image is processed independently, and the one-channel level embeddings 765 
are concatenated to get multi-channel level image representations. A task distribution 766 
module is provided to prevent memory overflow. The Extractor denotes the pretrained 767 
encoder combined with the average pooling layer shown in Fig. 1a(ii). b-f, Benchmarks. 768 
b, Benchmark on COOS7, containing four separate test sets. c, Benchmark on CYCLoPs. 769 
d, Benchmark on CoNSeP. e,f, Benchmarks on BBBC048, with two different 770 
classification tasks. Performances reported by the original paper are shown with dotted red 771 
lines. Error bars represent the mean ± SD of fivefold cross-validation results. 772 
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 774 

 775 
Fig. 4 | Profiling with Microsnoop on fully-imaged images. a, Pipeline. (i) Cell 776 
segmentation algorithm is conducted on the easiest channel (such as the nucleus channel) 777 
of the multi-channel fully-imaged image, then the cell region for each single cell is 778 
computed and cropped. (ii) Multi-channel single-cell images are processed as Fig. 3a, and 779 
(iii) the output single-cell level embeddings are aggregated to obtain the fully-imaged 780 
level image representations. b, Benchmark on LIVECell. c, Benchmark on TissueNet. 781 
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 783 

 784 
Fig. 5 | Profiling with Microsnoop on batch-experiment images. a, Schematic of multi-785 
well plates in a drug screening experiment containing negative control wells and different 786 
treatment wells set in each plate. b, Batch correction on fully-imaged level 787 
representations. c, Feature aggregation on fully-imaged level embeddings to obtain 788 
treatment level image representations. d,e, Benchmark on BBBC021, with different 789 
evaluation metrics. 790 
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 792 

 793 
Fig. 6 | Joint use of Microsnoop and MUSE. a, Pipeline. Image modality data is first 794 
processed by Microsnoop, then PCA is performed on the output representations to reduce 795 
feature dimensionality. Finally, two modality representations are mixed by MUSE. b, 796 
UMAP visualization of different modality latent spaces on seqFISH+, using two different 797 
image representation methods. Silhouette score was used to quantify the separateness of 798 
clusters. 799 
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Extended Data 801 

 802 
 803 

 804 
Extended Data Fig. 1 | Performance evaluation of Microsnoop trained with different 805 
network architectures. Three representative datasets from seven evaluation datasets were 806 
selected for the early trials: single-cell image task (CYCLoPs), fully-imaged image task 807 
(LIVECell), and batch-experiment image task (BBBC021). The ViT architecture referred 808 
to the MAE, and the classification accuracy for the corresponding dataset was reported. 809 
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 811 

 812 
Extended Data Fig. 2 | Example images of evaluation datasets. Each channel of the 813 
example image was presented for each dataset: a, COOS7 b, CYCLoPs c, CoNSeP d, 814 
BBBC048 e, LIVECell f, TissueNet g, BBBC021. 815 
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 817 

 818 
Extended Data Fig. 3 | Performance evaluation of Microsnoop trained with different 819 
mask ratios. Three representative datasets from seven evaluation datasets were selected 820 
for the early trials: a, Single-cell image task b, Fully-imaged image task c,d, Batch-821 
experiment image task. The mask ratio was set ranging from 0.05 to 0.75, and the 822 
classification accuracy for the corresponding dataset was reported. 823 
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 825 

 826 
Extended Data Fig. 4 | Reconstruction results with Microsnoop on the remaining 827 
evaluation datasets. Each channel of the example images from each dataset were 828 
performed: a, CoNSeP b, BBBC048 c, LIVECell d, TissueNet e, BBBC021. For fully-829 
imaged image datasets (c-e), the processed single-cell images after cell region cropping 830 
were used. 831 
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 833 

 834 
Extended Data Fig. 5 | Example segmentation results of the generalist model for 835 
high-content screening images. Images were shown in pairs, with the original image on 836 
the left and the segmentation results on the right using two visualization methods; the 837 
predicted outlines show the boundary of each cell and the predicted masks mark the 838 
segmented cells with different colors. Three images were selected from the BBBC021 839 
dataset, in which cells were treated with different compounds and presented complex 840 
phenotypes. Cell segmentation was conducted with Cellpose. a, Segmentation on F-actin 841 
channel images. b, Segmentation on corresponding nucleus channel images.  842 
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 843 

 844 
Extended Data Fig. 6 | Different profile modes of fully-imaged images. a, An example 845 
image. b, Example of the rescaling mode, where the original image was patched and 846 
rescaled to the input size (224*224). c, Example of the tile mode, where the original image 847 
is cropped to many 224*224 tiles (ntile) using the make_tiles function from the 848 
cellpose.transforms Python package, and the tile_overlap parameter was set as 0.1. d-g, 849 
Performance comparison of different modes on three evaluation datasets: d, LIVECell e, 850 
TissueNet f,g, BBBC021. The cell region cropping mode (CRC) was tested with different 851 
rescale constant to study the robustness. h,i, Time (h) and memory (i) cost of different 852 
modes. In the case of CRC mode, the memory cost computes the representations of all 853 
single-cell images, rather than the final fully-imaged level image representation. 854 
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 856 

 857 
Extended Data Fig. 7 | UMAP visualizations of latent embeddings from single- and 858 
combined-modality methods. Colors: ground truth subpopulation labels in simulation. 859 
Cluster accuracy is quantified using the adjusted Rand index (ARI). 860 
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