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Abstract 18 

Post-genomic implementations have expanded the experimental strategies to identify elements 19 
involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is 20 
to compare their results with those from established methodologies, such as the classic methods of 21 
molecular biology used to characterize transcription factor binding sites, promoters, or transcription 22 
units. 23 

In the case of Escherichia coli K-12, the best-studied microorganism, for the last 30 years we have 24 
continuously gathered such knowledge from original scientific publications, and have organized it in 25 
two databases, RegulonDB and EcoCyc. Furthermore, since RegulonDB version 11.0 (1), we offer 26 
comprehensive datasets of binding sites from chromatin immunoprecipitation combined with 27 
sequencing (ChIP-seq), ChIP combined with exonuclease digestion and next-generation sequencing 28 
(ChIP-exo), genomic SELEX screening (gSELEX), and DNA affinity purification sequencing (DAP-29 
seq) HT technologies, as well as additional datasets for transcription start sites, transcription units and 30 
RNA sequencing (RNA-seq) expression profiles.  31 

Here, we present for the first time an analysis of the sources of knowledge supporting the collection of 32 
transcriptional regulatory interactions (RIs) of E. coli K-12. An RI is formed by the transcription factor, 33 
its positive or negative effect on a promoter, a gene or transcription unit. We improved the evidence 34 
codes so that the specific methods are described, and we classified them into seven independent groups. 35 
This is the basis for our updated computation of confidence levels, weak, strong, or confirmed, for the 36 
collection of RIs. We compare the confidence levels of the RI collection before and after adding HT 37 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.02.25.530038doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530038


 

 

evidence illustrating how knowledge will change as more HT data and methods appear in the future. 38 
Users can generate subsets filtering out the method they want to benchmark and avoid circularity, or 39 
keep for instance only the confirmed interactions. 40 

The comparison of different HT methods with the available datasets indicate that ChIP-seq recovers 41 
the highest fraction (>70%) of binding sites present in RegulonDB followed by gSELEX, DAP-seq 42 
and ChIP-exo. There is no other genomic database that offers this comprehensive high-quality anatomy 43 
of evidence supporting a corpus of transcriptional regulatory interactions.  44 

1 Introduction 45 

Genomic sciences have strongly affected the landscape of available experimental strategies to identify, 46 
on a genomic scale, a variety of genetic elements, such as transcription factor binding sites (TFBSs) 47 
and their subset of transcription factor regulatory sites (TFRSs), i.e., those TFBSs with regulatory 48 
evidence for a given transcription factor (TF); transcription start sites (TSSs), transcription termination 49 
sites (TTSs), as well as transcription units (TUs), all of these in principle under defined growth 50 
conditions. A major concern in our curation planning was how to deal with what we saw as a tsunami 51 
of data coming from high-throughput (HT) methodologies, and how not to inundate and dilute the 52 
decades of previous work reflected in the corpus of knowledge supported by classic molecular biology 53 
methods. These methods are well appreciated since, as it is well known, they identify individual 54 
elements directly.  55 

As mentioned before, we have been for the last 30 years continuously extracting and gathering in 56 
RegulonDB and feeding into EcoCyc knowledge from original scientific publications about regulation 57 
of transcription initiation and operon organization in Escherichia coli K-12. Although we have for 58 
years curated HT data, only recently, since RegulonDB version 11.0, have we the updated collections 59 
of publicly available genomic HT datasets of binding sites (from ChIP-seq, ChIP-exo, gSELEX and 60 
DAP-seq technologies), of TSSs, TTTs, TUs, and normalized RNA-seq expression profiles (1).  In our 61 
curation work, we have seen that the publications of these types of approaches frequently compare the 62 
obtained results with what is known in RegulonDB (2-17). This motivated us to improve our evidence 63 
codes to enhance the use of RegulonDB as the “gold standard”. Certainly, evidence codes used for 64 
years both in RegulonDB and EcoCyc were not detailed enough to distinguish different methods. For 65 
instance, the terms “binding of purified proteins” or “gene expression analysis” did not specify the 66 
method. 67 

RegulonDB and EcoCyc accelerate access to knowledge. An example is their use to quickly find the 68 
original publications supporting a specific object (for instance, a promoter, or a regulatory site). 69 
However, some objects have different properties that are identified by different methods and which 70 
may have been described in different publications. For instance, well-characterized regulatory 71 
interactions (RIs) require support of the binding of the TF to a specific site in the genome on the one 72 
hand, as well as identifying the function of such a TF site in the activation or repression of the regulated 73 
promoter. However, for years, we offered all references for each object together. It is only recently that 74 
we started to separate the evidence types and the corresponding references from complex objects.  75 

Briefly, the need to easily distinguish objects based on the approach used (i.e., classic vs HT methods), 76 
the fact that RegulonDB sites are used as an index to evaluate the performance of novel methods, and 77 
the desire to improve the precision in literature access to specific properties of complex objects such 78 
as regulatory interactions (RIs) or promoters, motivated us to update the evidence codes behind the 79 
knowledge on the regulation of transcription initiation. The new codes distinguish not only the class of 80 
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methods but also the specific methodology, distinguishing for instance ChIP-seq from ChIp-exo or 81 
gSELEX. We began moving in this direction a few years ago, but it is only in this paper that we report 82 
these changes that improved knowledge representation in RegulonDB, enabling subsequent analyses 83 
such as those shown below. 84 

Once the new evidence types were defined, we reassessed the way they combine to determine the 85 
“confidence level” which, based on the set of evidence types behind an object, assigns it as either weak, 86 
strong, or confirmed. We have mapped the RIs with the HT-TFBSs collections and added the 87 
corresponding HT binding evidence types to the RIs, improving their confidence level. This was 88 
updated in the RegulonDB 12.0 version (18)  89 

Finally, we analyze the contribution of different sources (i.e., classic, HT, and/or computational 90 
methods) by type and by category, to the confidence level of the collection of RIs. 91 

2 Results 92 

A regulatory interaction is one of the major concepts, together with transcription units and operons, 93 
that describe the knowledge of regulation of transcription initiation. As with any piece of knowledge, 94 
it can be described at different levels of detail; at a low level we can say it is the triplet formed by the 95 
TF, the target gene, and the positive or negative effect. The basic requisites to annotate a new RI are 96 
one evidence of a TF binding near the gene start and evidence showing that the presence/absence of 97 
this TF has an effect positive or negative over the transcribed gene, that we call the evidence of 98 
function. The whole transcriptional regulatory network (TRN) at this high level is available as a 99 
downloadable file at https://regulondb.ccg.unam.mx/datasets, in the network interactions file 100 
“NetworkRegulatorGene.”  Note that all other datasets within the group of “Regulatory Network 101 
Interactions” entail this low level of detail.  102 

In contrast, at a high level of detail, knowledge of RIs involves the TF, the effector that affects its 103 
binding and unbinding conformation, the precise TF regulatory binding site, the regulated promoter, 104 
and the effect of the TF when bound, either activating or repressing transcription initiation. It may also 105 
be expanded and include knowledge of the TU that the promoter transcribes and therefore the set of 106 
regulated genes, and finally the growing conditions (experimental and control) where such regulation 107 
takes place. These fundamental concepts originated in the 1960s in the work of Jacob and Monod with 108 
the emergence of molecular biology in microbial organisms (19-21).  Since then, many regulatory 109 
systems have been dissected and their molecular components identified. A group of experts, including 110 
one of us, has recently updated these concepts given the huge expansion of knowledge (22). We did 111 
some modifications, both in RegulonDB and EcoCyc, to conform to these new proposals. One that is 112 
relevant to this work is the distinction between TF binding sites (TFBSs) and the subset of TF 113 
regulatory sites (TFRSs), which are those TFBSs with functional evidence showing they have a 114 
regulatory role. This distinction is particularly relevant since genomic public data for E. coli is currently 115 
dominated by methods that identify TFBSs; only a few of them have evidence of their regulatory role 116 
on target genes or promoters, while most of them lack differential expression of the target genes. 117 
Fortunately, in RegulonDB we have incorporated the distinct notation of TFBSs and TFRSs, following 118 
(22). TFBSs per se do not support RIs. 119 

Incidentally, the current confidence level for RIs is limited to their TF site binding evidence.  This is 120 
no surprise; certainly, our curation and most knowledge provides evidence supporting genetic 121 
elements, with little or close to zero evidence codes and confidence levels for the interactions among 122 
these objects. 123 
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 124 

Figure 1. Evidence types for RIs. Any RI requires evidence for the binding of the TF, together with 125 
functional evidence showing its regulatory effect in transcriptional activity. Evidence types are grouped 126 
in three major categories (classical, HT and nonexperimental), each specific group contains methods 127 
that are not considered independent, and methods of different groups are considered independent 128 
evidence. The algebra of their independent groupings is limited to binding evidence types, which define 129 
the level of confidence as discussed in the main text. 130 

2.1 Updated and new evidence codes 131 

As mentioned before, we wanted to distinguish classic vs HT methods and increase their precision to 132 
match with specific methods. We updated our table of evidence types, and we have modified their 133 
descriptions to explicitly include whether they are experimental methods, either HT or classic methods, 134 
or nonexperimental, such as computational predictions or author statements. We modified the names 135 
of evidence codes to make them more informative. Since some objects are rather complex, particularly 136 
the RIs, we have separated the evidence for binding within sites and the evidence for function within 137 
the RI itself. This also facilitates user searches for specific references whenever they come from 138 
different publications. Each evidence type is associated with a specific code, which we created 139 
intentionally keeping it as short as possible but informative and with prefixes indicating if it is an HT 140 
method.  141 

We added a link in RegulonDB that offers the name, description, evidence code, and confidence level 142 
(see below) of all evidence types, as well as whether they correspond to in vitro or in vivo binding 143 
experiments. See: 144 

https://regulondb.ccg.unam.mx/manual/help/evidenceclassification. Although this table shows 145 
updated codes for RIs, promoters, and TUs, we focus in this paper only on the work around RIs. As 146 
can be seen, the new evidence types added are essentially those that support HT methods.  147 
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2.2 Confidence derived from multiple independent methods.  148 

Years ago, we classified in RegulonDB the different evidence types into either weak or strong, 149 
depending on the confidence that the methods provided to support the existence of a piece of 150 
knowledge. The general principle was that strong confidence comes from experiments that provide 151 
clear physical evidence of the existence of the object. For instance, binding of purified proteins in the 152 
case of a given TF binding to its binding site is considered strong evidence, whereas binding of cellular 153 
extracts is considered weak evidence. A limitation to this initial approach was that even if some objects 154 
are identified by different methods, either in the same paper or through the years in more than one 155 
publication, we did not have a process to add multiple weak evidence types and consider it a strongly 156 
supported object. This is contrary to a fundamental strategy in natural science, whereby further support 157 
to knowledge is gained by different, and ideally independent strategies or methods. We analyzed which 158 
of the different methods can be considered independent because they use different assumptions and/or 159 
different methodological strategies such that their potential sources of error are different (23). It is on 160 
this basis that we built our algebra to combine multiple weak independent sources of methods into a 161 
strong confidence level. We also proposed the combination of independent strong evidence types to 162 
create the new “confirmed” level of confidence.  163 

In the current update, we have kept the same principles and criteria as defined in the 2013 paper and 164 
updated the three levels of confidence, given the increase in evidence types. In the case of classical 165 
evidence, data come from individual experiments focused on individual objects, so they were classified 166 
as strong, except the binding of cellular extracts, which can be considered less specific, because such 167 
experiments do not eliminate the possibility of indirect effects. HT binding evidence types were 168 
classified as weak, since they involve several processing steps, including different bioinformatics 169 
options of methods and thresholds, making the final results more variable and dependent on the specific 170 
set of programs and variables used in their final identification. Thus, processing the same raw data 171 
could potentially result in different final collections of objects; in addition, there is no consensus yet 172 
on a uniform processing pipeline used by the community. Nonexperimental evidence types were also 173 
classified as weak; however, among them only computational analysis can be used in combination with 174 
other evidence types to upgrade the confidence level of the RIs associated, while author statements or 175 
inferences by curators do not allow such an upgrade. As a result, our current types of evidence for RIs, 176 
their classification in groups, and their levels of confidence are summarized in Figure 1. 177 

We assigned each evidence type to one of seven possible groups (Figure 1) and defined the 178 
combinations that upgraded the object confidence level using those group numbers. Evidence types in 179 
the same group are considered to share methodological bias and cannot be combined to upgrade the 180 
confidence level of the associated object, while evidence types between different groups are considered 181 
independent and their combination can upgrade the object confidence level. Currently, only the 182 
evidence types of groups 1 and 2 are classified as strong, groups 4 to 8 are considered weak evidence 183 
types, and the group of “others” do not contribute to confidence (Figure 1). The evidence types 4, 5, 184 
and 8 belong to the category HT; the evidence types from group 4 are considered independent from the 185 
5 and 8 types because the methods are considered different enough, with the first group assayed in vivo 186 
while methods of groups 5 and 8 are identified binding in vitro; the experimental and computational 187 
processing of raw data are also different. gSELEX and DAP-seq are also considered independent of 188 
each other. Based on these groupings, the different evidence for an individual RI can be combined to 189 
increase its confidence level as follows, remembering that any RI must have functional evidence: 190 

1) Two independent binding evidence types with confidence level “strong” (groups 1 or 2) 191 
upgrade the object confidence level to “confirmed”. 192 
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2) Two independent binding evidence types with confidence level “weak” (groups 4 to 7) upgrade 193 
the object confidence level to “strong”. 194 

3) Two independent binding evidence types with a confidence level of “weak” (groups 4 to 7) in 195 
addition to a strong evidence type (group 1 or 2) upgrades the object confidence level to 196 
“confirmed”. 197 

4) Four independent binding evidence types with a weak confidence level (groups 4 to 7) upgrades 198 
the object confidence level to be confirmed. 199 

It is worth mentioning that two independent weak evidence types can upgrade the object evidence to 200 
strong only when the evidence for the effect in regulation is not missing in RegulonDB. Note that 201 
binding of purified protein and site mutation are currently the only evidence types with confidence 202 
level strong. There is no single evidence that supports the level of “confirmed”. Site mutation is 203 
classified as a strong evidence type because it involves the precise identification of the regulatory site 204 
and TF binding since, if modified, even in the presence of the TF, there is no effect on transcription, 205 
either in vivo (24,25), through a reporter gene or by in vitro transcription in the presence or absence of 206 
a determined TF (26). Binding of purified protein includes two similar methodologies: electrophoretic 207 
mobility shift analysis (EMSA) and footprinting, in which the TF binding to a specific sequence target 208 
is probed in vitro. Note that currently only HT methods are sufficient to provide a confirmed confidence 209 
level, as there are three independent HT groups of methods, and in addition some HT methods (i.e. 210 
ChIP-seq) frequently add a computational identification of the binding site enhancing its confidence 211 
level from weak to strong. 212 

The complete set of evidence type combinations that upgrade an RI confidence level can be found 213 
under the “regulatory interactions” of the “Stage II. Assignment of confidence level based on additive 214 
evidence types” section of the webpage  215 

https://regulondb.ccg.unam.mx/manual/help/evidenceclassification. For instance, ChIP-chip, ChIP-216 
seq, and ChIP-exo belong to group 4, whereas gSELEX belongs to group 5. The rule (4/5/3)-S means 217 
that if an RI has evidence from any method in group 4 plus any evidence from group 5, together they 218 
upgrade two weak binding evidence types into a strong confidence level. Remember that  the evidence 219 
of the regulatory effect is always required for an RI.  220 

Once all these updates were in place, we recalculated the confidence levels for the two versions of the 221 
complete set of RIs present in RegulonDB, i.e., the version before and the one after adding the binding 222 
evidence of all binding HT collections. This is presented in the section on the “Anatomy of 223 
Knowledge.” Before that discussion, we explain another implementation that enhances the quality of 224 
knowledge representation of RIs in RegulonDB. 225 

2.3 Three representations of regulatory interactions: TF-promoter, TF-TU, and TF-gene. 226 

A different challenge we have addressed when searching for the best possible way to reflect knowledge 227 
is the need for intelligent ways to deal with partial knowledge. It is not uncommon for a curator to have 228 
to choose the least costly assumption when knowledge is lacking.  For instance, years ago, since by 229 
definition a TU has a promoter, we added the so-called “phantom promoters” to those TUs that had no 230 
characterized promoter. This was eventually eliminated as suggested by Rick Gourse in an EcoCyc 231 
meeting, to avoid confusion by users. Another example illustrating the same problem was how to deal 232 
with the curation of RIs. Historically, we curated RIs affecting a given promoter, even when there was 233 
no such specific evidence. The curator uploaded the RI when the target gene had only one promoter, 234 
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and if the target gene had two or more promoters, the new RI was mentioned in notes of the TU. It is 235 
important to be aware that our curation work has been evolving for more than 30 years now.  In this 236 
long period, we have added new objects, new features, improved our evidence codes, in addition to 237 
many more changes, essentially improving the quality of knowledge representation. 238 

In order to minimize assumptions in our curation process, we defined three levels of description of RIs, 239 
which we use depending on the level of detail of knowledge available. We call these “RI types”: 240 

(1) The most precise knowledge is when there is evidence that identifies the regulated promoter 241 
affected by an RI. Most of these come from classical experiments. In these cases, it is reasonable to 242 
deduce that TUs associated with the regulated promoter are regulated by the new RI. These are RIs 243 
described at the level of “TF-promoter.” 244 

(2) A less detailed description is when the regulated promoter is not known and there is evidence of a 245 
change in expression of a group of adjacent genes on the same strand of the promoter that matches with 246 
an existing TU with or without promoter. In such cases, we associate the new RI to the existing TU. 247 
We call these TF-TU RIs. If there is no previous TU, we create a new TU without a promoter and with 248 
evidence of coexpression and link to it the new RI. 249 

(3) Finally, when the regulated promoter has not been identified and there is evidence of differentially 250 
regulated transcription of the downstream gene(s) from a TF binding site, we create a new RI for which 251 
the target is the gene. We call these TF-gene RIs. 252 

As a result, we currently have three means of adding RIs, depending on available knowledge in 253 
RegulonDB and EcoCyc: TF-promoter, TF-TU, and TF-gene. 254 

The curation of knowledge related to RIs exerted by a TF depends on several rules. The easy case is 255 
when there is not a previously annotated RI with the same TF and gene; in this case, a new RI at the 256 
adequate level is annotated, according to the available knowledge. However, if there is a previous RI, 257 
of any of the three types, and the new and previous knowledge match, the new evidence is added to the 258 
existing RI. This involves an “RI mapping” process (See methods).       259 

As a result of all the modifications described in section II, we have made public RegulonDB version 260 
12.0, which includes the updated collections of RIs, either separated as TF-promoter, TF-TU, or TF-261 
gene. The RI set has each RI with its complete list of evidence types, enabling users to exclude for 262 
instance, ChIP-seq evidence and recalculate an improved gold standard for new ChIP-seq experiments 263 
that prevents evaluating ChIP-seq data with previously performed ChIP-seq data. Users can access in 264 
the downloadable files each type of RI, or the union of all of them. 265 

2.4 Incorporation of HT-binding evidence to the existing RIs 266 

We have been systematically curating RIs for HT published data. It is important to note that until now, 267 
HT-supported RIs were identified only when evidence of binding and function were reported in the 268 
same publication. Certainly, most studies reporting genome-wide TF binding do not report TF-269 
dependent differential gene expression; in some cases, it is assayed for a small set of TF-binding target 270 
genes. An interesting alternative to maximize the use of this data is to map the peaks from the HT-271 
binding datasets to existing RIs in RegulonDB and add such HT-binding evidence to known RIs. We 272 
performed this process, enriching the evidence and increasing the confidence levels for existing RIs, 273 
although many RIs from the HT datasets await their functional evidence. 274 
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The current total number of RIs in RegulonDB is 5,466 from 237 different TFs of which 148 have at 275 
least one HT dataset, 27 putative TFs have an HT-TFBSs dataset but have no RIs in RegulonDB. The 276 
enrichment of binding evidence for 1329 RIs resulted in changes in the RI confidence levels as well as 277 
in the evidence categories from “nonexperimental” to “HT” and from “classical” to “classical & HT” 278 
as discussed below (see Tables 1 and S1). 279 

Table 1. Number of RIs grouped by type and by confidence level 

RI type 
Counts (% 
from total) 

Confidence 
level 

# RIs before 
mapping HT-
TFBSs datasets 

# RIs after 
mapping HT-
TFBSs datasets 

TF-promoter 
3954 (72%) 

Confirmed 772 (19.5%) 1157 (29.2%) 
Strong 1897 (48.0%) 1710 (43.2%) 
Weak 1285 (32.5%) 1087 (27.5%) 

TF-TU 
265 (5%) 

Confirmed 18 (6.8%) 33 (12.5%) 
Strong 210 (79.2%) 197 (74.3%) 
Weak 37 (14.0%) 35 (13.2%) 

TF-gene 
1247 (23%) 

Confirmed 22 (1.8%) 29 (2.3%) 
Strong 789 (63.3%) 786 (63.0%) 
Weak 436 (35.0%) 432 (34.6%) 

The fourth column shows the number of RIs of each subgroup, i.e., the first row corresponds to the number of TF-promoter 280 
RIs with a confirmed confidence level. The percent value is relative to the total number of RIs of the corresponding type, 281 
indicated in the third column. The total counts of RIs grouped by confidence levels are as follows: 1233 (22%) RIs 282 
confirmed, 2706 (49.5%) RIs strong and 1557 (28.5%) RIs weak. 283 

2.5 Anatomy of knowledge supporting the RIs 284 

Given the improved level of detailed updated annotations for all RIs currently available in RegulonDB, 285 
we used them to analyze the internal anatomy of this corpus of knowledge (Tables 1 and S1). We could 286 
expect, for instance, that RIs of the TF-promoter type come mostly from classical methods, and these 287 
probably include the most confirmed interactions. In this section, we show how the data helped us to 288 
answer these kinds of questions. 289 

2.5.1 Classical evidence dominates TF-promoter interactions with confirmed and strong 290 
confidence levels.  291 

First, we wanted to see if RIs of the three different types contribute differently to the confidence level. 292 
Our analysis showed that 72% of RIs belong to the type TF-promoter, 23% are TF-gene, and only 5% 293 
are TF-TU (Table 1, Figure 2A). In terms of confidence levels, currently, RegulonDB (version 12.1) 294 
contains a total of 5,466 RIs, of which 1,219 (22.3%) have confirmed evidence, 2,693 (49.3%) have 295 
strong evidence, and 1,554 (28.4%) have weak support (Table 1).  Combining the confirmed and strong 296 
levels includes almost 70% of all current RIs. 297 
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 298 

Figure 2. RI distribution analysis by type of RI (TF-promoter, TF-TU or TF-gene), confidence level 299 
(C: confirmed, S: strong, and W: weak), and evidence category (classical, HT and nonexperimental) 300 
A) Number of RIs by confidence level for each type of RI; B) Number of RIs by evidence category 301 
for each type of RI. C) Number of RIs by confidence level for each evidence category. 302 

We have classified the binding evidence types supporting RIs (and other objects in RegulonDB) in 303 
three general categories, classical, HT and nonexperimental as shown in Figure 1. RIs can be supported 304 
by combinations of evidence types belonging to different categories, so for our analysis we assigned  305 
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 306 

Figure 3. High detail combinations of binding evidence supporting RIs for each confidence level 307 
confirmed (A), strong (B), or weak (C). The number of RIs with each combination is shown on each 308 
bar. The Y-axis gives the number of RIs of intersections. 309 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.02.25.530038doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530038


 

 

the global categories: “classical”, “HT”, “classical & HT” and “nonexperimental”, the first three can 310 
include or not nonexperimental evidence. For these global categories there are 1640, 1601, 1157 and 311 
1068 RIs, respectively.  RIs with classical evidence (classical + classical & HT) represent a 51.2% 312 
(2797) and most likely this fraction will diminish with time. 313 

As expected, the TF-promoter type is the one with the highest number of strong and confirmed levels 314 
of confidence (Figure 2A); this is no surprise since, as mentioned before, the TF-promoter level is the 315 
one where more mechanistic knowledge of the RI is known. To date, 67.6% (2674) of TF-promoter 316 
RIs have been characterized by classical methods (Figure 2B, Table S1). 317 

TF-gene and TF-TU RIs are mainly supported by HT evidence (Figure 2B), and they have mostly 318 
strong or weak confidence levels (Figure 2A). 319 

The most frequent combination supporting confirmed RIs is “site mutation” (classical evidence) with 320 
“binding of purified protein” (classical evidence) and “computational analysis” (nonexperimental 321 
evidence) (Figure 3A), followed by “binding of purified protein” (classical evidence) combined with 322 
“genomic SELEX” (HT evidence) and “computational analysis” (nonexperimental evidence) (Figure 323 
3A) 324 

Several RIs supported by HT evidence, and without classical evidence, have strong confidence level.  325 
An interesting consequence of the integration of evidence from HT datasets is that now there are RIs 326 
at the confirmed level supported exclusively by HT evidence. In fact, the two most frequent 327 
combinations supporting strong RIs are: 1) “ChIP-seq” (HT evidence) combined with “computational 328 
analysis” (nonexperimental evidence) (Figure 3B), and 2) “binding of purified proteins” (classical 329 
evidence) combined with “computational analysis” (nonexperimental evidence) (Figure 3B). 330 

2.5.2 Most of the weak RIs are supported by nonexperimental or HT evidence. 331 
Most of the weak RIs are supported only by “computational analysis” or by “ChIP-seq” evidence types 332 
(Figure 3C). As mentioned before, HT evidence is considered weak, so RIs supported by only ChIP-333 
seq have a weak confidence level (Figure 3C). There are also some weak RIs supported by classical 334 
evidence types, for example, RIs supported only by the evidence of “binding of cellular extracts”. In 335 
Figure 3C, we can observe that some RIs are supported by different combinations of independent 336 
evidence types; however, they do not become strong, because for these RIs the evidence of function 337 
(effect over expression) is missing, probably due to the historic process of curation. Future curation 338 
will enable us to recover their functional evidence. Note that 100% of nonexperimental RIs are 339 
classified as weak (Figure 2C).  340 

2.5.3 How HT evidence is changing the landscape of knowledge 341 
Taking as reference the current set of RIs with all evidence types associated, if all HT-binding evidence 342 
were deleted, the confidence level would be considerably affected, with decreases of 44.5% for 343 
confirmed RIs and 24.6 % for the strong RIs (Figure 4). 344 

We know that this contribution involves strengthening the evidence of RIs identified by classical 345 
methods and by the identification of new RIs through multiple HT methods, i.e., confirmed and strong 346 
RIs with classical and HT evidence and strong RIs with only HT evidence (Figure 2C). We found that 347 
currently, ChIP-seq is the methodology that contributes the most in increasing the number of strong 348 
RIs (Figure 4). This is no surprise given that this method currently contributes to the largest number 349 
by far of RIs. 350 
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 351 

Figure 4. Confidence level from the RI set distribution, with and without HT-binding evidence. 352 

2.5.4 Use of gold standard datasets to benchmark HT-binding methodologies 353 
The efforts that have been put into evidence curation for RIs using specific codes for different 354 
methodologies, along with their classifications into independent groups, confidence levels, and 355 
categories, now allow us to filter and create subsets of RIs that can be used as a gold standard for 356 
benchmarking HT-binding methodologies. The complete set of RIs is available on the RegulonDB 357 
website under “Releases & Downloads/Downloads/Experimental Datasets/TF-RISet”.  On this page, 358 
users can download the entire set, and there are also two tools available: 359 

1) Browse and Filter: In this tool, filters can be applied to each column to obtain a subset of RIs, 360 
and users can download them accordingly. For example, RIs with a confirmed confidence level 361 
could be filtered. 362 

2) Confidence Level Calculator Tool: In this tool, one or multiple evidence codes can be selected 363 
to be ignored, and the confidence level can be recalculated. 364 

As mentioned, the results of HT methodologies are frequently compared with the RegulonDB data as 365 
a way to validate them. However, these analyses had been performed with the complete set of RIs with 366 
all sorts of evidence supporting them. Now, specific gold standard datasets that exclude specific 367 
sources, to avoid circularity, can be used. 368 

To assess the performance of HT-binding methodologies in recovering sites from classical RIs in 369 
RegulonDB, we considered only the subset of TFs that have at least one classical RI. For each TF we 370 
calculated the percentage of classical RIs that map with the peaks in the corresponding dataset, the 371 
average percentage was calculated for the subset of TFs of each HT methodology. These analyses 372 
include RIs belonging to all three confidence levels: weak, strong, and confirmed. The results are 373 
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depicted in Figure 5. ChIP-seq was the methodology that recovered the highest percentage (76.8 +/- 374 
20.4%) of classical RIs at site level, followed by gSELEX (65.9 +/- 34.5%), DAP-seq (51.0 +/- 35.6%) 375 
and ChIP-exo (33.1 +/- 38.5%). A different form of compare is to calculate percentage of the total 376 
number of classical RIs mapped for the subset of corresponding TFs. Using this approximation, similar 377 
results are obtained with 70.1% of total RIs recovered by ChIP-seq, 51.3% recovered by gSELEX, 378 
28.0% recovered by DAP-seq and 22.6% recovered by ChIP-exo (Supplementary_material_2). 379 

 380 

Figure 5. Comparison of recovered classical RIs by different HT-binding methodologies. For each 381 
methodology, the fraction of recovered RI sites in RegulonDB was estimated and the average for all 382 
TFs and std deviation is shown. The set of TFs is specific to each method given the currently available 383 
datasets gathered in RegulonDB version 12.1 and also limited to those TFs for which there is at least 384 
one classical RI in RegulonDB (For data details see Suppementary_material_2).  385 

Subsequently, to be stricter, the same analysis was performed using the dataset of RIs with a confirmed 386 
confidence level without considering HT evidence. As expected, this subset includes only RIs with at 387 
least one classical type of evidence for binding, the results are depicted in Figure S2. Once again, ChIP-388 
seq was the methodology that recovered the highest average percentage (95.5% +/- 7%) of classical 389 
confirmed RIs, followed by gSELEX (77.6% +/- 35.0%), DAP-seq (57.5% +/- 39.7%) and ChIP-exo 390 
(35.4% +/- 39.1%) (Supplementary_material_3). 391 

3 Discussion 392 

One relevant outcome of this work is the availability of gold standard datasets useful for benchmarking 393 
new methodologies. From the master RI complete table (“Releases & 394 
Downloads/Downloads/Experimental Datasets/TF-RISet”) containing all the evidence types for each 395 
RI, users can make their own combinations. Users can include or exclude specific subcollections based 396 
on the method and/or evidence types and can also select subsets of RIs by filtering by confidence levels 397 
with the tools described before.   398 

As shown, we performed a series of improvements, including more precise evidence codes, the three 399 
types of RIs adequate to capture the diverse cases of partial knowledge, and the updated calculation of 400 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.02.25.530038doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530038


 

 

confidence levels of RIs. These advances enable the analyses performed of the different sources of 401 
knowledge and their contribution to the currently known E. coli TRN. Figure 4 shows how the set of 402 
RIs increases in confidence levels when the HT binding evidence is considered. It is clearly an 403 
illustration of how in the near future HT methods will most likely dominate and expand the knowledge 404 
supporting the E. coli TRN.  Although the comparison is limited to RIs, the same change in the anatomy 405 
of knowledge sources will also include other elements such as TSSs and TUs. 406 

We used as the gold standard the set of RIs with at least one classical evidence and with a confidence 407 
level confirmed to compare the datasets from the different HT methodologies in our current collection. 408 
It is true that this is a preliminary and incomplete comparison given the limited data. Certainly, the 409 
number of datasets and of TFs tested is quite different for each method, the laboratories are also 410 
different, briefly, these datasets were not generated within a pre-planned strategy for a well-defined 411 
comparison. Within these limitations, we can see that the ChIP-seq collection, coming from different 412 
laboratories, shows a significantly higher fraction of recovered sites from RegulonDB compared to the 413 
other three methods. The comparisons remain consistent in the three different ways of averaging the 414 
results as shown in Figures 5 and S2.  This is surprising since as shown before, the largest fraction of 415 
RIs in RegulonDB is still coming from in vitro classical methods, whereas ChIP-seq is an in vivo 416 
methodology.  417 

A set of gold standard data is useful for different fields of biomedical research, but it must be not only 418 
a reference collection but also one that represents data with the highest level of confidence. The 419 
evaluation of data confidence based on independent evidence is commonly used in specific 420 
investigations; for example, quantitative reverse transcription PCR (RT-qPCR) is used to validate 421 
RNA-seq experiments. However, only a few studies have used this approximation to evaluate data on 422 
a large scale (27). In medicine, levels of evidence are assigned to studies based on diverse criteria, such 423 
as quality, with higher levels of quality of evidence entailing less risk of bias (28). Our approach can 424 
be applied to analyze data from curated databases which have structured evidence codes associated 425 
with objects, such as BioGRID database (29), or that can be applied to other cellular processes from E. 426 
coli to determine, for example, which are the best-characterized metabolic pathways, based on data 427 
from EcoCyc. 428 

The different improvements discussed in this paper enable us to incorporate HT-generated knowledge 429 
without “diluting” the valuable fraction of knowledge supported by classical molecular biology 430 
methods, since it is easy to dissect subsets based on their supporting methods. As shown with RIs in 431 
this paper, we will move to adequately combine classical and HT methods for TSSs and TUs and 432 
update what constitutes one of the best-characterized TRNs of any microbial organisms, which is also 433 
likely the best computationally represented corpus of knowledge of gene regulation. 434 

Methods 435 

3.1 Updates in RegulonDB  436 

Evidence update: In RegulonDB version 12.1, we made important evidence-related changes, including: 437 
1) Evidence code. The evidence codes were made more informative, i.e., BPP was changed to EXP-438 
IDA-BINDING-OF-PURIFIED-PROTEINS. 2) Evidence confidence levels. Evidence types were 439 
classified as “weak” or “strong” depending on whether they provided physical and direct proof of the 440 
existence of the object or interaction  441 

Object confidence level update: The confidence level for each RI, promoter, and transcription units 442 
was calculated and updated using the linked evidence and the additive evidence. The confidence level 443 
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assignment to RIs is described below; we followed the same principles for the other objects. These 444 
changes are reflected in the RegulonDB interface as well as in the downloadable datasets. 445 

3.2 Input for RIs. 446 

The analysis was done using RegulonDB version 12.1 synchronized with Ecocyc version 27.0. In this 447 
version, the downloadable text file for Regulatory Interactions was made available and also the 448 
evidence catalog file. The formats and descriptions of these files are available at 449 
https://github.com/regulondbunam/download-data-files. 450 

3.3 Confidence level assignments to evidence types and to RIs 451 

The confidence levels were assigned to RIs by a process involving two stages: 452 

Stage I. Each single evidence type was classified into weak or strong, as described in section 2.2.  453 

Stage II. Assignments of confidence levels to RIs were based on the set of their evidence types. 454 

In this stage, we use the concept “additive evidence,” which in previous versions was called “cross-455 
validation.” As we proposed a while ago, Weiss et al. (2013) (23), the confidence level of a biological 456 
entity depends on the combined evidence derived from mutually independent methods. 457 

We grouped methods that could have similar sources of false positives. This resulted in seven 458 
independent evidence groups (Figure 1). The combinations of evidence groups that upgraded the RI 459 
confidence levels were defined based on the four rules mentioned in section II.2. We call these 460 
combinations additive evidence, which define the final level of confidence assigned to each RI. The 461 
complete set of group combinations that upgraded RI confidence levels can be found under the 462 
“regulatory interactions” of the “Stage II” section of the webpage: 463 
https://regulondb.ccg.unam.mx/manual/help/evidenceclassification. 464 

3.4 Access options for users 465 

Although it is well known that RegulonDB contains the comprehensive collection of experiments 466 
performed through decades of classic methodologies, users must be aware that we already have 467 
incorporated evidence from HT methods. 468 

The current publicly available RegulonDB offers downloadable datasets grouping collections of 469 
objects in https://regulondb.ccg.unam.mx/datasets. The first option offers the “RIset” which contains 470 
all the evidence types for binding and function of RIs, in columns 21 and 22 respectively.  These can 471 
be used to filter and extract, for instance, the subcollection supported only by classic methods. The 472 
same strategy could be used to select RIs supported by a specific evidence type. Users can also 473 
subselect RIs based on the confidence level, or on the different groups of methods, as described in 474 
Figure 1. Furthermore, users may define their own rules and categories of different levels of confidence 475 
and use the whole collection of evidence types to classify each individual RI in a new classification of 476 
confidence levels.      477 

All scripts and computational processes built to generate the data and analyses presented in this paper 478 
are publicly available and can be found at https://github.com/PGC-CCG/supplementary-479 
material/tree/master/gold-standard 480 

3.5 Analysis of the current set of RIs 481 
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The analyses of the anatomy of RI knowledge presented here were performed using R (2022.06.23, 482 
version 4.2.1), Rstudio (2022.07.1, Build 554), and the ggplot2 (version 3.4.0) library.   483 

3.6 Mapping collection of TFBSs-HT to TFRSs from RegulonDB. 484 

The collection of HT TFBSs contains four subcollections: DAP-seq, ChIP-seq, ChIP-exo, and gSELEX 485 
(1). In order to make these collections comparable among them and with RegulonDB TFRSs, multiple 486 
steps were implemented that together constituted what we call “mapping,” in this case mapping of HT-487 
binding data with known sites. This mapping involves:  488 

3.6.1  Uniformization of the genome coordinates for all datasets.  489 
The coordinates of the DAP-seq datasets were published using the last genome version of the E. coli 490 
str. K-12 substr. MG1655 (U00096.3), so they were not modified. The ChIP-seq, gSELEX, and ChIP-491 
exo datasets with coordinates in the past genome version (U00096.2) were updated to version 492 
U00096.3. The corresponding Scripts are found in the github indicated 493 

3.6.2 To map the RegulonDB RI set with peaks from the HT-TFBSs subcollections. 494 
A program in Python was implemented that compared each RI binding site with each peak 495 
corresponding to the same TF.  A match is assumed when the RI site coordinate is within the region 496 
covered by the HT peak.   497 

When a match between an RI and the HT data is found, the evidence of the corresponding HT-methods 498 
is added to the corresponding RI. This process is executed in each RegulonDB release. Scripts are 499 
found in the github as mentioned. 500 

3.7 HT-binding methodology efficacies in recovering sites from classical RIs in RegulonDB 501 

For the comparison of ChIP-seq, ChIP-exo, gSELEX, and DAP-seq, the RIs set was mapped to the 502 
complete collection as described before. The fraction of RIs with at least one piece of classical 503 
evidence that were recovered by each method for each TF was then calculated. TFs in each collection 504 
with zero RIs featuring at least one classical evidence were excluded from this analysis. The same 505 
algorithm was applied to determine the proportion of RIs with confirmed confidence levels without 506 
considering HT evidence in the calculation. 507 

3.8 Resource Identification Initiative 508 

To take part in the Resource Identification Initiative, please use the corresponding catalog number 509 
and RRID in your current manuscript. For more information about the project and for steps on how to 510 
search for an RRID, please click here. 511 
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