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Abstract 17 

Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche 18 
separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale 19 
metabolic models are useful tools for studying the metabolic potential of individuals, and with the 20 
rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for 21 
comparative analysis. However, there exist few tools to construct strain-specific metabolic models 22 
at scale. 23 

Here we describe Bactabolize (github.com/kelwyres/Bactabolize), a reference-based tool which 24 
rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe 25 
a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae 26 
(github.com/kelwyres/KpSC-pan-metabolic-model), and a quality control framework for using draft 27 
genome assemblies as input for Bactabolize. 28 

The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 outperformed the 29 
CarveMe-derived model across ≥201 substrate and ≥1220 knockout mutant growth predictions. 30 
Novel draft genomes passing our systematically-defined quality control criteria resulted in models 31 
with a high degree of completeness (≥99% genes and reactions captured) and high accuracy 32 
(mean 0.97, n=10). 33 

We anticipate the tools and framework described herein will facilitate large-scale metabolic 34 
modelling analyses that broaden our understanding of diversity within bacterial species and inform 35 
novel control strategies for priority pathogens. 36 

37 
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Introduction 38 

Bacteria exhibit metabolic diversity and can utilise a broad range of substrates for growth. It has 39 
become clear amongst pathogens that there is an intertwined relationship between metabolism 40 
and nutrient usage with virulence and antimicrobial resistance (1-7). Comparative analyses of 41 
metabolic profiles (e.g. substrate usage) are key to fully understanding these relationships. 42 
Traditionally, these profiles have been assessed via phenotypic growth on a limited number of 43 
substrates, such as those used to delineate between species (8-10) which form the basis of a 44 
number of commercial products for species identification. However, these methods are not 45 
sufficiently discriminatory for in-depth comparisons within species, and alternative approaches 46 
such as the Omnilog Phenotype MicroArray system (Biolog) are too expensive and/or labour 47 
intensive for application to large numbers of isolates. Similarly, probing of essential metabolism-48 
associated genes via transposon mutant libraries (e.g. to identify novel virulence factors and 49 
therapeutic targets) (4, 11, 12) cannot be easily scaled across diverse bacterial populations. 50 

Genome-scale metabolic models or metabolic reconstructions are a computational approach to 51 
analysing the metabolic potential of an organism, within which the entire biochemical network is 52 
represented as a stoichiometric matrix (13). Metabolic models are constructed programmatically, 53 
but typically informed and at least partially validated using phenotypic growth data (14-16). Once 54 
constructed, they can be run through simulations and analysed under various contexts, such as in 55 
silico growth experiments (Flux Balance Analysis [FBA]) to predict substrate usage profiles (17), 56 
evaluate the impact of single gene knockouts on growth (14, 18), and identify metabolic 57 
chokepoints for drug targets (19), among others. Traditionally, metabolic models are strain-specific 58 
(i.e. each model represents a unique individual http://bigg.ucsd.edu/models) and may not be 59 
applicable to other isolates due to unrepresented genetic diversity. 60 

We recently described 37 curated strain-specific models for the Klebsiella pneumoniae Species 61 
Complex (KpSC) (14) comprised of K. pneumoniae and its close relatives (20). These organisms 62 
are a common cause of healthcare-associated infections world-wide, and among the World Health 63 
Organization’s priority antimicrobial resistant pathogens (21). KpSC are highly diverse and gene 64 
content can differ substantially between strains (22, 23). Accordingly, our models varied in terms of 65 
gene and reaction content, resulting in variable growth substrate usage profiles and metabolic 66 
redundancy (14). Similar variation has also been described in other key bacterial pathogens e.g. 67 
Escherichia coli (24), Salmonella enterica (25), Staphylococcus aureus (26) and Pseudomonas 68 
aeruginosa (27). This is highly relevant to the use of metabolic models for the exploration of 69 
virulence and antimicrobial resistance, and for the identification of novel drug targets. Therefore, 70 
such works should seek to include multiple strain-specific models, and in some cases 100s-1000s 71 
of models may be required to accurately represent population diversity (22, 28, 29). 72 

There are several open source tools currently available that can rapidly produce strain-specific 73 
metabolic models, including CarveMe (30), ModelSEED (31) and KBase (32) (see the recent 74 
review by Mendoza and colleagues for comparative descriptions (33)), as well as a recently 75 
published modelling and analysis pipeline, ChiMera, which leverages CarveMe for model 76 
construction (34). In their systematic analysis Mendoza et al. indicated CarveMe and ModelSEED 77 
to be of particular interest for large-scale studies due to their speed and model quality (33). Like 78 
KBase, ModelSEED is a web interface application, limiting its utility for high-throughput analysis of 79 
100s – 1000s of bacterial genomes. CarveMe is a command line application; it is open source but 80 
is dependent on commercial solvers such as CPLEX (free for academic use). However, its use of a 81 
universal reference model may limit specificity of strain-specific models (35), and result in 82 
overestimation of model genes. These limitations can be overcome by manual curation of the 83 
output models, but such curation is highly labour intensive and not suitable for high-throughput 84 
analyses. Furthermore, the CarveMe database (BiGG universal_model) appears to be no longer 85 
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actively maintained, meaning that there is no opportunity to integrate novel structural and/or 86 
biochemical data as these become available in the literature (as discussed in COBRA community 87 
forums). 88 

Here, we present Bactabolize (available at https://github.com/kelwyres/Bactabolize), an easy-to-89 
use tool which allows scalable production of strain-specific draft metabolic models and prediction 90 
of growth phenotypes. Bactabolize builds upon the reference-based model reconstruction 91 
approach described by Norsigian et al. (35), leveraging the COBRApy framework (36) and BiGG 92 
nomenclature (37). We present a pan-metabolic reference model for the KpSC (derived from our 93 
37 curated strain-specific models (14)), and describe an exemplar quality control framework for the 94 
application of Bactabolize to KpSC draft genome assemblies. We show that Bactabolize can 95 
rapidly produce strain-specific models from draft genomes with a high degree of completeness (as 96 
compared to models generated from completed genome assemblies), resulting in highly accurate 97 
growth predictions that match or exceed the accuracy of models from CarveMe and manual 98 
curation efforts. 99 

Results 100 

Description of Bactabolize 101 

Bactabolize is written in Python 3 and utilises the metabolic modelling library COBRApy (36). 102 
Bactabolize has four main commands: 103 

i) Draft model generation (draft_model command), which generates a strain-specific draft 104 
metabolic reconstruction (‘model’) using the approach outlined previously (35), and 105 
uses gap-filling to identify any missing reactions required to simulate growth in the user-106 
specified conditions 107 

ii) Patching incomplete models (patch_model command) by the addition of missing 108 
reactions e.g. those identified by the automated gap-filling process 109 

iii) Substrate usage analysis via Flux Balance Analysis (FBA) (fba command) to predict 110 
growth outcomes for a specified range of substrates supported by the model(s) 111 

iv) Fig. 1). 112 

Additional processing scripts are provided alongside Bactabolize to improve model metadata 113 
annotation (improve_model_annotations.py), convert models generated using KBase and 114 
ModelSEED to Bactabolize/BiGG-compatible format (SEED_to_BiGG_model_convert.sh), 115 
generate network graph files from models (model_to_network_graph.py) and merging output FBA 116 
profiles (merge_fba_profiles_longtable.sh). 117 

For draft model construction, Bactabolize requires users to provide an input assembly (annotated 118 
or unannotated FASTA or Genbank format respectively), a reference model (JSON format) and the 119 
corresponding reference sequence data (gene and protein sequences in two separate multi-fasta 120 
files or a single Genbank annotation in a .gbk file) (Figure S1). If the input assembly is 121 
unannotated, Bactabolize will identify coding sequences using Prodigal (38) but will otherwise 122 
honour the existing coding sequence (CDS) notations and optionally use Prodigal to search for 123 
additional CDS. Draft genome-scale metabolic models are output in both SMBL v3.1 (39) and 124 
JSON formats (one pair of files for each independent strain-specific model), along with an optional 125 
MEMOTE quality report (40). Bactabolize will identify orthologs in the input genome(s) compared 126 
to the reference sequence data using Bi-directional BLAST (41) Best Hits (BBH) (42) using 127 
BLAST+ (35). Users can parameterise the ortholog finding settings (coverage and identity 128 
thresholds) for BBH. Alternatively, there is the option of using protein similarity to identify orthologs 129 
instead of identity. 130 
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Once a draft model has been constructed, it is validated via a simulated growth experiment on 131 
user-input choice of media and atmosphere (aerobic or anerobic). Predefined media include BG11 132 
(Gibco), M9 + glucose (35), nutrient media (43), Luria-Bertani (LB) (43), Tryptic Soy (TSA) (43), 133 
TSA + sheep blood (43), LB as specified by the CarveMe developers (30), Chemically Defined 134 
Medium (CDM)-like (33), Plantarum Minimal Medium (PMM) PMM5-like (33) and PMM7-like (33). 135 
Users can also define custom media as Bactabolize supports several complex media ingredients, 136 
including peptone (peptic digest of bovine and porcine tissue) (44-46), tryptone (pancreatic digest 137 
of casein) (44, 46, 47), soy peptone/soytone (digest of soymeal) (44, 46, 48, 49), yeast extract (50-138 
55) and beef extract (44, 46). If the model fails to simulate growth, gap-filling is performed to 139 
indicate missing reactions. Users can add these reactions to a patch JSON file and optionally use 140 
the patch_model command to correct the model (Figure S2). Bactabolize uses a conservative 141 
gap-filling approach that only adds the minimum number of reactions to enable growth under the 142 
chosen conditions. We recommend testing the models in minimal media and atmosphere expected 143 
to support growth for all isolates of the species of interest, unless the user has access to matched 144 
phenotypic data demonstrating growth for individual isolates in specific conditions. Aggressive 145 
gap-filling will effectively homogenise the models and should be avoided if the goal is to 146 
understand the underlying strain diversity. 147 

Substrate usage analysis (the fba command) is performed iteratively for each possible carbon, 148 
nitrogen, sulfur and phosphor substrate supported by the model(s) (Figure S3), by replacing the 149 
default substrate in the user specified growth medium (specified in the fba_spec JSON file). For 150 
example, in M9 media the default substrates are glucose (carbon), ammonia (nitrogen), sulphate 151 
(sulfur) and phosphate (phosphor). Each substrate can be tested in aerobic and/or anaerobic 152 
conditions. Growth prediction output is recorded in a tab delimited file (one per strain). The 153 
merge_fba_profiles_longtable.sh helper script will combine the outputs for multiple strains into a 154 
single file for downstream analysis.  155 

The growth impacts of single-gene knockout mutations can be simulated via the sgk command 156 
(Figure S4). Bactabolize will iterate through every gene in the model, temporarily removing it and 157 
its associated reactions (unless they are also associated with another gene) and running FBA to 158 
simulate growth in the user-specified conditions. The output is comparable to single-gene knockout 159 
studies such as transposon mutagenesis and can be used to probe gene essentiality. 160 

We recorded the time required for Bactabolize to build draft models and performed 1692 161 
independent growth predictions for each of 35 KpSC genomes (tested in triplicate) on a high-162 
performance computing cluster (Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz and 340 GB of 163 
requested memory on a CentOS Linux release 7.9.2009 environment). The mean CPU time 164 
required for model construction was 98.41 seconds (range 83.72 - 112.55 seconds), while the 165 
mean CPU time for growth predictions was 88.79 seconds (range 85.15 - 103.37 seconds). On a 166 
standard consumer laptop (Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz and 15 GB of memory on 167 
Windows Subsystem for Linux (WSL1) environment), the mean CPU time for model construction 168 
was 87.27 seconds (range 76.133 – 102.694 seconds), while growth predictions took 82.19 169 
seconds (range 72.24 – 103.37 seconds). 170 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530115
http://creativecommons.org/licenses/by/4.0/


 171 

Figure 1: Simplified overview of Bactabolize’s main commands. In pink is the draft_model command, which builds a draft 172 
strain-specific metabolic model using an input reference model and an input target assembly (approach adapted from 173 
(35)). If the model fails to simulate growth, Bactabolize will attempt automated gap-filling and produce a model patch file. 174 
The patch_model command (orange) allows the addition of missing reactions to produce a valid draft model that can 175 
simulate growth in a user-specified growth environment. A functioning model can be passed to the fba command 176 
(yellow), which performs Flux Balance Analysis to simulate growth in the user specified conditions, across all carbon, 177 
nitrogen, phosphorus and sulfur metabolite sources supported by the model under aerobic and anerobic conditions. The 178 
sgk command (blue) shows the Single Gene Knockout analysis, which outputs a predicted phenotype. User inputs and 179 
outputs are shown in white boxes while Bactabolize commands are shown inside the grey box. 180 

KpSC pan-metabolic reference model 181 

We constructed a species complex-specific pan-metabolic reference model by combining a 182 
collection of 37 manually curated models for which we have previously demonstrated high 183 
accuracy (range 88.3%–96.8% for prediction of 94 distinct growth phenotypes (14)). These models 184 
represent a diverse collection of KpSC (14) (including at least one each of the seven major taxa in 185 
the complex; K. pneumoniae, Klebsiella variicola subsp variicola, Klebsiella variicola subsp tropica, 186 
Klebsiella quasipneumoniae subsp quasipneumoniae, Klebsiella quasipneumoniae subsp 187 
similipneumoniae, Klebsiella quaisivariicola, Klebsiella africana). The combined pan-model, known 188 
as KpSC-pan v1, comprises a total of 1265 distinct genes, 2319 reactions and 1696 metabolites, 189 
and is available at github.com/kelwyres/KpSC-pan-metabolic-model. 190 

Performance comparison 191 

We compared the output and performance of Bactabolize to CarveMe (30) and a manually curated 192 
metabolic reconstruction of K. pneumoniae strain KPPR1 (also known as VK055 and ATCC 193 
43816, metabolic model named iKp1289) (15). This isolate was chosen as there is a completed 194 
genome sequence (Genbank accession: CP009208), single-source growth phenotype (15) and 195 
single-gene knockout growth essentiality data available (56). Draft models were built using; i) 196 
Bactabolize with the KpSC pan v1 reference; ii) CarveMe, with its universal reference model 197 
(CarveMe universal); and iii) CarveMe, with KpSC-pan v1 reference (CarveMe KpSC pan). 198 
Importantly, neither K. pneumoniae KPPR1 nor its genetic lineage (7 gene multi-locus sequence 199 
type, ST493), are represented in the KpSC pan-reference model, meaning these benchmarking 200 
comparisons were on equal footing. 201 
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The Bactabolize draft model captured a comparable number of genes and reactions (n = 1233 and 2307, respectively) to 202 
the manually curated model (n = 1289 and 2484, respectively) but fewer than the CarveMe universal model (n = 1960 203 
and 2857)  204 

Fig. 2A). In contrast, the number of metabolites represented in the Bactabolize and CarveMe 205 
universal models were similar (1696 vs 1737) and both were lower than the number represented in 206 
iKp1289 (n = 1827). The CarveMe KpSC pan model method captured considerably more genes 207 
than any of the other models (n = 2407), but these were associated with many fewer unique 208 
reactions and metabolites (1206 and 825, respectively). Upon further investigation we determined 209 
that this method resulted in the over prescription of gene reaction rules (GPRs) to multiple 210 
reactions (mean 2.2 GPRs per reaction when compared to Bactabolize using the same pan 211 
reference model: 1.94 GPRs per reaction; and CarveMe Universal: 2.12 GPRs per reaction). 212 
MEMOTE scores, (produced by the MEMOTE report (40)) indicate the quality of the model 213 
metadata annotations, with the scores ranging between 0 – 100%. These provide a measure of 214 
model portability and the level of connected databases available to support the metabolite, reaction 215 
and genetic information represented in the model, but bear no reflection on model accuracy. 216 
Bactabolize performs on the lower end, with CarveMe universal performing the best (Fig. 2B). 217 
However, Bactabolize using the KpSC-pan model outperforms the model propagation mode of 218 
CarveMe using the same reference model (Fig. 2B). Work is ongoing to improve the annotations 219 
in the KpSC-pan reference model, to improve large-scale model propagation. 220 

We assessed the performance of each model for in silico prediction of growth phenotypes 221 
compared to the previously published experimental data (15). Accuracy, sensitivity, specificity, 222 
precision and F1 scores were calculated (57). Note that the specific set of growth substrates and 223 
gene knockouts that can be simulated is determined by the sets of genes and metabolites 224 
captured by each model and is therefore model-dependent (Data S1 and S2). Among those with 225 
matched experimental phenotype data, the Bactabolize and CarveMe universal models were able 226 
to predict growth for a greater number of carbon, nitrogen, phosphorous and sulfur substrates than 227 
both the iKp1289 model and the CarveMe KpSC pan models (Fig. 2C, Data S1). While the 228 
CarveMe universal model had the highest number of true-positive growth predictions overall, it 229 
also had a comparably high number of false-positive predictions (Fig. 2D). In contrast, the 230 
Bactabolize model had fewer false-positive predictions, resulting in the highest overall accuracy 231 
metrics (Fig. 2E, Data S1). Similarly, while the CarveMe universal model resulted in the highest 232 
absolute number of true-positive gene essentiality predictions, driving a high accuracy, the 233 
Bactabolize model was associated with the greatest overall precision, sensitivity, and specificity 234 
(Figs. 2F & 2G).235 
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Figure 2 (previous page): K. pneumoniae KPPR1 metabolic model benchmarking comparisons. A) Counts of model 238 
features; genes, metabolites and reactions captured by each model. Exchanges refers to number of exchange reactions, 239 
a subset of reactions involved in substrate uptake, which determine the number of distinct growth substrates for which 240 
phenotypes can be predicted with the model. B) MEMOTE scores indicating the richness of annotations and metadata 241 
for metabolic model features according to database outlinks. SBO refers to score of Systems Biology Ontology (SBO), a 242 
controlled vocabulary for systems biology. Consistency refers to the score of stoichiometric consistency and chemical 243 
formulae annotation. Total refers to total MEMOTE score, as a combination of all previous scores, and is shown in bold. 244 
C) Counts of carbon, nitrogen, phosphorus and sulfur growth substrates that can be simulated by models and for which 245 
matched phenotypes were available for comparison (15). Hatched columns indicate the total number of substrates for 246 
which phenotypic data for K. pneumoniae KPPR1 were described (15). D) and E) Accuracy metrics for predicted to true 247 
phenotypes for the growth substrates shown in D and E, respectively False-negatives, true-negatives, false-positives 248 
and true-positives are coloured as shown in legend. F) and G) Accuracy metrics for the KPPR1 single-gene knockout 249 
mutant library described in (56) shown in F and G, respectively. Numbers of true positives and false positives are shown 250 
to the left of the respective columns. 251 

Quality control framework for input genome assemblies  252 

There are now thousands of bacterial genomes available in public databases, the majority of which 253 
are in draft form. If we are to use these data for high-throughput metabolic modelling studies, it is 254 
essential to evaluate the expected model accuracies and understand the minimum input genome 255 
quality requirements. Here we performed a systematic analysis leveraging our published curated 256 
KpSC models (n=37, (14)), which were generated using completed genome sequences and were 257 
therefore considered to represent ‘complete’ models. We randomly subsampled the corresponding 258 
Illumina read sets to various depths (10 – 100x, increments of 10) in triplicate and generated draft 259 
assemblies that were passed to Bactabolize for generation of draft metabolic models (Data S3). 260 
Due to low read depth (≤30x), two isolates were removed from this analysis. Additionally, ten 10x 261 
depth read samples failed to produce assemblies, leaving 1040 draft genomes for analysis. The 262 
resulting draft metabolic models were compared to the complete models to; i) determine the 263 
proportions of complete model genes and reactions captured in the draft models; and ii) compare 264 
846 in silico aerobic growth predictions in M9 minimal media, where growth on 266 carbon, 153 265 
nitrogen, 59 phosphorus and 25 sulfur sources were examined. Substrates containing multiple 266 
elements were tested as sole sources of each element independently and in combination, e.g. 1,5-267 
Diaminopentane was tested as a sole carbon, sole nitrogen and sole carbon plus nitrogen source. 268 

As expected, assembly quality generally increased with increasing sequencing depth i.e. 269 
assemblies generated from higher depth read sets were associated with higher N50 values, fewer 270 
contigs and fewer assembly graph dead-ends, although the rate of improvement drastically 271 
declined beyond 40-50x depth (Figure S5, Data S3). We noted that it was rare for draft models to 272 
capture 100% of model genes and reactions (just 420 of all 1040 draft assemblies were associated 273 
with models that captured 100% model genes) (Data S3, Figure S6), even when using the highest 274 
quality draft genomes. However, ≥99% of genes and reactions were commonly captured, which 275 
plateaued from 40x depth onwards (Figure S6). Therefore, we sought to evaluate whether ≥99% 276 
model capture would produce functionally accurate models. 277 

We used FBA to simulate substrate growth profiles for the 40x depth assemblies, representing a 278 
sequencing depth that can be routinely achieved with standard Illumina library preparations. All but 279 
one assembly triplicate set (isolate SB4767 98% gene capture, 99% reaction capture) captured 280 
≥99% but ≤100% model genes and/or reactions. The substrate growth profiles were then 281 
compared to those of the complete models. The vast majority of draft models produced accurate 282 
growth predictions; 102 of 108 models resulted in predictions with 100% concordance to those 283 
from the corresponding complete models. Three models for K. quasipneumoniae similipneumoniae 284 
isolate SB164 resulted in predictions with a mean of 99.8% concordance. The remaining three 285 
models were for isolate SB4767 and resulted in mean of 80.4% concordance. Notably, these 286 
models were those representing <99% gene capture. Together, these data suggest that draft 287 
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models capturing ≥99% of the complete model genes/reactions generate highly accurate growth 288 
predictions and that these capture rates can be readily achieved from draft genome assemblies. 289 

  290 

 291 

Figure 3: Scatterplots showing distribution of best performing assembly metrics ‘assembly graph dead ends’, ‘contigs’ 292 
and ‘N50’ against model feature capture (genes and reactions). Each point represents the mean values from a single 293 
genome (technical triplicate) and is coloured by model quality. ‘Good’ models capture ≥99% of the model metric as 294 
compared to the corresponding complete model (shown at each facet), ‘Bad’ models capture <99%. Cubic polynomial 295 
line plotted for assembly ‘graph dead ends’, ‘contigs’, while a segmented linear model was plotted for ‘N50’. R2 is shown 296 
on each panel.  297 

We investigated the relationships between assembly quality metrics and model gene/reaction 298 
capture in more detail. Variation in assembly graph dead-ends accounted for the greatest amount 299 
of variation in model capture, closely followed by raw contig counts (cubic polynomial fit, R2 of 300 
≥0.98 for graph dead-ends, R2 of ≥0.9 for contig count). A segmented linear model was fitted to 301 
N50 length (R2 ≥ 0.83), producing a breakpoint at 25153 bp (Fig. 3).  302 

To further explore the optimum thresholds for assembly metrics, we tallied the number of draft 303 
assemblies resulting in ≥99% and <99% gene and reaction capture at increasing graph dead-end 304 
and contig count count-offs, and decreasing N50 cut-offs. Draft models that captured ≥99% of the 305 
complete model genes/reactions were considered ‘good’ models, whereas draft models that 306 
captured <99% of complete model genes/reactions were considered ‘bad’ models. The optimum 307 
threshold for assembly graph dead end was determined to be ≤200. At this value, 94.44% of ‘good’ 308 
models were captured, and 0% ‘bad’ models. The optimum threshold for contig counts was 309 
determined as ≤130 contigs at which 67.92% of ‘good’ and 0% ‘bad’ models were captured (Fig. 310 
4). The optimum threshold for N50 was determined to be ≥65000, at which 94.97% of ‘good’ and 311 
1.71% of ‘bad’ models were captured. The assembly graph dead-end threshold results in 312 
comparatively higher sensitivity (i.e. a higher proportion of ‘good’ models pass the threshold) than 313 
contig count and comparatively better specificity (i.e. lower proportion of ‘bad’ models pass the 314 
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threshold) than N50, but the underlying metric information is not universally available because 315 
many isolate genomes are deposited in public databases only as assemblies without the 316 
associated assembly graph. We therefore recommend a three-tier approach, whereby the 317 
assembly graph dead-end criterion is preferenced if available, followed by N50 and then contig 318 
count. 319 

 320 

 321 

Figure 4: Line graphs showing the impact of assembly metric cut-off thresholds on model feature capture (n = 1040). 322 
‘Good’ models which captured ≥99% of model features are shown in green, while ‘bad’ models captured <99% model 323 
features are shown in gold. The blue dotted line shows the metric cut-off thresholds, to minimize the number of models 324 
that capture <99% model features and maximise models that capture ≥99%. Metric cut-off statistics are calculated in 325 
intervals of 10 for assembly graph dead ends and contigs, and every 5000 for N50. 326 

 327 

Impact of gap-filling models 328 

Of the 901 draft genome assemblies which passed our QC criteria (≤200 assembly graph dead 329 
ends), 23 of the resulting draft models failed to simulate growth in M9 minimal media with glucose 330 
(despite capturing ≥99% of the genes and reactions in the corresponding complete models). It is 331 
expected that all KpSC models should be able to simulate growth on M9 media with glucose as a 332 
sole carbon source, as this central metabolism is universal amongst KpSC. To replace missing, 333 
critical reactions required for growth on M9 with glucose, we investigated model gap-filling using 334 
the patch_model command of Bactabolize. We then assessed the accuracy of the gap-filled 335 
models for prediction of growth on the full range of substrates, as compared to the predictions from 336 
the corresponding complete models. 337 

Gap filling added 1 – 3 missing reactions to each model, with a median of one, fully restoring 338 
biomass production in M9 media with glucose in all but two of the 23 failed models. The missing 339 
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reactions appeared to be random genes across these 23 genomes, likely due to missing 340 
information in these assemblies. 341 

Substrate usage predictions from the 21 successfully gap-filled models were highly accurate, with 342 
18/21 having a prediction concordance of ≥99% across all 846 growth conditions (12/21 had 100% 343 
concordance) (Figure S7). We therefore conclude that models generated for genome assemblies 344 
passing our QC criteria, which have been gap-filled to successfully simulate growth on minimal 345 
media plus glucose, are suitable for the prediction of growth across a range of substrates. 346 

 347 

Predictive accuracy of draft models 348 

We assessed the accuracy of Bactabolize for the construction of draft models for 10 novel KpSC 349 
clinical isolates, representing five of the major taxa in the complex. We included five isolates for 350 
which the associated STs were represented in the KpSC-pan v1 model and five isolates with STs 351 
that were not represented. Whole genome sequence data were generated on the Illumina platform 352 
and draft assemblies generated de novo. The resultant assemblies had 0-4 graph dead-ends, 353 
N50s of 151958-388486 bp and 83-187 contigs (Data S4), within the tiered threshold values. 354 

FBA was performed, and the predicted growth profiles compared to matched phenotypic growth 355 
data for 16 carbon sources derived from Vitek GN ID cards. Though the number of tested carbon 356 
sources was limited, all were associated with high accuracy metrics (Fig. 5, Data S4). As 357 
expected, models for isolates with STs represented in the KpSC-pan v1 reference performed 358 
slightly better (mean accuracy = 0.98) than those for non-represented STs (mean accuracy = 359 
0.95). 360 

 361 

362 

Figure 5: A) Comparisons of predicted to true phenotypes for 16 carbon source substrates. False-negatives, true-363 
negatives, false-positives and true-positives are coloured as shown in legend. Each column represents a different 364 
isolate, separated by ST representation in the KpSC-pan model. B) Accuracy metrics for predicted vs phenotypic growth 365 
comparisons shown in A. Each column represents a different isolate, coloured by taxa and separated by ST 366 
representation in the KpSC-pan v1 model. 367 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530115
http://creativecommons.org/licenses/by/4.0/


Discussion 368 

In this work we described Bactabolize, a pipeline for rapid and scalable production of accurate 369 
bacterial strain-specific metabolic models and growth phenotype predictions. We describe a pan-370 
reference model for the KpSC and demonstrate that a draft strain-specific model generated de 371 
novo via Bactabolize using the KpSC-pan v1 reference was highly accurate for growth phenotype 372 
prediction (85.79% accuracy for substrate usage across 190 substrates, and 80.57% for gene 373 
essentiality across 1220 genes). Importantly, we also described a quality control framework for the 374 
use of draft genome assemblies as input for metabolic reconstructions. We used a systematic 375 
analysis to; i) evaluate the proportion of gene and reaction capture compared to the corresponding 376 
‘completed’ models; ii) define quality control thresholds for input assemblies (three tier approach 377 
for KpSC; ≤200 assembly graph dead ends, followed by ≥65000 N50, followed by ≤130 contigs); 378 
and iii) estimate the accuracy of the resultant growth predictions. While the quality control 379 
thresholds and accuracy estimates are specific to KpSC, the conceptual framework can be applied 380 
to any organism and is essential to support the confident application of metabolic modelling for 381 
large-scale genome datasets. We appreciate that assembly graphs may not be available for dead 382 
end count, e.g. for draft genome assemblies accessed via public repositories, however we 383 
encourage users to include this information in their quality control procedures wherever possible 384 
(e.g. using the recently published counter tool available at https://github.com/rrwick/GFA-dead-385 
end-counter), because these counts represent a direct reflection of the completeness of the 386 
genome assembly. In contrast, contig counts and N50 are influenced by biological features such 387 
as repeat copy numbers as well as the underlying sequence data quality e.g. a bacterial genome 388 
harbouring many insertion sequence insertions will result in a draft assembly with a high number of 389 
contigs regardless of the sequence data quality and completeness. 390 

Bactabolize’s reference-based reconstruction approach is reductive, meaning the resultant draft 391 
models will comprise only the genes, reactions and metabolites present in the reference, or a 392 
subset thereof, and will not include novel reactions unless they are manually identified and curated 393 
by the user. This is an important caveat that should be considered carefully for application of 394 
Bactabolize to large genome data sets, particularly for genetically diverse organisms such as those 395 
in the KpSC. The use of a pan-reference derived from multiple curated strain-specific models 396 
results in greater representation of the population diversity and partially alleviates the 397 
shortcomings of the reference-based approach. However, draft models constructed for strains with 398 
a corresponding lineage represented in the reference are likely more accurate. Our analysis 399 
indicated that a draft KpSC model generated by Bactabolize with the KpSC pan v1 reference was 400 
equally or more accurate than the current gold standard automated approach, CarveMe with 401 
universal model (30), and outperformed a manually curated model (15). The latter was constructed 402 
using the KBase pipeline (32), which uses RAST to annotate the sequences with Enzyme 403 
Commission numbers. It has been demonstrated several times that the Enzyme Commission 404 
scheme has systematic errors (58, 59), leading to a loss in accuracy when compared to the 405 
ortholog identification methods used in CarveMe and Bactabolize. 406 

The CarveMe universal reference model captures greater diversity than the KpSC pan v1 407 
reference, which resulted in a comparatively greater number of genes, reactions and metabolites 408 
in the corresponding CarveMe draft model, and ability to simulate growth outcomes for a greater 409 
number of distinct substrates (Figure 2). Overall, CarveMe (with the universal model) performed 410 
extremely well, with high numbers of true-positive growth predictions. However, these were also 411 
accompanied by comparatively higher numbers of false-positive predictions, which resulted in a 412 
lower overall accuracy score for substrate usage analysis compared to Bactabolize with the KpSC-413 
pan v1 reference (Figure 2), and comparatively lower sensitivity and specificity for the gene 414 
essentiality analysis. False-positive predictions may indicate that the relevant metabolic machinery 415 
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are present in the cell but were not active during the growth experiments (e.g. due to lack of gene 416 
expression). In this regard, false-positives are not always a sign of model inaccuracy. However, 417 
false-positive predictions can also occur from incorrect gene annotations e.g. due to reduced 418 
specificity of ortholog assignment resulting from the use of the universal model without manual 419 
curation. Given a key objective here is to facilitate high-throughput analysis for large numbers of 420 
genomes, it is not feasible to expect that all models will be manually curated, and therefore we 421 
believe that identifying fewer genes with lower overall error rates provides greater confidence in 422 
the resulting draft models. We also note that the CarveMe universal reference model is no longer 423 
being actively maintained, but in contrast, user defined species- (or genera-) specific references 424 
can be iteratively curated and updated to incorporate new knowledge and data as they become 425 
available. Accordingly, the accuracy of models derived from such references is expected to 426 
continually improve. 427 

Bactabolize and the KpSC pan v1 model are freely available under open source licenses and 428 
satisfy the four features of the FAIR research principles (findability, accessibility, interoperability 429 
and reusability) (60). In addition to the KpSC pan-reference described here, a pan-reference model 430 
has been described previously for Salmonella enterica (representing 410 strains (25)). We are 431 
actively working to expand and improve the KpSC pan reference model and welcome similar 432 
efforts to generate high quality references for other organisms. Together these resources will 433 
facilitate population wide metabolic analyses for global priority pathogens, which can be used to 434 
understand how they transmit, cause disease and evolve drug-resistance, and to identify novel 435 
therapeutic targets. 436 

Methods 437 

Bactabolize pipeline 438 

Bactabolize utilises the existing metabolic modelling library COBRApy (36) and Python 3 (61). All 439 
code is freely available and open source at GitHub (www.github.com/kelwyres/Bactabolize) under 440 
a GNU General Public License v3.0. Users should additionally cite COBRApy (36) if Bactabolize is 441 
used. 442 

Klebsiella pneumoniae Species Complex-pan metabolic model 443 

The 37 metabolic models from a previous study (14) were combined with the iY1228 model using 444 
the create_master_model.py script (available at 10.6084/m9.figshare.21728717). Briefly, all GPRs 445 
from the iYL1228 model and the associated sequences were included, as well as new GPRs 446 
identified from the 36 additional strains by manual curation following comparison to the matched 447 
phenotype data (as described in (14)). Additionally, orthologous sequence variants with <75% 448 
nucleotide identity to gene sequences associated with these gene reaction rules (GPRs) were 449 
added if there was phenotype data supporting the reaction. The biomass reaction was updated, 450 
removing the metabolites udpgalur_c and udpgal_c as their production was strain-specific. 451 

Metadata annotations were improved using the improve_model_annotations.py script (also 452 
available in the Bactabolize code repository) resulting in the KpSC_pan v1 used in this study, 453 
available at www.github.com/kelwyres/KpSC-pan-metabolic-model. 454 

Draft model generation 455 

Bactabolize draft models were generated using the draft_model command in Bactabolize v1 with 456 
the KpSC-pan v1 model as a reference, and the following options: 457 

--min_coverage 25 --min_pident 80 --media M9 --atmosphere aerobic 458 
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CarveMe draft models were generated firstly using the universal reference with the following 459 
commands: ‘-g M9 -i M9’. The --universe-file mode was also used, so the KpSC-pan model could 460 
be used as a reference, with the previously described command. 461 

Speed calculations 462 

Bactabolize draft_model and fba commands were timed via a script using the date +%s.%N 463 
command run before and after command on the MASSIVE computing cluster (Intel(R) Xeon(R) 464 
Platinum 8260 CPU @ 2.40GHz and 340 GB of memory, CentOS Linux release 7.9.2009 465 
environment). Speed tests were also performed on a standard consumer laptop with the following 466 
hardware: Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz and 15 GB of memory on Windows 467 
Subsystem for Linux (WSL1) environment. 468 

Performance comparison 469 

The genome of K. pneumoniae KPPR1 was obtained from Genbank under the accession: 470 
CP009208, and draft metabolic models were generated using Bactabolize and CarveMe as 471 
described above. The previously described, manually curated model for KPPR1 (iKp1289) was 472 
also included for comparison (15). The following KPPR1 phenotype data were retrieved from 473 
published studies: BIOLOG Phenotypic Microarray data (15) and single gene knockout data 474 
inferred from the outputs of a TraDIS transposon mutagenesis library (56). 475 

A list of BIOLOG growth substrates for plates PM1, PM2A, PM3B, and PM4A (62) were converted 476 
where possible to BiGG and SEED IDs by manual search of the BiGG (bigg.ucsd.edu) and SEED 477 
websites (https://modelseed.org/biochem/compounds). An updated BiGG to SEED dictionary can 478 
be found in Data S1. A total of 143 of 190 carbon, 82 of 95 nitrogen, 46 of 59 phosphor and 26 of 479 
35 sulfur substrates were successfully matched to BiGG and SEED IDs (Data S1). These growth 480 
data were compared to in silico predictions generated via FBA using the fba command from 481 
Bactabolize to optimise the biomass objective function with the following options: 482 

--fba_spec_name m9 --fba_open_value -20 483 

Gene essentiality was inferred from single gene knockout growth predictions using the sgk 484 
command from Bactabolize with the following options to mirror the growth conditions of the TraDIS 485 
library (LB media grown aerobically): 486 

--media_type lb --atmosphere aerobic 487 

In all cases, an objective value cut-off of ≥10-4 was used to indicate binarised growth as per 488 
previous studies (14, 63). 489 

In silico predictions were compared to matched phenotype data and the following accuracy metrics 490 
were calculated: 491 
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 492 

Quality control framework 493 

Illumina read sets (250 bp paired end) and completed genome sequences for 37 KpSC isolates 494 
were described previously (14). Here we randomly subsampled the Illumina reads at various 495 
depths (10 – 100, by increments of 10) using rasusa version 0.3.0 (64) in technical triplicate. 496 
Reads were then trimmed using TrimGalore version 0.5.0 (65) and assembled de novo with 497 
Unicycler version 0.4.7 (66), default parameters. Assembly statistics and assembly graph dead 498 
ends were calculated using the GFA-dead-end-counter version 1.0.0 499 
(https://github.com/rrwick/GFA-dead-end-counter) (67). Draft metabolic models were generated 500 
with Bactabolize using the KpSC-pan v1 reference, and growth substrate profiles were predicted 501 
as described above. We compared the outputs from models generated for draft genome 502 
assemblies to those generated for the corresponding completed genomes. Where necessary 503 
models were gap-filled via the patch_model command. 504 

Predictive accuracy of draft models 505 

Novel growth phenotype data were generated for 10 KpSC clinical isolates from our in house 506 
collection using the VITEK 2 GN ID card system as described previously (14). Briefly, isolates 507 
were grown on Tryptic Soy (OXOID) agar plates overnight at 37°C, then analysed using VITEK 2 508 
GN ID cards (bioMérieux) and read on the VITEK 2 Compact (bioMérieux) as per manufacturer’s 509 
instructions using software version 8.0. DNA was extracted for whole-genome sequencing via 510 
Genfind v3 extraction kit, library preparation performed using Nextera Flex (Illumina) using ¼ 511 
reagents. Paired-end read data (300 bp) were generated on an Illumina NovaSeq6000 SP v1.0 512 
and have been deposited in the European Nucleotide Archive under Bioproject PRJNA777643 513 
(individual read accession numbers are given in Data S4). Draft genome assemblies were 514 
generated with Unicycler, and draft metabolic models and growth predictions were generated with 515 
Bactabolize as described above. 516 

Statistics and visualisation 517 

Statistical analysis and graphical visualisation were performed using R version 4.0.3 [23], RStudio 518 
version 1.3.1093 (68), with the following software packages: tidyverse version 1.3.1 (69), viridis 519 
version 0.5.1 (70), RColorBrewer version 1.1-2 (71), ggpubr version 0.4.0 (72) ggpmisc version 520 
0.4.4 (73), aplot version 0.1.6 (74), colorspace version 2.0-2 (75), ggpattern version 0.4.3-3 (76), 521 
ggtext version 0.1.1 (77) and glue version 1.4.2 (78). 522 

Linear regression analysis was performed in R using the lm function in R and a third degree 523 
polynomial model was fitted to plots with the following equation: y ~ poly(x, 3, raw = TRUE). The 524 
segmented linear model was fitted using segmented version 1.6-2 (79). 525 

All code used to generate results can be found as supplemental material, 526 
https://github.com/kelwyres/Bactabolize and on Figshare (10.6084/m9.figshare.21728717). 527 

Logo 528 

The Bactabolize logo was constructed in Inkscape version 1.0.1 (80). The font used is Proportional 529 
TFB (81) and Element (82). 530 

 531 
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Supplementary figures 770 

 771 

Figure S1 772 

Flow diagram showing the overview of the draft_model module from Bactabolize, which produces 773 
draft metabolic models. Input and output files are shown in light pink while Bactabolize processes 774 
are shown in dark pink. Third-party dependencies are indicated within the white boxes. 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530115
http://creativecommons.org/licenses/by/4.0/


Figure S2 783 

Flow diagram showing the overview of the patch_model module from Bactabolize, which patches 784 
metabolic models that do not simulate growth. Input and output files are shown in light orange 785 
while Bactabolize processes are shown in dark orange. Third-party dependencies are indicated 786 
within the white boxes. 787 
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Figure S3 799 

Flow diagram showing the overview of the fba module from Bactabolize, which performs growth 800 
simulations using Flux Balance Analysis. Input and output files are shown in light yellow while 801 
Bactabolize processes are shown in dark yellow. Third-party dependencies are indicated within 802 
white boxes. C, carbon; N, nitrogen, P, phosphorus; S, sulphur; O2, oxygen. 803 
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Figure S4 817 

Flow diagram showing the overview of the sgk module from Bactabolize, which performs Single 818 
Gene Knockout analysis. Input and output files are shown in light blue while Bactabolize processes 819 
are shown in dark blue. Third-party dependencies are indicated within white boxes. 820 
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Figure S5 835 

Raincloud plot showing distributions of assembly metrics across various read subsampling depths 836 
(10x increments).  837 
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Figure S6 851 

Line graph showing the capture of model features of draft assemblies (short read only) at various 852 
depths, compared to the corresponding completed genome (long-read + short read assemblies).  853 
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Figure S7 865 

Faceted graphs showing the number of substrate usage (fba module) discrepancies of gap-filled 866 
models (patch_model module) which initially did not produce biomass (models which failed to 867 
simulate growth). The dots indicate percentage concordance with the completed genome model, 868 
while the columns indicate number of substrates with discrepancies (no simulated growth in 869 
patched model, but growth in completed genome model).  870 
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