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Abstract
Context:  Protein-protein  interaction  (PPI)  is  a  key  component  linked  to  virtually  all  cellular
processes. Be it an enzyme catalysis  (‘classic type functions’ of proteins) or a signal transduction
(‘non-classic’),  proteins  generally  function  involving  stable  or  quasi-stable  multi-protein
associations. The physical basis for such associations is inherent in the combined effect of shape
and electrostatic complementarities (Sc, EC) of the interacting protein partners at their interface,
which provides indirect probabilistic estimates of the stability and affinity of the interaction. While
Sc is a necessary criterion for inter-protein associations, EC can be favorable as well as disfavored
(e.g., in transient interactions). Estimating equilibrium thermodynamic parameters (∆Gbinding, Kd) by
experimental means is costly and time consuming, thereby opening windows for computational
structural  interventions.  Attempts  to  empirically  probe  ∆Gbinding from  coarse-grain  structural
descriptors  (primarily,  surface  area  based  terms)  have  lately  been  overtaken  by  physics-based,
knowledge-based  and  their  hybrid  approaches  (MM/PBSA,  FoldX  etc.)  that  directly  compute
∆Gbinding without involving intermediate structural descriptors.

Methods:  Here  we  present  EnCPdock (www.scinetmol.in/  EnCPdock  /  ),  a  user-friendly  web-
interface for the direct conjoint comparative analyses of complementarity and binding energetics in
proteins. EnCPdock returns an AI-predicted ∆Gbinding computed by combining complementarity (Sc,
EC) and other high-level structural descriptors (input  feature vectors), and, renders a prediction
accuracy comparable to the state-of-the-art. EnCPdock further locates a PPI complex in terms of its
{Sc, EC} values (taken as an ordered pair) in the two-dimensional Complementarity Plot (CP). In
addition, it also generates mobile molecular graphics of the interfacial atomic contact network for
further  analyses.  EnCPdock  also  furnishes  individual  feature  trends  along  with  the  relative
probability  estimates  (Prfmax)  of  the  obtained  feature-scores  with  respect  to  the  events  of  their
highest observed frequencies. Together, these functionalities are of real practical use for structural
tinkering  and  intervention  as  might  be  relevant  in  the  design  of  targeted  protein-interfaces.
Combining all its features and applications, EnCPdock presents a unique online tool that should be
beneficial to structural biologists and researchers across related fraternities.   

Keywords: protein-protein  interactions  (PPI),  complementarity,  Complementarity  Plot  (CP),
binding free energy (∆Gbinding), support vector regression machines, Feature Trends, EnCPdock
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1. Introduction

A host of biological processes thrives on the efficacy of protein-protein interactions (PPI)
ranging from agglutination reactions to aggregation-based processes initiating the immune response
cascade  [1].  It  would  be  of  fundamental  biophysical  value  to  be  able  to  find  the  determining
premise between the dynamic interplay of different forces sustaining proteins in their bound forms
and  their  differential  affinities  –  recorded  by  skill-intensive,  time-consuming  and  expensive
experimental techniques. These experimental studies (so called, solution assays) are mostly in vitro,
offering only a reduced representation of the system (dilute solutions) [2], unable to mimic the real
biological context of the complex cellular milieu; whereas, in vivo crowding studies are few and far,
and,  even  in  them,  cellular  complexity  can  not  be  attained  [2]. Some  of  these  experimental
techniques (e.g., fluorescence spectroscopy, surface plasmon resonance etc.) are again indirect [3–
5], and, even direct calorimetric methods [6] are known to have their own limits of accuracy. 

The wealth of high resolution experimental structural data harbored for these PPI complexes
in the PDB [7] offers the basis of structure based thermodynamics – one unmet goal of which is to
be able to predict affinities (in terms of either Kd

1
 or  ΔGGbinding

2) of inter-protein associations with
enough accuracy [8], directly from 3D atomic coordinates. In the course, the complex interplay of
physicochemical principles (covering different local and non-local forces) underlying inter-protein
association is  also expected to  be (at  least,  partially) unraveled and expressed in terms of bio-
energetic  estimates (Tm,  ΔGH, TΔGS,  ΔGG etc.).  Besides,  one direct  application of  binding affinity
determination is,  of course,  to  serve the design and discovery of novel  therapeutics and to aid
mutagenesis studies.  Combining kernels involving multiple layers with different regressor models
such as Support Vector Machines (SVM), Ordinary Least-Squares Regressor (OLSR) and Random
Forest Regressor (RFR) have been able to even extend the prediction of protein affinity directly
from primary sequences of the binding partners [9] in absence of known 3D structures.

Computational prediction of protein binding affinities dates back to the days of  accessible
surface area measures (e.g., ΔGASA) [10] only attaining a modest correlation of r=–0.16 [11] with
experimental binding free energy (ΔGGexp) even for the rigid complexes. Subsequent performances of
different approaches, however have followed an ascending trend over time, till the current era of the
sophisticated ‘affinity scores’ [11]. These mostly AI-trained scores are certainly preferred among
affinity predictors due to their implicit ability to meticulously absorb any factor affecting PPIs (fed
in  as  input  feature  vectors)  and  the  flexibility  of  using  empirical  data  instead  of  a  fixed  or
predetermined function.  The highest reported correlation (to the best of our knowledge) among
these affinity  scores  (with ∆Gexp)  has been r=-0.73  [8],  recorded on a  standard protein affinity
benchmark [12], by a linear regression model trained on ‘inter-residue contact (IC)’ descriptors of
affinity, categorized based on their residue hydrophobicities [13]. 

Among non-AI approaches, there are semi-empirical, force-field based and hybrid energy
functions  which  can  be  broadly  classified  into  Physical  (PEEF),  Statistical  (SEEF)  [14] and
Empirical (EEEF) [15] Effective Energy Functions. While PEEF and SEEF respectively are purely
physics- (or, force field) and purely knowledge- based approaches (analogous to two independent
orthogonal vectors in a vector-space), EEEF (much like their resultant) provides a mean to combine
them with empirical energy terms scaled to better fit with experimental stability estimates [16]. For
example, one of the most popular modern-day energy functions, FOLDEF (parameterized on a large
1000-mutation database)  [17] is  empirical  in  nature and was initially  procured from a ‘folding
pathway predictor’ in proteins (FOLD-X) [18] that implemented a combination of PEEF and SEEF

1 Dissociation constant 
2 (Gibbs) Free energy of binding 
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terms; and, critically pointed out that the key to the improved prediction  required elimination of
side-chains with high B-factors and explicit consideration of water molecules in the protein cavities
[15]. Among other approaches, are MM/PBSA3 and/or MM/GBSA4 methods (widely employed in
protein-protein/drug  interactions  [19])  which  are  based  on  integrating  energy  contributions
originated  from  different  types  of  interactions  and  molecular  groups,  and,  have  found  better
feasibility than energy perturbation methods for their lowered costs [20], and, also perhaps for their
specialized ability to identify near-native binding modes in PPIs [21]. 

Non-covalent  interactions  persisting within proteins  (common in  context  to  binding and
folding  [22]) can broadly be classified into short range Van der Waals forces (packing) and long
range electrostatic forces (Hydrogen bonds, salt-bridges, charge-dipoles etc.), together, implicitly
coupled with solvent effects (hydrophobic interactions and entropic costs). Complementarity is one
concept that have been able to bridge the gap between binding and folding in proteins [23] taking
account of all aforesaid features under one big umbrella. Categorically speaking, the very physical
basis for macro-molecular (e.g., protein – protein) binding is inherently implicit in the dual nature
of complementarity in shape and surface electrostatic potentials {Sc, EC} of the interacting macro-
molecular  (e.g.,  protein)  surfaces  [24].  Together,  as  part  of  the  Complementarity  Plot  (CP) for
docking (CPdock) [25], they provide indirect probabilistic estimates of the stability and affinity of
the interaction [26]. Naturally, they are chosen as the first two input feature vectors in EnCPdock.
Both, Sc and EC are surface-derived measures [27,28] and offer high-level of sophistication in the
structural  description  of  the  (target)  complexes.  Moreover,  the  choice  of  both  Sc,  EC as  input
feature vectors accounts for both local (Sc) and non-local (EC) nature of complementarity of the
interacting protein partners (at their interface). The shape of both the molecular partners should be
such that the side-chain atoms be engaged in complementary interlocking at  the interface for a
feasible interaction  [23,27]. Thus, an elevated Sc threshold (Sc>0.55, non-rigid  [26]) serve as a
necessary criteria for inter-protein [27,29–31] binding with extended surface overlaps [1]. This has
merited the common use of shape complementarity measures as primary screening filters in many
docking scoring algorithms/pipelines  [6,21].  In parallel, favorable electrostatic interactions at the
interfacial protein surfaces appreciably stabilizes them in their bound form [28]. Hence the desired
anti-correlation  of  surface  electrostatic  potentials  (hallmark  of  elevated  EC  values)  between
interacting (protein) surfaces should appreciably stabilize the complex [33,34]. Over the years, the
use of EC [28] has thus also found its scope in several computational endeavors, e.g., in docking
[24,25], homology modeling, structure validation etc [35]. However, sub-optimal, even negative EC
values (i.e., unfavorable electrostatics) between the interacting protein surfaces have been recorded
in ~20% of all binary PPI complexes  [32], often compensated by a really elevated geometric fit
between the interacting surfaces. These unfavorable electrostatic interactions often map to transient
interactions [26,36], serving as molecular / conformational switches. Consequently, EC serves as a
secondary or sufficient criteria for protein-protein interactions [26]. 

The  current  paper  presents  a  unique user-friendly web-interface,  namely,  EnCPdock
(www.scinetmol.in/EnCPdock/)  that  allows  direct  conjoint  comparative  analyses  of
complementarity as well as binding free energetics of PPI complexes. An AI-predicted ΔGGbinding is
returned by EnCPdock, determined by combining complementarity (Sc, EC), surface area estimates
and other high-level structural descriptors taken as input feature vectors.  In addition, EnCPdock
returns the usual mapping of the binary PPI complex in the Complementarity Plot (as in CPdock
[25]). The detailed applications of the Complementarity Plot (with different built to meet different
purposes: either {Sc, EC}: overall [25] or {Sm, Em}: residue-wise [23,35]) have been demonstrated
across several publications in the past  [23,25,26,35–37] spanning from homology modeling  [35],

3 Molecular Mechanics combined with Poisson–Boltzmann electrostatics and accessible surface area estimates

4 Molecular Mechanics combined with Generalized Born electrostatics and accessible surface area estimates
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docking scoring and optimization  [36,38] to protein, epitope and interface design  [26,37,39].  In
context to the current application, EnCPdock, indirect probabilistic stability and affinity estimates
of an input (docked / bound) PPI complex are first procured by CPdock in terms of its {Sc, EC}
values (taken as an ordered pair), mapped onto one of the three probabilistic regions (‘probable’,
‘less probable’, ‘improbable’ – analogous to ‘allowed’, ‘partially allowed’, ‘disallowed’ regions of
the legendary Ramachandran Plot [40,41]). Over and above, the current web-interface (EnCPdock)
goes  deeper  into  protein  binding  energetics  and  predicts  the  actual  free  energy  of  interaction
(ΔGGbinding) using a non-linear support vector regression (SVM) machine trained on a collection of
wisely chosen high-level  structural descriptors.  As a free energy predictor,  EnCPdock performs
comparable to the state-of-the-art on standard experimental benchmarks – as revealed by multiple
independent validations. 

In addition, EnCPdock also generates mobile molecular graphics of the interfacial atomic contact
network and returns the contact map for further analyses. Together, this provides a direct visual and
analytical platform to identify specific native interactions (contacts) contributing to the binding and
their persistence or transience in a library of mutants. EnCPdock also furnishes individual feature
trends  along with the  relative  probability  estimates  (Prfmax)  of  the  obtained feature-scores  with
respect to the events of their highest observed frequencies – together, which presents a handy, first-
hand tool for the targeted design of protein interfaces (or, dockable peptides), helping investigators
to  pinpoint structural defects, irregularity and sub-optimality – which would, in turn, aid in the
subsequent  re-design. Combining all  its  features  and applications,  EnCPdock presents a  unique
online  tool  that  should  be  beneficial  to  structural  biologists  and  researchers  across  related
fraternities.   

2. Materials and Methods
2.1. Datasets

            The primary database was built from scratch for training and cross-validation of EnCPdock.
To that end, first, protein binary complexes were collected from the Protein Data Bank (PDB) using
its advanced search options with the following culling criteria: 

i) Each target molecule must be a protein-protein dimer complex (homo- and hetero-dimers)
and not a single protein.

ii)  All  atomic  models  must  be  determined  either  by  X-ray  crystallography  or  by  cryo
Electron Microscopy.

iii) All structures had to have a resolution of ≤ 2Å.
iv) None of the structures had RNA/DNA chains.
v) For X-ray structures, they had to have a R-observed ≤ 0.2.
vi) None of the structures contained large prosthetic groups or co-factors (i.e., a non-protein

chemical component with MW > 200 Da), e.g., proto-porphyrin rings, NADP, acetyl CoA, etc.
vi) Each complex should have had at least one residue coming from each partner at their

interface buried upon association. 
This  led  to  6658 structures  (asymmetric  units)  which  got  further  reduced to  3200 non-

redundant binary PPI complexes upon implementation of a sequence identity cutoff (in NW-align:
https://zhanggroup.org/NW-align/)  of  no  more  than  30% between  any two  receptor  chains  and
separately for any two ligand chains. The PDB IDs along with the corresponding chain IDs of
receptors  and ligands of PPI complexes pertaining to the final  training dataset are to be found
enlisted in Dataset S1, Supplementary Materials.

For  independent  validation  purposes,  firstly, all  binary  PPI  complexes  (entirely  non-
overlapping to the training dataset) were culled from the updated version of the Affinity benchmark
(v.2) [11]. All these structures had annotated experimental binding affinities and/or free energies (Kd
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or ∆Gbinding) associated with each entry. Structures with reported suboptimal accuracy in terms of
binding  energetics  (https://github.com/haddocking/binding-affinity-benchmark)  were  further
discarded.  This  led  to  a  final  size  of  106  binary  PPI  complexes  (targets) (Dataset  S2,
Supplementary  Materials)  for  the  1st dataset  used  in  independent  validation.  A second
experimental benchmark for independent validation was assembled by merging the available wild-
type  thermodynamic  data  retrieved  from  Proximate
(https://www.iitm.ac.in/bioinfo/cgi-bin/PROXiMATE/wild.py)  [42] and  SKEMPI  2.0
(https://life.bsc.es/pid/skempi2/) [43] datasets, which together gave us (a second set of) 236 binary
PPI complexes (targets) (Dataset S3, Supplementary Materials).

2.2. Built of EnCPdock
2.2.1. The input feature vectors
Six input feature vectors that are effectively high-level (fine-grained) structural descriptors

of the overall protein complex or the protein-protein interface have been utilized for training of
EnCPdock. The thirteen structural features used to build EnCPdock can be broadly classified into
four groups: (i) complementarity  descriptors (Sc, EC) (ii) accessibility descriptors (nBSA, nBSAp,
nBSAnp, fracI) (iii) interfacial contact network descriptors (Ld, ACI,  slopedd,  Yinterdd,  CCpdd) and
(iv) size descriptors (logN, logasp); and, are defined as follows. 

2.2.1.1. Surface or shape complementarity (Sc)
Qualitatively, the shape complementarity (Sc) function measures the goodness of fit between

two surfaces,  and  in  case  of  PPI  complexes  this  function  serves  as  an  essential  condition  for
binding. For calculation of Sc, van der Waal’s surfaces of two interacting partners (e.g., protein-
protein,  protein-DNA or  residue-residue)  is  generated,  and  for  each  pair  of  points  from  the
respective surfaces, the distance between points and the dot product between the corresponding
normals  are  taken  into  account  [31].  The  elaborate  mathematical  description  of  shape
complementarity function can be obtained from the work of Lawrence and Colman  [27] whose
value ranges from -1 to +1 for an anti- and perfectly correlated surfaces respectively. The Sc value
of a protein-protein interface was computed by the original program ‘sc’ (© Lawrence), distributed
as a part of the CCP4 package [44].

2.2.1.2. Electrostatic complementarity (EC)
The complementarity of charge distribution upon two interacting surfaces is measured by

electrostatic complementarity (EC) function. Similar to Sc, EC is also a necessary determinant for
binding.  For  the  calculation  of  EC,  the molecular  surface is  generated  first  using the  software
EDTSurf [45], and then using the DelPhi software [46] the electrostatic potential on each surface
point at the protein-protein interface was determined. The atoms who have undergone a change
(non-zero) in the solvent accessible surface area (ASA) upon binding, have been identified as the
atoms at the protein-protein interface (the difference in ASA is calculated using NACCESS with a
probe size (radius) trivially set to 1.4 Å, the hydrodynamic radius of water [47]. For the calculation
of  electrostatic  potential,  the  partial  charges  and  atomic  radii  were  assigned  from AMBER94
molecular  mechanics  force  field  [48],  and  the  solution  was  obtained  by  iteratively  solving  a
linearized version of Poission-Boltzman equation (employing DelPhi). Similar to Sc, EC value also
ranges from -1 to +1, where approaching the value 1 signifies the anti-correlation of electrostatic
potentials between two interacting surfaces, and negative EC implies unbalanced electric fields at
the interface.

2.2.1.3. Normalized buried surface area (nBSA)
Although Sc and EC are essential measures for binding, but they do not consider the area or

size of the interface of PPI complexes.  So,  in  order to  incorporate  that  feature,  two additional
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measures have been taken into account. For any atom (say, ith atom) at the interface, for which there
is  a  non-zero  change in  the  ASA (as  mentioned previously),  the  buried  surface  area  has  been
calculated using the following formula,

BSA ( i)=ΔASAASA( i)=|ΔASA ASAbound ( i)−ΔASA ASA unbound( i )|                                             (1)

- where  ΔASA ASAbound
 stands for the accessible surface area (ASA) at  the bound state and

ΔASA ASAunbound
 is the ASA at the unbound state.  Now, for the calculation of nBSA, for a protein

complex consisting of two proteins (say, protein A and protein B) the following formula have been
used,

nBSA=

∑
i=1

A

ΔASAASA (i )+∑
i=1

B

ΔASAASA ( i )

∑
j=1

A+ B

ASA( j )

                                                                          (2)

- where ∑
i=1

A

ΔASAASA ( i)  and ∑
i=1

B

ΔASAASA ( i)  are sum over the ΔASAASA  of all the interface atoms

of protein A and protein B, and ∑
j=1

A+B

ASA( j)  is the total ASA of all atoms of protein A and protein

B. For calculation of nBSA, all the interface atoms, irrespective of their polarity have been taken
into account.

Further, considering the polarity of the interface atoms, nBSA has been calculated separately
for polar (N and O) and non-polar (C and H) atoms [10] and the corresponding nBSA have been
called as nBSAp  and nBSAnp respectively.

2.2.1.4. Fractional Interfacial content (fracI)
Similar to nBSA, the fraction of residues buried at the interface of a PPI complex (consisting

of two proteins, say protein A and protein B) have been defined by the following formula,

                        fracI=
N intres

N tot

                                                                                                 (3)

- where Nintres and Ntot are respectively the number of interfacial residues and total number of
residues pertaining to the protein-protein complex. 

In addition to the complementarity  and accessibility based structural  descriptors,  several
precise  network  parameters  have  also  been  included  as  input  feature  vectors.  Given  these  are
essentially binary (receptor – ligand) protein-protein interactions, the resultant PPI networks at the
interconnected interface would necessarily map to bipartite graphs. Importantly, two residues at the
interfaces from each of the partner molecules (receptor and ligand) are connected with a link if at
least one non hydrogen atom from both the residues are within 4 Å from each other. Notably, the
distance cutoff for C-C van der Waal’s contact is 3.8 Å, thus, threshold for formation of a link (i.e.,
4 Å) applied here is reasonably stringent [49,50]. However, after defining the criteria for formation
of an inter-residue inter-chain link, subsequent construction of bipartite network adjacency matrices
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was derived. In connection with these, a few network-based features were designed as described as
below.

2.2.1.5. Link density (Ld)
Let the receptor and the ligand have N1 and N2 interfacial residues in physical contact with

one or more residues coming from the partner molecules for each.  The link density for such a
bipartite network could then be defined as follows,

                 Ld=
N icnt

N 1   ×  N 2
                                                                              (4)

- where Nicnt  is the number of inter-chain inter-residue contacts to have formed at the said
receptor – ligand interface. In short, Ld can be defined as the ratio of the actual number of links to
the theoretical maximum number of links between two chains and, it’s value will range from 0 to 1,
where a complete bipartite graph (i.e., every node of the receptor is connected to every node of
ligand and vice-versa) would hit a value of 1.

2.2.1.6. Average contact intensity (ACI)
As defined in  an  earlier  work  from this  laboratory  in  context  to  salt-bridges  [50],  ACI

accounts for the individual intensities or atomic contact densities of each inter-residue interchain
link to  have formed in a PPI bipartite  network.  To that  end, the actual  number of inter-atomic
contacts [atcon(i)] involved in each (ith) inter-residue interchain link was averaged over all links
[36].

                   
ACI=  

∑
i=1

N icnt

atcon( i)

N icnt

                                                                            (5)

2.2.1.7. Degree distribution profile-based features
        Degrees of each node constituting these PPI bipartite networks were computed from their
corresponding (unweighted) 1-0 adjacency matrices and their normalized frequency distributions
were plotted in a log10-scale for both axes. Given their characteristic power law distributions, the
obtained points in these log-log plots for each graph would follow linear relationships. To that end,
a linear least-squares fitting was performed on the obtained points (for each graph) from which the
slope (slopedd), the Y-intercept (Yinterdd) and the Pearson’s correlation coefficient (r) value between
the observed (Yobs) and the expected abscissa (as in, Yexp = slopedd.Xobs + Yinterdd) coming from
the plotted points were analytically determined. The r value (let’s call it CCpdd) between Yexp and
Yobs [r (Yexp,Yobs)] were determined using the well-known relation [51],

                          CCpdd=r (Y exp , Y obs )=
cov (Y exp , Y obs)

σ (Y exp)σ (Y obs )
                                                             (6)   

- where  cov is the co-variance between the mentioned parameters within the bracket and σ is the
variance of each parameter.
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2.2.1.8. Features based on comparative and absolute size of the interaction partners
The chain length of each interacting molecular partner (lenR: receptor, lenL: ligand) was

taken as the estimate of their size. Two features were then defined based on these chain lengths as
follows,

                      logN=log10( lenR+ lenL) ; log asp= log10(
lenR
lenL

)                                       (7)

The second of these terms can be considered analogous to the aspect ratio (in log scale) of a crystal
or  a  nano  particle.  For  identical  sizes  of  receptor  and  ligand  (e.g.,  homo-dimeric  biological
assemblies)  logasp would  hit  a  value  of  0.  The  primary  purpose  of  taking  logarithm for  these
(comparative and absolute) chain length features was to render values in a desired (low numeric)
range comparable to that of the other SVM input feature vectors.

2.2.2. Training & cross-validations
A Support Vector Regression module (as in SVMlight [52]) have been used to train EnCPdock

in a 10-fold cross validation scheme with a radial basis function (RBF) kernel – the details of which
are as follows in the following sections. 

 
2.2.2.1. Cross validation test-set and parameter optimization

 All the 3200 PPI complexes were divided into ten equal parts, nine of which were utilized
for each round of training, while the remaining ones were used as the test set in that round. This was
performed for each of the ten parts to get predictions for the whole set. Three parameters, namely,
C,  γ  and ɛ  have  been optimized using  a  grid search method to  obtain  a  maximum correlation
(determined  by  Pearson’s  correlation  coefficient,  r)  between  target  function  and  the  predicted
output. Among the three parameters, C is the penalty value associated to the training error (for large
and small value of C, a smaller and larger margin were accepted respectively if all the training
points were correctly predicted); RBF γ-value defines how far the influence of a single training
example reaches (low value indicates far and high value indicates close); and ɛ is the distance of the
target function from the actual value within which no penalty is associated in the training loss
function [53]. Optimization of C, γ and  ɛ was performed within the ranges 1.0 to 5.0 (in steps of
0.5), 0.01 to 2.0 (in steps of 0.01) and 0.1 to 1.0 (in steps of 0.05) respectively.

2.2.2.2. Target function and predicted output
During both the training and cross-validation procedure, ΔGGbinding was predicted by FoldX

[54] which is a well-accomplished empirical force-field based method parameterized by empirical
data  from  actual  protein  engineering  experiments  [55] and  is  known  to  return  near-native
binding/affinity estimates. The FoldX platform is based on a 'fragment-based strategy' which uses
fragment  libraries  in  an  analogous  way  to  the  most  fascinating  'fragment  assembly  simulated
annealing' approach for protein structure prediction credited to David Baker and Rosetta [56]. The
standalone (C++ with boost library) version (v.4) of FoldX (http://foldxsuite.crg.eu/) was used. The
FoldX – derived ΔGGbinding (let’s call it ΔGGFoldX) was normalized by the number of interfacial residues,
Nintres (let’s call it ΔGGFoldX_norm denoting average interfacial contribution to binding free energy) for all
the PPI complexes. This ΔGGFoldX_norm was suitable numerically to be used as the target function in the
training of the free-energy predictor (in the EnCPdock web-interface) which naturally returned the
predicted output interpretable in terms of the average interfacial contribution (i.e., normalized) to
ΔGGbinding (let’s call it, ΔGGEnCPdock_norm). The normalization (of the target function) also ensured similar
numerical ranges for both the target function (TF) and the predicted output (PO). In the final output
of the EnCPdock web-interface, both average interfacial (i.e., normalized) and total binding free
energies were returned. 

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.02.26.530084doi: bioRxiv preprint 

http://foldxsuite.crg.eu/
https://doi.org/10.1101/2023.02.26.530084
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2.2.3. Support Vector Regression (SVM) training & parametrization
To train EnCPdock, a Support Vector (regression) Machine (as in SVM light  [52]) have been

implemented using a 10-fold cross validation scheme with a Radial Basis Function (RBF) kernel.
The popularity and efficiency of SVM methods in pattern recognition has been evident ever since
its introduction [57]. Among different SVM models, again, RBF kernels serve as optimal predictors
when implemented with appropriate regularization, minimizing estimation and approximation errors
[58]. SVM is built with the rare abilities (for example) to (i) produce an unique solution, (ii) remain
robust to outliers, (iii) easily update the decision model, and, (iv) allow combination of classifiers
trained on different data types by applying probability rules  [57]. SVM is easy to implement (by
virtue  of  standalone  packages  like  SVMlight [52])  and  less  computationally  demanding  [57,59].
Motivated by these factors as well as the successful combined use of the SVM-RBF combo across
many problems in computational biology [9,32,60–62] inclusive of closely related ones like protein
docking scoring and sequence based affinity prediction [9,32],  the ‘SVM-RBF’ combo offered an
automatic first choice in EnCPdock. The RBF kernel ensured a non-linear relationship between the
input feature vectors and the target function (ΔGGEnCPdock_norm). In a SVM classification, for a given set
of n observations given by (x1, y1), …, (xn, yn), predictions are made from the following formula
[63].  

f (x )=sign(∑
i=1

n

y i α i K ( x i , x−b)                                                                                    (8)

- where b is a numeric offset threshold and αi denote the weight of each observation, known
as Kühn-Tucker coefficient. The Kernel function K (xi, x) defines a dot product to transform the
observations from input space to the feature space. Here, we have used a Gaussian Kernel function,
popularly known as an RBF Kernel, given by,

K ( x , x '
)=e−γ||(x− x'

)||
2                                                                                                       (9)

-  where γ is  a parameter  (>0) controlling the width of the Gaussian Kernel.  γ is  a free
parameter  whose  value  can  be  optimized.  Apart  from γ,  two other  free  parameters  have  been
optimized during the SVM training, namely, C and ε. C is a cost parameter which controls the trade-
off between minimizing the number of misclassified samples in the training set and maximizing the
margin width; while ε can be defined as the sum of classification error and the complexity penalty
given by,

ε=
1

2 n
∑
i=1

n

|y i− f ( xi )|+ λ(
ns v

n
)

Γ
                                                                                    (10)

- where the first term is the classification error and, nsv, λ and Γ are number of input feature
vectors, regularization parameter and the penalty respectively. During the SVM training and cross
validation, these three parameters c, γ and ε have been optimized using a grid search method to
obtain  a  maximum correlation  (determined by the  Pearson’s  correlation  coefficient,  r,  eqn.  11)
between target function and the predicted output. As detailed earlier (see section 2.2.2.2, Materials
and Methods), for each individual training cycle, the target function was taken to be ∆GFoldX_norm

while the predicted output was the ∆GEnCPdock_norm for the test set predicted by the rest of the nine
subsets. Thus, for a well-trained predictor, a high correlation should be expected in the performed
cross-validation  between  the  predicted  values  of  ∆Gbinding_norm by  EnCPdock  with  reference  to
FoldX predictions in the same test set. However, a more authentic indicator of the same would be
the recovery of performance of the trained predictor in an independent validation performed on a
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separate dataset of PPI complexes (completely non-overlapping to that of the training set) with their
annotated experimental binding free energies taken as references. 

             r (∆ GFoldX _ norm , ∆GEnCPdock _ norm )=
cov (∆ GFoldX _ norm , ∆ GEnCPdock _ norm )

σ (∆ GFoldX _ norm )σ (∆ GEnCPdock _ norm )
            (11)

                                                                                                                             
To obtain a maximum r value during the training the c, γ and ε were optimized within the

ranges 1.0 to 5.0 (in steps of 0.5), 0.01 to 2.0 (in steps of 0.01) and 0.1 to 1.0 (in steps of 0.05)
respectively.

2.2.3. Evaluation metrics
To evaluate the performance of an SVM model on test predictions, firstly, the number of

true  positives  (TP),  true  negatives  (TN),  false  positives  (FP)  and  false  negatives  (FN)  were
quantified. Based on these measures, the performance of the predictor (EnCPdock) was estimated
by the following evaluation metrices. 

First,  the  actual  positives  and  actual  negatives  that  were  correctly  identified  out  of  all
predicted positives and predicted negatives respectively were determined by the true positive rate
(TPR) and false positive rate (FPR), as defined below. 

                                               TPR=
TP
P

=
TP

TP+FN
                                                             (12)

                                                FPR=
FP
N

=
FP

FP+TN
                                                            (13)

- where P is the total number of positives, consisting of true positives and false negatives
while  N is  the  total  number  of  negatives  consisting  of  false  positives  and true  negatives.  The
positive and negative cases were identified based on various cutoffs spanning the entire range of the
target function (i.e., ΔGGFoldX_norm). Further, the receiver operating characteristics curves (ROC) were
plotted (TPR vs. FPR) and the Area Under the Curve (ROC-AUC) were computed. For a random
predictor, the AUC will exhibit a value of 0.5 and a perfect prediction model would hit a value of
1.0 [64]. In parallel, the balanced accuracy (BACC) score was computed, defined as follows. 

BACC=
1
2
(TPR+TNR )                                                                      (14)

- where TPR and TNR are the true positive rate and true negative rates respectively. TNR
can be defined similar to TPR by the following formula,

TNR=
TN
N

=
TN

FP+TN
                                                                             (15)

To note, since BACC score is the arithmetic mean of TPR and TNR, swapping the definition of
TPR and TNR does not alter the BACC score. 
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3. Results and Discussion
The objective of the current study was to develop an integrated web-interface (EnCPdock)

to analyze complementarity and energetics of protein – protein interactions, serving as a common
conceptual  platform,  that  could  be  of  practical  use  to  researchers  across  the  modern  biology
fraternity.  The  potential  beneficiaries  include  experimental  as  well  as  computational  structural
biologists,  and,  also  other  members  of  the  broad  biological  community  working  with  specific
protein – protein interactions involved in enzyme catalysis, signal transductions and/or other protein
functionalities. The energetics part of EnCPdock has been based on supervised learning, hitting
comparable (if not better) accuracy to predict binding free-energies (∆Gbinding) of PPI complexes
from the knowledge of fine-grained high-level structural descriptors. PPI complexes are probed by
EnCPdock  in  terms  of  its  {Sc,  EC} values  (taken  as  an  ordered  pair)  in  the  two-dimensional
Complementarity Plot (as in  CPdock [25]) evaluating indirect probabilistic estimates of stability.
The uniqueness of our approach lies in the operational credibility of the EnCPdock system, which is
a comprehensible web-interface (www.scinetmol.in/  EnCPdock  /  ) that permits direct, synchronized
comparisons  of  complementarity  and  binding  energies  of  PPI  complexes.  The  performance  of
EnCPdock has been evaluated and authenticated in a two-step validation pipeline: (i) firstly, by a
10-fold cross validation performed on a large non-redundant training set consisting of binary PPI
complexes with structural coordinates alone (irrespective of having experimental references to their
∆Gbinding values) and (ii) backed up by an independent validation performed on one of the latest
non-redundant datasets of binary PPI complexes [11] with recorded experimental ∆Gbinding values.
The  independent  validation  clearly  shows  recovery  of  performance  with  respect  to  the  cross-
validated results – which is comparable (if not better) to the state-of-the-art. In addition, EnCPdock
not only returns the mapping of the binary PPI complex in the Complementarity  Plot  but also
further returns  mobile  molecular  graphics of the atomic contact  network probed at  the protein-
protein interface, along with the detailed lists of weighted inter-residue contacts for further analyses
for interested parties.  

3.1. SVM Training and Cross-validation
As described in the  Materials and Methods (section  2.2.1), thirteen high-level structural

descriptors were taken as input feature vectors to build and train the binding free-energy predictor
in EnCPdock. These features together may be considered to be harboring necessary and sufficient
fine-grained structural details of the PPI complexes. Due to the scarcity of sufficient high quality
experimental binding or affinity data, the training of EnCPdock had to be performed on FoldX –
derived binding free  energies  (∆Gbinding)  [65],  appropriately normalized to  ∆Gbinding_norm (by the
number of interfacial residues [26]) to be taken as target functions for the training set consisting of
3200  non-redundant  high  resolution  PPI  complexes  (targets)  (see  section  2.1,  Materials  and
Methods). Consequently, the normalized binding free-energy values could be interpreted as average
interfacial contribution to the overall binding free energy of the interactions which also matched the
numerical ranges to be effectively used as a target function in SVM regression. Given the near-
native element in FoldX [55], its utilization ensured a sufficiently large dataset for training, scaling
to  those  of  the  modern-day supervised  learning methods  (rather  than  having  to  rely  on  a  few
hundreds of experimental data-points which all we could procure for independent validations). 

In order to implement a rigorous training procedure, a large dataset was needed and chosen
(as described above) and a ten-fold cross validation was performed during the EnCPdock training –
which is a standard technique for training SVM regressors [66–68]. To that end, the whole dataset
was  first  divided  into  ten  equal  parts  (subsets)  yielding  a  statistically  significant  number  of
datapoints (320 PPI complexes) in each subset. The details of the training and cross-validation is to
be found in  Supplementary Note S2.  Finally, a maximum correlation (r) value of 0.745 (Fig. 1)
was obtained between the target function (∆GFoldX_norm) and the predicted output (∆GEnCPdock_norm)
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with a corresponding maximum BACC score of 0.833. The values of training parameters (C, γ and
ε, see section 2.2.2, Materials and Methods) exhibiting the highest BACC score and maximum r
values (Fig. S1, Table S1  in  Supplementary Materials) were then accumulated (closely ranged
between 0.744 to 0.745) and considered for independent validations. The corresponding ROC-AUC
of TPR vs. FPR plots (see section 2.2.3.1, Materials and Methods) were found to be ~0.75 (Fig.
S2  in  Supplementary Materials). For each of the combinations of C, γ and  ɛ   in  Table S1, ten
models were obtained (pertaining to each cross-validation subset) resulting in a total of 90 models
that  demonstrated  excellent  correlations  between  the  target  function  and  the  predicted  outputs.
Thus, a target test PPI complex undergoing EnCPdock predictions will have 90 predicted outputs.
The central tendencies (mean, median, mode) along with maximum and minimum values of these
predictions were studied in great detail. Most distributions were not really symmetric, rather than
varying  from left-skewed,  bi-modal,  multi-modal  to  right-skewed  (Fig.  S3 in  Supplementary
Materials) which led us to opt for the ‘median’ as a better measure of central tendency than mean
or mode – which was set as the final measure for the predicted  ∆Gbinding_norm in EnCPdock. The
finally  selected  90  models  were  then  taken  forward  for  subsequent  independent  validations  to
eliminate the effect of over-fitting that might have occurred during the course of cross-validation.

Figure 1. Cross-validated correlation (scatter) plots. The predicted output of ∆Gbinding_norm from
EnCPdock (∆GEnCPdock_norm) for 3200 PPI complexes (during cross-validation) plotted against their
corresponding average interfacial binding free energies predicted by FoldX (or ∆GFoldX_norm) for two
top-performing training sets trained at particular sets of values for of C, γ and ɛ (values provided in
insets of panels A, B) both of which exhibited BACC scores of 0.833 and r values of 0.745.

3.2. Feature Trends and Contributions 
Numeric  trends  and  contributions  of  individual  features  in  the  overall  cross-validated

performance  of  EnCPdock  were  investigated  in  the  training  dataset  by  (i)  estimating  their
descriptive statistics (mean, standard deviations, relative frequency distributions) followed by (ii)
enumerating  their  (Pearson’s)  correlations  (r)  with  the predicted  ∆Gbinding_norm.  Shape
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Complementarity (Sc),  being a necessary criteria (acting like a threshold filter)  for inter-protein
associations, gave rise to a sharp, narrowly ranged (mildly left-skewed) distribution with a high
mean value (0.73; SD5: 0.07, Table 1) – which, as could be anticipated, is consistent with the short
range  nature  of  (van  der  Waals’)  force  responsible  for  it.  In  distinct  contrast,  electrostatic
complementarity (EC), being resulted from a long range (Coulomb's) force has a much broader
width with only a modest average (0.18; SD: 0.22,  Table 1) in the training dataset. This again is
consistent with the earlier findings that EC can be favorable as well as disfavored in bound protein
complexes [25,32], wherein, the later, less frequent event (in ~20% cases) often signals for transient
interactions  [26].  Other  features  gave  characteristic  distributions,  mostly  tight  and  uni-modal,
sometimes, with a few low-frequency (outlier-like) disjoint borderline modes (Fig. 2). Among all
features, ACI has arguably the thinnest width (or, the sharpest peak) while on the other hand, the
chain-length features, logN and logasp account for large variability in the PPI complexes. 

Table 1. Feature trends in terms of descriptive statistics.  Descriptive statistics are furnished in
terms of mean and standard deviations (within parentheses) for all features. Alongside, the statistics
for the predicted output (∆Gbinding_norm) is also tabulated. 

Features Mean

Sc 0.729 (± 0.069)

EC 0.176 (± 0.219)

nBSA 0.140 (± 0.098)

 nBSAp 0.175 (± 0.128)

nBSAnp 0.204 (± 0.128)

fracI 0.122 (± 0.076)

 Ld 0.151 (± 0.148)

ACI 2.922 (± 0.926)

slopedd -1.633 (± 0.494)

Yinterdd -0.405 (± 0.155)

CCpdd -0.895 (± 0.203)

 logN 2.514 (± 0.244)

logasp 0.456 (± 0.476)

∆Gbinding_norm (kcal.mol-1) -0.215 (± 0.233)

5 SD: Standard Deviations
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Figure 2. Trends of Features in terms of their relative frequency distribution patterns. Relative
frequencies (with respect to the highest observed frequencies for each feature) were computed in the
observed  ranges  (X-axes)  individually  for  all  features  (Panels.  A –  M)  using  kernel  density
distribution functions (MATLAB, v. R2018b) and plotted against the corresponding feature scores.

To analyze the relative contributions of the different features to the overall (cross-validated)
performance  of  EnCPdock,  they  were  first  individually  surveyed  by  correlation  (scatter)  plots
plotted  against  the  predicted  output  (∆Gbinding_norm),  followed  by  recording  their  corresponding
Pearson’s correlations (r). It is perhaps good to note that these correlations are not additive and the
associated signs (+/-) in the correlations simply refer to the directionality of the feature with respect
to the predicted output, wherein, the canceling effect of terms naturally gets nullified during their
training (via the non-linear combinatorial optimization in the Support Vector Regression machine).
Thus,  higher  the  magnitude  of  the  correlation  (irrespective  of  the  sign),  higher  is  the  feature
contribution. Let’s recall that the overall cross-validated performance of EnCPdock has an r-value
of  ~0.75.  Interestingly,  buried  surface  area  based  terms  as  well  as  most  network  parameters
performed particularly well wherein average contact intensity (ACI) and Link density (Ld) had the
best individual correlations (0.51, 0.43 respectively) (Fig. 3). Complementarity based terms showed
an opposite directionality to the predicted output. Sc, being the threshold filter  attained a fairly high
correlation (-0.37), while, the low correlation in EC (-0.16) accounted for the variability in terms of
electrostatic match or miss-match at the interface of the complexes. 
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Figure 3. Feature Contributions in terms of correlation with the predicted output. The Y-axis 
represents the Pearson's correlation (r) value for each feature against the predicted output 
(∆Gbinding_norm), displayed as colored bars. Similar features have been put with nearer colors in the 
color bars. 

3.3. Independent Validations on available Experimental Benchmarks 
To check for any bias (and eliminate) that might have occurred from the training dataset

during  cross  validation,  or,  in  other  words,  to  take  care  of  over-fitting  issues  in  training,  it  is
customary to perform independent validations on datasets, strictly non-overlapping with the training
set.  To  that  end,  we  attempted  to  compile  databases  consisting  of  native  PPI  complexes  with
annotated  experimental  affinity  (Kd and/or  ∆Gbinding)  values.  We  faced  numerous  difficulties
browsing through different published ‘readily available annotated’ datasets (see  Supplementary
Note S1.) to accumulate such complexes with enough number and with the desired accuracy of their
experimental affinities in our repeated web-search. Most databases lacked enough structural (PDB)
information for the interactions as well as wild type affinity data (Kd and/or ∆Gbinding) and was more
populated with mutant thermodynamic data (∆∆Gbinding). 

One of the prime sources, an Affinity benchmark dataset (v.1), once made available was
recently removed from the public domain (https://bmm.crick.ac.uk/~bmmadmin/Affinity/). One of
the significant findings in our study was the discovery of  3 new targets as mentioned in the updated
benchmark,  v.2.114  of  them  were  binary  and  were  already  taken  into  account.   Subsequent
declarations  were  made  with  regard  to  detected  inaccuracies  in  the  dataset
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(https://github.com/haddocking/binding-affinity-benchmark) in terms of the reported experimental
thermodynamic parameters (∆Gbinding and/or Kd) and an upgraded version of the dataset was made
available by incorporating fresh new entries (though accounting for comparatively a lower number
of targets) having the desired accuracy. Together, from earlier [12] and updated versions [69] of the
Affinity benchmark (v.2), 225 PPI complexes were first assembled out of which 46 complexes were
new entries that could be considered fully accurate (https://github.com/haddocking/binding-affinity-
benchmark).

Barring  these  experimental  inaccuracies  and  updates,  these  affinity  benchmark  datasets
(both versions) however ensured sampling of a diverse spectrum of PPI complexes in terms of
biological  functions  (covering  G-proteins,  receptor  extracellular  domains,  antigen/antibody,
enzyme/inhibitor, and enzyme/substrate complexes), as well as in terms of affinities (from low to
high) of the binding partners with Kd ranging from 10-5 to 10-14 M [12,69] and was well categorized
into different classes of comparative difficulty of affinity prediction (rigid body, medium, difficult)
etc.

As a methodology, we had chosen to restrict our calculations strictly to binary complexes6,
also compelled by the fact that EnCPdock was trained on binary PPI complexes (see section  2.1,
Materials  and  Methods).  This  reduced  the  number  of  complexes  to  106  (see  Dataset  S2  in
Supplementary Materials) which have crystallographic resolutions in the range of 1.1-3.5 Å, and
R-factors (working set)  within the range of 0.125 to 0.252. This accumulated set  contained 31
binary complexes out of the new 46 entries. 

During the revision of the manuscript, we looked into the literature and doubled our efforts
to retrieve more available experimental affinity data (with proclaimed accuracy) for protein-protein
binding in an extensive second round of search. A second dataset was thus assembled by merging
the  available  wild-type  thermodynamic  data  retrieved  from  Proximate
(https://www.iitm.ac.in/bioinfo/cgi-bin/PROXiMATE/wild.py)  [42] and  SKEMPI  2.0
(https://life.bsc.es/pid/skempi2/) [43] datasets,  which  together  gave  us  a  second  experimental
benchmark  for  independent  validation  consisting  of  236  PPI  targets  with  crystallographic
resolutions in the range of 1.1-4.4 Å, and R-factors (working set) within the range of 0.125 to 0.321.

To start  with  the  post-prediction  (performance evaluation)  analyses,  ∆Gbinding_norm values
predicted  by  EnCPdock  (let’s  call  them  ∆GEnCPdock_norm)  for  each  of  the  106  and  236  targets
compiling the two filtered independent datasets (I. Affinity benchmark II. SKEMPI+Proximate  –
merged) were plotted separately against their corresponding experimental values (∆Gexp_norm) and
FoldX – derived values (∆GFoldX_norm) [16,17] into two distinct sets of pairwise 2D scatter plots (as a
mean to compare) (Fig. 4, Fig. 5). 

Note, each of the 90 models predicts ∆GEnCPdock_norm for each target, leading to an array of that many
∆GEnCPdock_norm scores for each target. To check the comparative trends among statistical measures
computed from and representative of these 90 values, first, in the first of the two datasets (Affinity
Benchmark:  106  targets),  the  central  tendencies  (mean,  median  and  mode:  ∆GEnCPdock_norm-mean,
∆GEnCPdock_norm-median, ∆GEnCPdock_norm-mode)  and  the  extreme  values  (minimum  and  maximum:
∆GEnCPdock_norm-minimum, ∆GEnCPdock_norm-maximum)  were plotted individually,  twice for each measure,
against  (i)  taking ∆GFoldX_norm and (ii)  ∆Gexp_norm as  benchmarks.  All  statistical  measures led to
similar scatter plots  (Fig. S4 in Supplementary Materials) and similar range of correlation values
(Table  S2  in Supplementary  Materials)  which  ensured  similar  predictive  abilities  of  all  90
models. As reasoned earlier, ‘median’ was chosen as the preferred statistic over the other measures
(see  section  3.1).  In  line  with  that,  the  primary  comparison  was  carried  out  between  the

6 receptor and ligand each consisting of a single polypeptide chain
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corresponding ‘median’ values in both datasets for independent validations (Fig. 4, Fig. 5) while the
other statistical measures were also tested side-by-side in the first (Affinity benchmark) of the two
datasets.  All  these  other  statistical  measures  (∆GEnCPdock_norm-mean, ∆GEnCPdock_norm-mode,
∆GEnCPdock_norm-minimum, ∆GEnCPdock_norm-maximum)  exhibited  correlations  slightly  lesser  than  that  of
∆GEnCPdock_norm-median (Table S2), consistently in both the cases (against ∆Gexp_norm and ∆GfoldX_norm).
This  also validates  the  choice  of  ‘median’ as  the  correct  statistical  measure  (among the  tested
alternatives) which automatically leads to a mapping of ∆GEnCPdock_norm →  ∆GenCPdock_norm-median  in
all subsequent use of the term ∆GEnCPdock_norm.

The  main  purpose  of  carrying  out  these  plots  (side-by-side)  was  to  decipher  if  the
performance of EnCPdock (in terms of the predicted ∆GEnCPdock_norm values) obtained against the
target function taken in training (i.e., ∆GFoldX_norm) is retained (or, if there’s any improvement) when
compared to the corresponding experimental (∆Gexp_norm) values. To that end, in the left, right panels
of these plots (Fig. 4, Fig. 5), ∆GFoldX_norm, ∆Gexp_norm values (both serving as the benchmarks) were
taken  along  the  X-axis  (independent  variables)  respectively  while  the  corresponding  predicted
∆GEnCPdock_norm were taken along the Y-axis (dependent variable). 

Linear least squares fitting was performed (in MATLAB, version R2018b) to each of these
plots  using  perpendicular  offsets.  Any empirical  correlations  between  these  methods  were  first
surveyed  by  visually  analyzing  these  2D  scatter  plots  (and  by  the  linear  least  squares  fitting
performed on them) followed by quantifying the obtained correlations by computing the Pearson’s
correlation coefficients (r)  between them. EnCPdock performed reasonably well  on the Affinity
benchmark consisting of 106 binary complexes giving rise to a correlation of r=0.45 between the
predicted  ∆GEnCPdock_norm  and the corresponding FoldX – derived values taken as the benchmark.
When compared to the actual experimental values (taken as the benchmark), the performance was
not  only  retained  but  in  fact  was  slightly  improved  leading  to  a  correlation  of  r=0.48  with
∆GEnCPdock_norm. 

Figure 4.  Correlation (scatter)  plots  in independent validation -  1.  The  predicted output  of
∆Gbinding_norm from  EnCPdock  (∆GEnCPdock_norm)  for  106  PPI  complexes  (during  independent
validation  –  1:  on  the  Affinity  Benchmark  (v.2))  plotted  against  their  corresponding  average
interfacial binding free energy predicted by FoldX (∆GFoldX_norm) and average interfacial binding
free energy estimated by experimental (calorimetric, spectroscopic etc.) means (∆Gexp_norm), plotted
in panels A and B respectively (with their least-squares fitted lines).
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In the second dataset (SKEMPI+Proximate – merged) consisting of 236 binary complexes,
EnCPdock performed even better with a correlation of r=0.52 between the predicted ∆GEnCPdock_norm

and the corresponding FoldX – derived values (∆GFoldX_norm) taken as the benchmark. In consistency
with the earlier finding (that in the Affinity benchmark), the performance was further improved to
r=0.63 when compared to the actual experimental values (∆Gexp_norm) taken as the benchmark. All
correlations were significant at 99.9% level (as revealed from their corresponding p-values).

It is indeed interesting to note that ∆GEnCPdock_norm (in spite of being trained on ‘near-native’
FoldX estimates) correlates actually better than ∆GFoldX_norm values taken as benchmark (r=0.45,
0.52  for  Affinity  benchmark  (v.2),  SKEMPI+Proximate  –  merged  datasets  respectively)  as
compared to the corresponding ∆Gexp_norm values (r=0.48, 0.63 – in the same order). One plausible
rationale  behind  this  seemingly  non-trivial  finding  is  most  probably  the  use  of  fine-grained
structural descriptors like shape and electrostatic complementarities (Sc, EC [23,25]) in EnCPdock
which  are  surface-based  features  that  have  been  benchmarked  over  decades  of  careful
parameterization  [25,27,28,32,37,49] on  upgraded  lists  of  available  native  high-resolution
crystal/cryo-EM structures. Together, as an ordered pair,  {Sc, EC} takes into account the entire
spectrum of long-range (electrostatic) as well as local (shape) effects in finest detail. In effect, most
physical  (short  and  long  range)  forces  acting  on  the  complex  is  inherently  taken  care  of  in
EnCPdock, thereby making the predictions perhaps even more native-like. Furthermore, the results
may also be envisaged as a performance booster of FoldX (or similar semi-empirical force-field
based methods) when used as a target function in an advanced AI-predictor compared to when used
as the exclusive predictor itself. This leaves the scope to come up with a plausible hybrid method
combining FoldX and EnCPdock to raise the performance even more in the future. 

As a cross-check, we also estimated the performance of FoldX (ΔGGFoldX_norm) directly against
experimental  affinity  data  (ΔGGexp_norm)  and  obtained  correlations  of  r=0.67,  0.70  for  the  two
independent  validation  benchmarks  respectively.  These  correlations  (r)  and  their  corresponding
significance (p-value <0.00001 for both at 99.9% level) clearly reflect the near-native element in
FoldX, consistent across both independent benchmarks. 
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Figure 5.  Correlation (scatter)  plots  in independent validation -  2.  The predicted output  of
∆Gbinding_norm from  EnCPdock  (∆GEnCPdock_norm)  for  236  PPI  complexes  (during  independent
validation – 2 : on the SKEMPI+Proximate – merged dataset) plotted against their corresponding
average interfacial binding free energy predicted by FoldX (∆GFoldX_norm) and average interfacial
binding free energy estimated by experimental (calorimetric, spectroscopic etc.) means (∆Gexp_norm),
plotted in panels A and B respectively (with their least-squares fitted lines).

Further,  to  have  an  idea  of  the  Receiver  Operating  Characteristics  of  the  free-energy
predictor  (∆Gbinding_norm)  in  EnCPdock,  the  final  ∆GEnCPdock_norm  scores  for  each  target  in  both
independent validation benchmarks were converted to 1-0 binary variables (0: stable, 1: unstable),
independently, in tandem with ∆Gexp_norm and ∆GFoldX_norm taken as the point of reference. In the two
independent calculations, the conversion from floating to binary variables were based on a set of
cutoffs  (threshold  values) spanning  the  ranges  of  ∆Gexp_norm  and  ∆GfoldX_norm respectively.
Subsequent to this conversion, a set of TPR, TNR and BACC scores (see section 2.2.3, Materials
and Methods) were computed  for each sampled cutoff on ∆Gexp_norm  and ∆GfoldX_norm respectively
(Table S3,  Table S4 in  Supplementary Materials).  Among different sampled cutoffs,  the free-
energy predictor (∆Gbinding_norm) in  EnCPdock attained to a maximum  BACC score (BACCmax) of
0.892, 0.922 and 0.884, 0.777 with respect to FoldX and experimental values taken as benchmarks
respectively  (Table  S3,  Table  S4)  in  I.  Affinity  benchmark,  II.  SKEMPI+Proximate  –  merged
datasets.  

3.4. Comparison with the state-of-the-art in affinity predictions.
Decades  long  effort  have  been  devoted  in  structure-based  predictions  of  equilibrium

thermodynamic  parameters  of  protein-protein  binding  with  gradual  (linear)  amplification  of
available experimental data of the desired quality. The history goes back to the early days of the
trivial use of accessible surface area measures (ΔGASA) which never (systematically) correlated well
(even for the rigid complexes) with binding free energy (r=-0.16) barring a few case studies with
much of empirical (ad-hoc) formalism [10]. It was found that both large and not-so-large ΔGASA-
complexes could give rise to high affinities  [69]. To that end, it was clear that change in solvent
accessible surface area upon binding was definitely not the sole determinant of binding affinity in
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proteins.  Consequently,  root-mean-square  deviation  measures  defined  on  the  interface  residues
alone (I-RMSD) were attempted as an affinity-predictor which also gave only a modest correlation
with ∆Gbinding (r=-0.24), and only a nominal improvement was found using a minimal linear model
combining ΔGASA and I-RMSD (r=0.31) [70]. In the latter years, a coulomb based model (defined
over interfacial distances) was used to determine the effect of electrostatic force on PPI complexes
which also could not lead to much higher  a correlation  [71].  Also,  since,  protein structure and
function  affect  the  interaction  and  binding  affinity  of  proteins,  sequence-based  prediction  is
challenging.

We are now in the era of the sophisticated ‘affinity scores’ - many of which (like that of our
method) are AI-trained. Machine learning is certainly preferred among computational methods for
predicting the binding affinity of proteins due to its implicit consideration of any factors affecting
PPIs and the flexibility of using empirical data instead of a fixed or predetermined function. The
correlation (with ∆Gbinding) was further improved by prediction methods (affinity scores) including
the specific geometry and composition of the interaction, raising the overall correlations of up to
r=0.53 over a collection of flexible and rigid targets [69]. The best of these methods were trained
either using an earlier  version of the affinity benchmark  [12] or using changes in affinity upon
mutation(s)  [72].  Interestingly,  in  spite  of  this  elevated  performance  in  the  earlier  benchmark
(reported best correlation of r=0.63), these methods [73–75] could not better their performance in
the  updated  benchmark  [69]. Consequently,  performance  of  12  commonly  used  algorithms
compiling affinity scores as well as free energy predictors were found to give poor correlations on
the  earlier  version  of  the  benchmark  consisting  of  81  PPI  complexes
(https://github.com/haddocking/binding-affinity-benchmark) which slightly improved (up to r=0.53)
on the subset of 46 fully  accurate  complexes  [69]. Among MM(P/G)BSA approaches  [19],  the
strongest  correlation  observed  was  r=-0.64;  by  invoking  MM-GBSA  without  considering
conformational entropy effects in a low interior dielectric constant of 1 [76] – which outperformed
the results obtained by MM-PBSA (r=-0.52). The highest reported correlation [8] we could procure
from the  literature  was r=–0.73,  by one of  the  affinity  scores,  using  a  linear  regression  model
trained on ‘inter-residue contact  (IC)’ descriptors of affinity,  categorized based on their  residue
hydrophobicities  (e.g., polar–polar, polar–nonpolar, etc.)’ [13].

In this background, here, in this paper, we tested the operational credibility of the EnCPdock
system (www.scinetmol.in/  EnCPdock  /  )  to probe binding energetics in  protein interactions.  Let’s
recall that unlike other predictors, EnCPdock is a comprehensive web-interface for direct conjoint
comparative  analyses  of  complementarity  and  binding  energetics  in  inter-protein  associations.
Trained by non-linear support vector regression machines on thirteen judiciously chosen high-level
structural  descriptors  (and  on FoldX –  derived free  energies  as  its  target  function),  EnCPdock
returns  a  performance  of  r=0.745 (with  associated  BACC score  of  0.833,  Table  S1)  in  cross-
validation over 3200 PPI complexes and r=0.48 against actual experimental data (∆Gbinding_norm) in
an independent validation performed on a filtered set of 106 binary complexes, culled from the
updated benchmark. Thus, considerable retention of performance is reflected in the independent
validation  on  the  updated  affinity  benchmark,  comparable  to  the  state-of-the-art.  In  addition,
EnCPdock returns the mapping of the binary PPI complex in the Complementarity Plot and further
returns  mobile  molecular  graphics  of  the  atomic  contact  network  probed at  the  protein-protein
interface for further analyses.  

3.5.  Case  studies  demonstrating  the  utilities  of  EnCPdock  in  probing  inter-protein
associations of various types and biological origins

EnCPdock  has  been  built  to  exercise  complementarity  and  energetics  from  a  common
interactive platform to probe protein – protein interactions. Currently the web-server runs only for
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binary  protein  (receptor  –  ligand)  complexes,  with  a  future  plan  to  cover  even more  complex
oligomeric protein associations. To demonstrate its utility in protein energetics, individual cases
were studied in finer details, sampling a diverse plethora of biological origin and function of protein
binary complexes. These included antigen – antibody interactions, protein – inhibitor complexes,
interactions involved in signal transduction pathways, enzyme – substrate complexes and others. 

One such example was that of a RAB GTPase bound to Rabenosyn-5, its cognate ligand (an
effector molecule)  (PDB ID: 1Z0K,  [77]) involved in different stages of membrane trafficking,
serving as a transport protein. The complex was found to raise an Sc value of 0.7 with an EC value
of 0.12 which together made it fall into the ‘probable’ region of the Complementarity plot (CPdock)
(Fig. 6.A, Table 2). The inter-chain contact network spanned across a densely connected extended
interface involving two  α-helices of the ligand and primarily  β-sheets coming from the receptor
(Fig. 6.B). The Link density (Ld) of the interfacial network was found to be 0.11 with an average
contact intensity (ACI) of 2.89 (see section 2.2.1.6,  Materials and Methods). Scale-freeness was
evident from the degree distribution profile based features (combined) with a Pearsons correlation
(r)  of  -0.987 (see  section  2.2.2,  Materials  and Methods,).  The  interface  involved 22 residues
combining both partners which eventually gave rise to a predicted normalized (average interfacial)
binding  free  energy  (∆Gbinding_norm)  of  -0.183  kcal.mol-1 –  which  was  much  closer  to  the
experimental  (Calorimetric  [78])  value  for  the  same (-0.196 kcal.mol-1)  as  compared to  FoldX
predictions (-0.330 kcal.mol-1). 

One other example was that of a protein – inhibitor complex (PDB ID: 2SNI [79]) involving
Subtilisin Novo, a Serine-Protease and its inhibitor. The complementarity values were much similar
to the earlier complex (Sc: 0.72, EC: 0.12) again mapping to the ‘probable’ region of CPdock (Fig.
6.C, Table 2).  The inter-chain contact network was more extended (involving 32 residues) also
mapped to a similar (link) densely (Ld: 0.13) however mostly involving β-sheets and loops coming
from both binding partners (Fig. 6.D) with an even higher ACI value of 3.2 (see  Materials and
Methods). Scale-freeness was also evident here (r: -0.979) as with most bipartite PPI networks (see
Materials and Methods). The complex lead to a similar predicted  ∆Gbinding_norm value of -0.182
kcal.mol-1 –  which  again  was  nearer  to  the  experimental  (Calorimetric  [80])  reference  (-0.268
kcal.mol-1) as compared to FoldX predictions (-0.365 kcal.mol-1). 

Yet another example was also that of a protein – inhibitor complex from the Hydrolase
family involving bovine trypsin and a tick tryptase inhibitor (PDB ID: 2UUY [81]). This complex
presented  a  repulsive  electrostatic  interaction  (EC:  -0.052)  compensated  by  stronger  shape
constraints (0.76) in terms of complementarity. Such compensation has been found in native PPI
complexes at a statistically significant extent (~20% of all native inter-protein interactions), often
representing transient interactions [25,26,32]. Consistent with these (statistical) estimates, here, the
{Sc, EC} point fell into the ‘less probable’ region of CPdock (Fig. 6.E, Table 2). Here the interface
was less-extended (involving 19 residues), albeit, more dense (Ld: 0.16, ACI: 2.69), again involving
primarily  β-sheets  and loops  coming from both  binding partners  (Fig.  6.F).  As with  the  other
examples,  scale-freeness  was  also  evident  here  (r:  -0.98).  The  complex  here  led  to  a  similar
predicted  ∆Gbinding_norm value of -0.17 kcal.mol-1 – which was comparable to FoldX predictions (-
0.158 kcal.mol-1) with respect to the experimental  [82] benchmark (-0.115 kcal.mol-1).  Together
these examples adequately demonstrate the apt usage of EnCPdock as a combined graphical and
analytical  platform  to  survey  complementarity  and  energetics  attributed  to  protein  –  protein
interactions. 
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Figure 6. EnCPdock outputs for three different PPI complexes, taken as demonstrative case
studies. The  Complementarity  Plots  (CPdock)  (panels  A,  C,  E)  and  the  interfacial  interaction
networks (panels B, D, F) returned by the EnCPdock web-server for the three chosen complexes
with PDB IDs: 1Z0K (A and B respectively), 2SNI (C and D respectively) and 2UUY (E and F
respectively) are portrayed. 
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Table  2.  Feature  scores  and  predicted  free  energies  returned  by  EnCPdock  for  the
demonstrative examples chosen as case studies. 

Features PDB ID

1Z0K 2SNI 2UUY

Nintres 32 22 19

Sc 0.699 0.722 0.759

EC 0.119 0.118 -0.052

nBSA 0.166 0.128 0.109

nBSAp 0.155 0.101 0.095

nBSAnp 0.175 0.149 0.120

fracI 0.217 0.142 0.156

Ld 0.105 0.134 0.155

ACI 2.889 3.200 2.692

Slopedd -1.545 -2.179 -1.657

Yinterdd -0.434 -0.299 -0.312

CCpdd -0.987 -0.979 -0.982

logN 2.361 2.530 2.439

logasp 0.443 0.633 0.632

∆GEnCPdock_norm 
(kcal.mol-1)

-0.183 -0.183 -0.170

∆GFoldX_norm 
(kcal.mol-1)

-0.330 -0.365 -0.158

∆Gexp_norm

(kcal.mol-1)
-0.196 -0.268 -0.115

3.6. Application of EnCPdock in probing peptide binding specificity and mutational
effects

In principle, EnCPdock can also be used effectively to probe protein – peptide interactions
and mutational  effects.  In  order  to test  this,  the human protein T-cell  Lymphoma Invasion and
Metastasis-1 (PDZ domain) was chosen in its native (PDB ID: 4GVD)  and  available Quadruple
Mutant (QM) forms, in complex with similar classes of (native: Syndecan1; QM: caspr4) peptides
(PDB ID: 4NXQ) [83]. The QM is defined to be the simultaneous four mutations: L911M, K912E,
L915F and L920V in the native receptor chain.  The availability of crystal structures and related
experimental affinity data (although, indirect: spectroscopic) for analogous complexes [84] allowed
us to carry out their direct comparison in EnCPdock. The native protein (4GVD) has two symmetry-
related homologous bio-assemblies (chains: A-D; B-C), while the mutant form has three (chains: A-
D, B-E, C-F). In effect, the asymmetric units of the native and the mutant forms contain (homo-)
dimeric and trimeric complexes. All bio-assemblies of the native and the mutant were individually
surveyed in EnCPdock, giving similar estimates in terms of most high-level structural descriptors
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(Table 3), yet,  their cumulative difference adding to effective measures of (binding) affinity and
stability (mutant vs. native) could be probed unambiguously in terms of the predicted energetics
(Table 3). The interaction of these classes of proteins (taken as receptors) and peptides (ligands)
seem to have a characteristic suboptimal electrostatic complementarity (EC), often associated with
transient (or, quasi-stable) complexes  [26] – wherein the repulsive electrostatic effect are usually
compensated by stronger shape constraints [25,32]. Indeed, all bio-assemblies pertaining to both the
native and the mutant, unambiguously gave rise to negative EC values (ECnative_4GVD: -0.515 (A-D), -
0.277 (B-C);  ECmutant_4NXQ:  -0.354  (A-D),  -0.608 (B-E),  -0.282 (C-F))  indicative  of  their  quasi-
stability.  As  is  characteristic  with  such  metastable  interactions,  the  corresponding  shape
complementarities (Sc) were found to be appreciably high, closely ranging between 0.69 to 0.73
among  all  complexes.  Consequently,  the  {Sc,  EC}  ordered  pair  points  (corresponding  to  all
complexes) had fallen to the 4th quadrant of the Complementarity Plot (CPdock) only managing to hit
‘less probable’ or ‘improbable’ regions of the plot (Fig. 7). The combined drop in stability and
affinity (in terms of binding energetics) in the mutant compared to the native complexes, however,
was unambiguous across the different bio-assemblies for both (Table 3). 

Moving  ahead,  the  ∆Gbinding for  the  asymmetric  units  (∆Gbinding_asym)  were  computed  by
adding the  individual  ∆Gbinding for all  bio-assemblies  (energy  being  an  explicit  thermodynamic
function, the terms add up) for both native and mutant. These final ∆Gbinding_asym values were then
compared  across  EnCPdock,  FoldX  and  indirect  experimental  affinity  values  available  for
analogous complexes, probed by fluorescence binding assays  [84]. As the numbers got revealed
(Table 3), FoldX under-predicts the native stability by quite some amount (-2.527 compared to -
6.23 ±0.02 kcal.mol-1) and over-predicts the mutant stability to a very large extent (-17.54 compared
to  -6.46  ±0.01  kcal.mol-1)  with  respect  to  the  available  experimental  data.  On the  other  hand,
EnCPdock is much closer in terms of native stability (-4.037 compared to -6.23 ±0.02 kcal.mol-1).
In terms of comparative stability of the mutant (with respect to the native), although EnCPdock
predicts a reverse trend (soft destabilization), there is far lesser error in its predicted  ∆Gbinding (-
2.494 in reference to -6.46  ±0.01 kcal.mol-1) compared to that of FoldX (-17.54 kcal.mol-1). As a
result, the absolute value of ∆∆G for EnCPdock (1.553 kcal.mol-1) is ~10 times smaller than that of
FoldX (-15.02 kcal.mol-1) while ∆∆G is just -0.23 kcal.mol-1 in terms of the available experimental
mean  values  (i.e.,  only  mild  stabilization  upon the  QM mutation).  Overall,  in  this  case  study,
EnCPdock appears to have better near-native estimates than FoldX – which can plausibly again be
rationalized by the ‘sophisticated surface based treatments of the complementarity measures’ as
discussed in independent validations. 
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Figure  7.  EnCPdock  outputs  to  probe  peptide  binding  specificity  and  mutational  effects.
EnCPdock  outputs  for  the  native  human  protein  T-cell  Lymphoma  Invasion  and  Metastasis-1
protein (PDZ) domain (PDB ID: 4GVD) and its quadruple (QM) mutant (PDB ID: 4NXQ) bound to
peptides of similar classes. The Complementarity Plots (CPdock) and the interfacial contact networks
of the native PPI complex have been analyzed and displayed for its two symmetry-related bio-
assemblies  (4GVD,  chains:  A-D,  and  B-C  respectively),  and  for  three  symmetry-related  bio-
assemblies pertaining to the mutant (4NXQ, chains: A-D, B-E and C-F respectively). 
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Table 3.  Feature scores and predicted free energies returned by EnCPdock for the peptide-
protein  complexes  used in  probing peptide  binding specificity  and mutational  effects.  BA
stands for Bio-assemblies present in a PDB structure. The native and mutant protein consists of two
and three bio-assemblies respectively. 

Descriptions, Features
and predicted Free

energies

Native Mutant

BA-1 BA-2 BA-1 BA-2 BA-3

<PDB ID>_<Chain-ID> 4GVD_AD 4GVD_BC 4NXQ_AD 4NXQ_BE 4NXQ_CF

Nintres 14 18 17 12 17

Sc 0.704 0.725 0.715 0.684 0.716

EC -0.515 -0.277 -0.282 -0.608 -0.354

nBSA 0.161 0.188 0.182 0.138 0.155

nBSAp 0.149 0.192 0.172 0.120 0.148

nBSAnp 0.170 0.184 0.190 0.152 0.161

fracI 0.274 0.309 0.265 0.230 0.250

Ld 0.250 0.236 0.212 0.281 0.197

ACI 1.900 2.588 3.428 3.667 3.308

Slopedd -1.757 -1.261 -1.589 -1.333 -1.649

Yinterdd -0.434 -0.564 -0.399 -0.392 -0.417

CCpdd -0.881 -0.813 -0.991 -0.958 -0.950

logN 1.978 1.987 1.991 2.000 2.000

logasp 1.036 1.046 1.113 1.194 1.194

∆GEnCPdock_norm 
(kcal.mol-1)

-0.147 -0.110 -0.110 0.069 -0.093

∆GEnCPdock_total 
(kcal.mol-1)

-2.057 -1.980 -1.582 0.824 -1.871

∆GEnCPdock_total_asym 
(kcal.mol-1)

-4.0370 -2.4940

∆GFoldX_norm 
(kcal.mol-1)

 -0.209 0.022   -0.380 -0.492  -0.305

∆GFoldX_total 
(kcal.mol-1)

-2.920 0.400  -6.460 -5.900  -5.180

∆GFoldX_total_asym 
(kcal.mol-1)

-2.5200 -17.5400

∆Gexp_total (fluorescence) 
(kcal.mol-1)

-6.23 ±0.02  -6.46 ±0.01
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3.7. Feature Trends and Relative Probabilities of Feature-scores – a tool for targeted
design of protein interfaces.

One of the most effective user-interfaces of EnCPdock is perhaps the ‘Feature Trends’ tab
(see help-page: https://scinetmol.in/EnCPdock/help.php) which should be of real practical use in the
design of targeted protein/peptide interfaces and/or mutational surveys. This functionality portrays
the relative frequency distribution profiles (as in Fig. 2) for each feature, computed based on their
native kernel densities (see section 3.2). It then plots the obtained feature scores (for an input PPI
complex)  as  vertical  red  dashed  lines  and  numerically  determines  the  ‘points  of  intersection’
(highlighted  as  red  dots,  Fig.  8)  between  these  vertical  lines  and  the  corresponding  relative
frequency distribution profiles. The abscissa of this ‘point of intersection’ (for each feature) can be
interpreted as the relative probability (Prfmax) of the obtained feature-score with respect to the event
of  the  highest  observed  frequency  for  that  feature.  These  relative  probability  estimates  reflect
whether an input PPI complex is regular or terminal with respect to the obtained feature-scores for
each feature.  This way, the built  functionality  could be really helpful  to pinpoint  the structural
defect in a targeted inter-protein association to the level of individual structural descriptors. This
makes the ‘Feature Trends’ tab (EnCPdock) effective in the structural tinkering and intervention as
might be relevant to targeted design of protein-interfaces, mutational studies and peptide design. 

One demonstrative example (Fig. 8) of the apt and utility of this functionality was found in
the case of the engineered form of the otherwise misfolded protein of Rat CD2 (PDB ID: 1A64).
While  surveying  through  random control  trials,  to  our  great  surprise,  the  fractional  interfacial
(residue) content (fracI) for 1A64 was found to be ~92% of the whole protein surface (fracI=0.915).
In accordance, normalized buried surface area was also high (nBSA=0.706). Naturally, both events
being  extremely  rare  in  native  protein-protein  interactions  (Fig.  2),  left  their  signatures  in  the
corresponding relative probability estimates (Prfmax(fracI)=0.000;  Prfmax(nBSA)=0.000). A follow-up
visual structural inspection revealed that the two (identical) chains were laterally inter-twined to
form a  metastable  homo-dimer  during  their  assembly  –  which  is  said  to  be  characteristic  and
idiosyncratic  of  the  said  protein  [85].  Being  a  homo-dimer,  logasp was  found  to  be  zero  (by
definition) which appeared to be a frequent event (Prfmax(logasp)=0.925) in native PPI complexes. 
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Figure 8. A demonstrative case study of rare lateral inter-twining in homo-dimeric assembly
in an engineered Rat CD2 protein that exemplifies the apt and utility of the ‘Feature Trends’
tab in EnCPdock.  Panel (A) shows the molecular graphics generated by EnCPdock highlighting
the  interfacial  contact  network  (links  displayed  as  red  lines)  which  clearly  reveal  the  lateral
intertwining of the two chains of 1A64. Panel (B) shows the Feature trends for 1A64 (as returned in
EnCPdock) with the relative probability estimates (Prfmax) tabulated in the inset. 

4. Conclusion 
EnCPdock was envisaged and built with the objective of developing a comprehensive web-

interface for the conjoint comparative analyses of physico-chemically relevant high-level structural
descriptors (complementarity in particular) and binding energetics of interacting protein partners.
With  that  broad  objective  in  mind,  the  current  version  of  the  web-sever  provides  fine-grained
interface properties of binary PPI complexes inclusive of complementarity  and other high-level
structural features, and, concomitantly predicts their free energies of binding (average interfacial
contribution as well as total) from atomic coordinates.  In addition, the web-server also generates
mobile molecular graphics (in JSmol) of the interfacial  atomic contact network and returns the
contact  map  of  the  interface.  Furthermore,  trends  of  individual  features  (Sc,  Ld  etc.)  can  be
analyzed against their native (kernel density) distributions. This would be benifitial for structural
tinkering  and  intervention,  both  in  case  of  comparing  among  docked  poses  as  well  as  in  the
interface design of targeted complexes.  A non-linear support vector regression machine has been
implemented to train and build EnCPdock, elegantly combining fine-grained structural descriptors
of  size,  shape,  electrostatics,  accessible  and  buried  surface  areas,  network  parameters  of  the
interfacial contact network etc. from an input protein complex. Trained on this knowledge-base,
EnCPdock predicts the corresponding binding free energy with the desired accuracy and reasonable
speed (~2 mins for each average-sized input). A detailed documentation of the web-interface can be
found  in  the  associated  help  page  (https://scinetmol.in/EnCPdock/help.php)  with  exhaustive
description of its  Input-Output (I/O) interface. A flowchart (Fig. 9) compiling all the different steps
and functionalities (i.e., the entire I/O-interface) involved in EnCPdock has also been appended for
easy understanding and navigation of the user.   In spite of being trained on near-native FoldX –
derived  estimates  (due  to  lack  of  enough  experimental  data  for  training),  EnCPdock  performs
comparable to (if not better than) the state-of-the-art in prediction accuracy of binding energetics –
as  revealed  by  cross-validations  on  a  large  dataset.  The  performance  is  well  retained  in  the
independent validations carried out on multiple  experimental benchmarks. Demonstrative examples
presented  as  case  studies  further  show  the  robustness  of  EnCPdock  across  protein  complexes
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coming from a variety of biological origin and types. The utility of EnCPdock in probing peptide
binding specificity has also been exemplified,  coupled with its  use in  mutational  analyses.  The
applications  can naturally  be extended to rank and re-rank docked poses of protein – protein /
peptides.  Lastly,  the ‘Feature Trends’ tab  of  the web-interface  (along with  the Prfmax estimates)
present a handy, first-hand tool for the targeted design of protein interfaces (or, dockable peptides),
helping investigators to pinpoint structural defects, irregularity and sub-optimality – which  would,
in turn, aid in the subsequent re-design. While the current version of EnCPdock is built to handle
binary  complexes  alone,  we  plan  to  extend  the  web-server  in  the  future  enabled  with  the
functionality to deal with higher order protein assemblies. 

Figure 9.  Schematic diagram of EnCPdock web server workflow.  The high level structural
descriptors used as input parameters are as follows: shape and electrostatic complementarities (Sc,
EC); normalized buried surface areas (nBSA, nBSAP & nBSAnp) and fractional interfacial content
(fracI);  link  density  (Ld);  average  contact  intensity  (ACI);  Network (degree distribution)  based
Features  (slopedd,  Yinterdd,  CCpdd);  Size-Features  (logN,  logasp).  While  the  normalized  FoldX –
derived ΔGGbinding was used as target function. The output showcase 'Complementarity plot along with
Feature information', 'Interfacial contact network' and 'Feature trends combining relative probability
(Prfmax) of the obtained feature-score' in separate tabular format. 
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