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The coexistence of obligate mutualists is often precariously close
to tipping points where small environmental changes can drive
catastrophic shifts in species composition. For example, mi-
crobial ecosystems can collapse by the decline of a strain that
provides an essential resource on which other strains cross-feed.
Here, we show that tipping points, ecosystem collapse, bistabil-
ity and hysteresis arise even with very weak (non-obligate) mu-
tualism provided the population is spatially structured. Based
on numeric solutions of a metacommunity model and mean-field
analyses, we demonstrate that weak mutualism lowers the mini-
mal dispersal rate necessary to avoid stochastic extinction, while
species need to overcome a mean threshold density to survive in
this low dispersal rate regime. Moreover, we show that, start-
ing with a randomly interacting species pool, metapopulation
structure tends to select for an ecosystem with mutualistic inter-
actions. Bistable metacommunities could, therefore, be a natu-
ral outcome of evolutionary dynamics in structured ecosystems.
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Introduction
Mutualistic interactions between species are ubiquitous in na-
ture and can be critical for the stability of natural ecosystems
as exemplified by cross-feeding microbes in the gut (1–3),
cooperative growth (4), and sexual mating (5). When mutual-
ism is obligate, i.e. species survival relies on the presence of
each other, the well-mixed population dynamics can exhibit
a critical threshold population size that a species must over-
come to avoid extinction, often referred to as strong Allee
effect (6, 7) [see Fig. 1(a)]1. Models that incorporate a strong
Allee effect are of great interest in ecology and are invoked
frequently to explain tipping points and catastrophic shifts
between survival and extinction in ecosystems (8–10). As
an instructive example, when microbes depend on each other
in order to access vital resources, their populations dynamics
can exhibit a tipping point at which the community under-
goes catastrophic shifts upon the variation of experimental
parameters such as nutrient levels (4, 11–13)
When populations are coupled through dispersal, i.e. in a
metapopulation, bistability of the respective well-mixed pop-
ulation dynamics can lead to spatiotemporal behavior that
is qualitatively different than in a metapopulations under-
going regular logistic growth, including pushed instead of

1A weak Allee effect, in turn, refers to scenarios where at low population
size, the growth rate of a species increases with its population size but stays
positive.

pulled waves in range expansions (14–16), localized wave
fronts (17), and pronounced patchiness (18).
As opposed to obligate mutualism, we will refer to ecosys-
tems with weak mutualism as ecosystems whose well-mixed
dynamics show neither tipping points nor bistability, but fol-
low simple logistic growth qualitatively similar to a pop-
ulation in the absence of inter-species interactions [see
Fig. 1(b)]. Accordingly, it is less clear how, if at all, a meta-
community with weak mutualism shows different spatiotem-
poral dynamics than a metacommunity without any inter-
species interactions.
Here, we show that even the weakest form of mutualism in
a metacommunity can lead to a tipping point accompanied
by bistability and catastrophic shifts between coexistence and
extinction when demographic fluctuations are taken into ac-
count. Our combined analytical and numerical methods re-
veal a regime of intermediate dispersal rates, where species
can avoid extinction when the mean population size over-
comes a threshold size. Informed by our intuition regard-
ing purely mutualistic interactions, we show that close to the
onset of finite population sizes, metacommunities with ran-
dom interactions undergo selection for mutualistic interac-
tions. We further apply our analyses to metacommunities
in which mutualism acts on the dispersal rate rather than
inter-species interactions and find a similar emergent tipping
point. Our results give insights into the role of demographic
stochasticity and dispersal in metacommunities and highlight
the emergence of tipping points and catastrophic shifts even
when absent under well-mixed conditions.

Results
Mathematical approach to metacommunities with weak mu-
tualism. In the following, we consider S species that live
in a metacommunity of P coupled communities (patches),
where P is assumed to be large. The dynamics of the popula-
tion sizeNx,i of species i∈{1, . . .S} on patch x∈{1, . . . ,P}
is modeled by the following set of generalized Lotka-Volterra
equations [see Fig. 1(c) for a graphical representation]:

∂tNx,i(t) =rNx,i

1− Nx,i
K

+ α

K

S∑
j,j 6=i

Nx,j


+λ(N̄i−Nx,i) +

√
Nx,i ηx,i . (1)

The first term in Eq. (1) describes growth of a species’ pop-
ulation at a growth rate r > 0, which saturates at a carry-
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(b)  Weak mutualism

(a)  Strong Allee effect (c)

Fig. 1. Obligate and weak mutualism. (a) Obligate mutualism can lead to a
strong Allee effect, where the dynamics ∂tN of a well-mixed population of size N
leads to either extinction (N = 0) or a finite population size (N > 0) depending on
the initial population size. Full and open circles denote stable and unstable fixed
points, respectively, where the center unstable fixed point is often referred to as
Allee threshold. Arrows denote the flow of the dynamics. (b) In contrast, weak
mutualism merely increases the effective carrying capacity (stable fixed points) of
a species, which is achieved by increasing α in our model. (c) Illustration of our
mathematical approach. Different species (different colors) interact through weak
mutualism with a strength α and all individuals disperse between all patches at a
dispersal rate λ (global dispersal).

ing capacity K due to self-limiting interactions. The inter-
action parameter α > 0 denotes the strength of mutualistic
interactions between species. Assuming a constant interac-
tion strength α between all species allows an analytic mean-
field description; the results of this analysis will yield impor-
tant intuitions when we later allow variations in the species’
inter-species interactions. The second term in Eq. (1) takes
into account dispersal, where we assumed, as a simple spa-
tial approach, that all patches are connected through dispersal
with a species-independent dispersal rate λ [global dispersal,
compare Fig. 1(c)], and N̄i denotes the abundance of species
i averaged over all P patches. The last term in Eq. (1) reflects
demographic fluctuations due to random births and deaths of
individuals within a population, where ηx,i denotes uncorre-
lated noise with zero mean and variance ω2. The square-root
dependence of demographic noise on the density ensures that
the expected variance of fluctuations is proportional to the
expected number of birth or death events during one gen-
eration and has been derived in various contexts from dis-
crete descriptions of growing populations (19, 20). Under
well-mixed conditions, the deterministic population dynam-
ics of Eq. (1) for every species follows regular logistic growth
with a stable steady state abundance N∗ at

N∗ =K/[1−α(S−1)] , (2)

as long as mutualistic interactions are weaker than self-
limiting interactions, i.e. α < (S − 1)−1. Specifically, this
means, that population growth does not display an explicit
Allee effect nor bistability [compare Fig. 1(a) and (b)]. In
the following, we will solve Eq. (1) numerically and employ
mean-field analyses to study the effect of demographic fluc-
tuations and dispersal and show how these can, nevertheless,
generate bistability and an abrupt shift in the population size.

Weak mutualism generates a tipping point in a metacommu-
nity. For a clearer presentation of our results, in the fol-
lowing we fix r, K, and α (with α� (S− 1)−1), and vary

the dispersal rate λ for different numbers of species S. First,
we discuss our numerical solutions of Eq. (1) assuming small
average abundances N = (SP )−1∑

x,iNx,i as initial condi-
tion (for details on the numerical solution, see Appendix 1).
In the absence of mutualistic interactions, i.e. S = 1, the
growth and dispersal dynamics represented by Eq. (1) have
been extensively studied for short-range dispersal in the con-
text of directed percolation (21, 22) and for global dispersal
in metapopulations (23–26). From these earlier studies we
expect that for S = 1, increasing the dispersal rate leads to
a continuous transition from a phase of zero population size
(absorbing phase) to a phase of finite population sizes (ac-
tive phase). Indeed, when numerically solving the dynam-
ics Eq. (1) with global dispersal and for only one species
(S = 1), we find that for zero and small dispersal rates λ all
species eventually go extinct, whereas for λ above a critical
threshold value λc, the average population size after the fi-
nal time step of our numerical solution is finite and increases
continuously with λ [see triangles in Fig. 2(a)]. Interestingly,
when increasing the number of species at constant mutual-
istic interaction strength α > 0, the average abundance as a
function of the dispersal rate λ undergoes a sudden jump at
λc from zero to finite values. Discontinuous transitions are a
telltale sign of subcritical bifurcations and bistability close to
the transition (27). To investigate the possibility of multiple
stable solutions, we repeat our numerical solutions for larger
initial average abundances, and, indeed, find bistability close
to the threshold dispersal rate λc for larger S [see circles in
Fig. 2(a)].

To get deeper insights into the exact form of the bifurcation,
we employ a mean-field approximation of Eq. (1), that has
been recently presented to approximate the stationary abun-
dance distribution for metacommunities with competitive in-
teractions (23). In short, by expressing the interaction term
through the species-averaged abundance on a patch defined
as N̂x = S−1∑

iNx,i and treating the mean-fields N̂x and
N̄i as deterministic mean-field parameters, we can map the
dynamics Eq. (1) to the solvable problem of a Brownian par-
ticle in a fixed potential. Demanding that N̄i and N̂x are
both equal in equilibrium (in the limit of an infinite num-
ber of species and patches) we can derive an analytic expres-
sion for the abundance distribution as a function of the mean
species abundance N := N̄i = N̂x and the control parame-
ters r, K, α, S, and λ, which can be solved self-consistently
[for a detailed derivation see (23) and Appendix 2]. In agree-
ment with our numerical solution, our analytic mean-field ap-
proximation predicts bistability between the dispersal rate λc
[for an analytic expression see (23) and Appendix 2] and a
lower dispersal rate λt, which marks a point where a small
decrease of the dispersal rate causes an abrupt shift from fi-
nite population size to extinction, often referred to as tipping
point (10) [see dashed vertical lines in Fig. 2(a)]. In addi-
tion, our analytic solution reveals an unstable branch mark-
ing the threshold mean abundance as a function of the dis-
persal rate the metacommunity must exceed to reach a finite
mean abundance and avoid extinction [see long dashed lines
in Fig. 2(a)]. Looking at the abundance distribution P[N ]
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at a dispersal rate close above λc, we observe that when in-
creasing the number of species, its shape transitions from a
scaling P[N ] ∝ xN/N for small N , a common scaling in
ecology often referred to as Fisher-log series (28, 29), to an
approximate Gaussian distribution [see Fig. 2(b), for details
see (23) and Appendix 2].
In summary, our numerical and analytical results strongly
suggest that despite the lack of bistability in the determinis-
tic and well-mixed population dynamics, the metacommunity
displays a tipping point accompanied by a regime of bistabil-
ity. The identified bifurcation predicts discontinuous transi-
tions at λc and the tipping point dispersal rate λt, and sug-
gests hysteresis when varying the dispersal rates across these
two values. We find that the range of bistability increases the
more species interact through mutualism [see Fig. 2(c)]. As
a consequence, this suggests that perturbations that decrease
the number of species, even if only by a few species, may
shift the metacommunity into a regime where eventually all
species go extinct [see arrow in Fig. 2(c)]. While we find that
demographic fluctuations can lead to bistability, even when
bistability is absent under deterministic well-mixed condi-
tions, previous studies suggest that demographic fluctuations
can also have the reverse effect on population transitions:
a metapopulation that exhibits bistability under determinis-
tic and well-mixed conditions (imposed through an explicit
strong Allee effect) can show a smooth transition when dis-
persal and stochasticity are taken into account [see (30–32)
and Appendix 3]. Comparing these previous results with
our results for weak mutualism (Fig. 1) highlights the mul-
tifaceted role of stochasticity in spatially extended popula-
tions.

Spatial structure selects for metacommunities with an ex-
cess of mutualistic interactions. The dramatic change
from a smooth to a discontinuous transition close to the
threshold dispersal rate λc suggests several implications for
more general species interactions. Since in contrast to species
with competitive interactions, species with mutualistic inter-
actions are able to reach large finite abundances already well
below λc, we hypothesize that in a metacommunity with ran-
dom interactions, mutualism may play an important role in
community assembly, at least close to λc. To test this idea,
we generalize the metacommunity dynamics Eq. (1) and as-
sume random interactions αi,j between species i and j. The
generalized metacommunity dynamics reads

∂tNx,i(t) =riNx,i

1− Nx,i
K

+
S∑

j,j 6=i

αi,j
K

Nx,j


+λ(N̄i−Nx,i) +

√
Nx,i η , (3)

where we again assumed global dispersal between patches.
For a clearer distinction between mutualistic and competi-
tive interactions between species, we choose interactions to
be symmetric, i.e. αj,i = αi,j . Motivated by earlier work on
well-mixed communities (33–38), we draw αi,j from a Gaus-
sian distribution with mean α and standard deviation σ/

√
S.

Hence, it is possible to choose α and σ in a way that interac-
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Fig. 2. Weak mutualism generates a tipping point. (a) Starting at small and large
initial population sizes (triangles and circles, respectively), the mean population size
in our numerical solutions can reach zero or finite values. These numerical results
are in very good agreement with our mean-field solution (lines). Solid and dashed
lines denote stable and unstable manifolds, respectively. Colors denote different
numbers of species, S = 100 (green), S = 75 (orange), and S = 1 (blue). The
threshold dispersal rate λc is shown as a full black circle. (b) Numerical and analytic
solutions for the abundance distribution P [N ] (circles and lines, respectively) for
dispersal rates just above λc. Colors represent different S as in (a). (c) Small
changes in the species number, i.e. through perturbations, can lead to a collapse
of the metacommunity (as indicated by the arrow), λ = 0.001. Parameters: r =
0.3, K = 10, α= 0.005, P = 500.

tions between some species i and j are mutualistic (αi,j > 0)
while interactions are on average competitive (α < 0). A
detailed analytical understanding of the spatially structured
community assembly with random interactions is beyond the
scope of our mean field analysis, but can be obtained using
the replica method (39) . In the following we use numerical
solutions of Eq. (3) to show that, below the critical threshold
dispersal rate λc, communities survive that are enriched in
mutualistic interactions, even though the interactions among
the initial species pool are on average competitive.
First, we solve the dynamics Eq. (3) numerically for fixed
r, K, S, σ, negative interaction mean α (i.e. an on av-
erage competitive interaction between species), and varying
λ. Here, we will focus on relatively small interaction differ-
ences, i.e. small σ, where previous studies suggest that, un-
der well-mixed conditions, a community approaches a unique
equilibrium state (35–37). Similar to our results for purely
mutualistic interactions [Fig. 2(a)], we find positive popula-
tion sizes already for dispersal rates below λc [see Fig. 3(a)].
Furthermore, we observe bistability, i.e. for dispersal rates
below λc the metacommunity approaches positive mean pop-
ulation sizes when the initial population size is sufficiently
large while it goes extinct otherwise. In order to investigate
the role of mutualistic interactions especially in this regime
of dispersal rates around λc, we calculate the mean interac-
tion I := 〈(αi,j/K)Nj,x〉x,j of all surviving species at the
last time point of our numerical solution [see Fig. 3(b)]. In
line with our intuition from purely mutualistic interactions,
we find that for dispersal rates below λc, all species that sur-
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Fig. 3. Tipping point for metacommunities with random interactions. (a)
Numerical solutions of Eq. (3) for initially low (triangles) and high (circles) mean
population sizes for three different sets of random interactions (denoted by three
different colors) suggest bistability and hysteresis between the tipping point (left
dashed line) and close to λc (black circle, right dashed line). Gray solid line shows
mean-field solution for identical, competitive interactions (αi,j = α) (b) Distribu-
tions of mean interactions with other species for all three sets of random interactions
shown in (a) for λ= 10−2.8, λ= 10−2.2, λ= 10−1.5 from light to dark, respec-
tively (λc ≈ 10−2.6). Remaining Parameters: σ = 0.5,r = 0.3,S = 100,α =
−0.01, P = 500.

vive form on average mutualistic interactions with their fel-
low surviving species [the distribution of I , P[I], in Fig. 3(b)
has only contributions from positive I]. When we increase
the dispersal rate beyond λc, more species survive and, in
particular, also species with on average competitive interac-
tions coexist. We were also interested how the communities
of remaining survivors of our numerical solution compare to
our mean-field model with species-independent interaction
coefficient. To this end, we calculate the mean-field solution
with the number of species S and the species-independent in-
teraction coefficient α being equal to the number of surviving
species and their average interaction coefficient, respectively,
that we obtained from our numeric simulation of the meta-
community with random interactions. Interestingly, we ob-
serve that in the bistability regime, and when starting at large
population sizes, the surviving community is very close to the
tipping point of our mean-field prediction (see Appendix 4).
This suggests that random metacommunities self-organize to
a state very close to the tipping point where they may be very
sensitive towards perturbations in their parameters e.g. their
number of species.

Tipping point through density-dependent dispersal. So
far, we have incorporated mutualism through direct inter-
actions between species, such that interactions effectively
increase the species growth [see Eq. (1) and Eq. (3)]. In
the following, we investigate positive interactions between
species through their dispersal, i.e. interactions that increase
the species’ dispersal rates.
There is indeed evidence in many species (40–44) that emi-
gration rates from crowded areas tend to be elevated to avoid
competition for resources. Since this effectively results in
a dispersal rate that increases with the abundance of other
populations, we refer to this scenario as mutualism through
density-dependent dispersal in the following. When assum-
ing that, as a first approximation, emigration from a patch
increases linearly with the number of individuals of other
species already present, the dispersal term in Eq. (1) can be

(a)              Mean abundance (b)
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Fig. 4. Density-dependent dispersal generates tipping point. (a) The mean
population size in our numerical solutions for S = 1 (blue), S = 40 (orange),
and S = 100 (green), can reach different values when starting at small and large
initial population sizes (triangles and circles, respectively) in agreement with our
mean-field solution (solid and dashed lines denote stable and unstable manifolds,
respectively). Full black circle marks λc. The inset illustrates density-dependent
dispersal, where emigration increases with the abundance of individuals from other
species on a patch. (b) Mean-field solution of the mean abundance predicts a catas-
trophic shift as function of the species number, λ= 0.001. Remaining parameters:
r = 0.3, K = 10, β = 0.02, P = 500.

written as

λ

P

 P∑
y

1 +β
S∑
j 6=i

Ny,j

Ny,i−
1 +β

S∑
j 6=i

Nx,j

Nx,i
 ,
(4)

where we assumed a constant baseline dispersal rate λ be-
tween every patch and a linear increase of dispersal with pop-
ulation size with a factor β. Next, we solve Eq. (1) for fixed
r, K, and S > 1 with α = 0, i.e. without direct mutualistic
interactions, and the dispersal term Eq. (4) with β > 0 numer-
ically and discuss the respective mean-field approximation
(for details on the mean-field description, see Appendix 2).
Similarly to direct mutualistic interactions between species,
we find that when varying the baseline dispersal rate λ, the
average abundance of the metacommunity undergoes a sub-
critical bifurcation at λc [see Fig. 4(a)]. As for direct mu-
tualistic interactions, the regime of dispersal rates λ that
shows bistability grows for increasing S [see Fig. 4(b)]. We
thus conclude that mutualistic interactions through density-
dependent dispersal result in a similar phenomenology, in-
cluding catastrophic shifts, as mutualism that directly affects
species growth.

Discussion
While strong (obligate) mutualism with inherent Allee effects
has repeatedly been shown to yield rich behavior also in a
spatially extended system, we find here that even the weak-
est form of mutualism among species can lead to dramatic
consequences in a metacommunity that would remain hidden
in a well-mixed deterministic description. Specifically, weak
mutualism can have severely affect the stability of a meta-
community and lead to tipping points and hysteresis. The
emergent tipping point predicts sudden shifts between coex-
istence and metacommunity collapse when parameters such
as the dispersal rate, the number of interacting species or the
strength of mutualistic interactions are even slightly varied,
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e.g. due to (environmental) perturbations. The emergence
of bistability in our stochastic description may seem unex-
pected on the background of the smoothing effect of demo-
graphic noise [(30, 32) and Appendix 3], and highlights the
multifaceted role of demographic noise for the dynamics of
spatially extended metacommunities.
Our results pinpoint the important role of mutualistic inter-
actions also in complex metacommunities with random in-
teraction statistics. We show that, in general, community as-
sembly selects for mutualistic interactions, and for dispersal
rates below a critical rate λc, mutualism is even essential to
avoid metacommunity collapse. Based on these insights, our
approach advocates for simplistic models that can help to un-
derstand isolated features of complex ecological systems and
may offer a more intuitive interpretation.
We found qualitatively similar effects when we allowed for
positive density-dependence in the dispersal rates, which sug-
gests a more general view of mutualistic interactions.
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Supplementary Note 1: Numerical solution of the metacommunity dynamics
As detailed in the main text, the metacommunity is assumed to follow the dynamics Eq. (1). By rescaling the growth rate and
the dispersal rate with the rate ω, we measure time in units ω−1 and can set ω = 1 in the following. Unless noted otherwise,
for Fig. 2 and 3 in the main text we fixed the growth rate (r = 0.3), the competition strength (α = 0.005), the carrying capac-
ity (K = 10), and solved the dynamics for global dispersal for various dispersal rates λ and different numbers S of initially
coexisting species based on the following Euler forward scheme. All calculations were performed in Python (45) and the
results were evaluated using Mathematica (46). For each time step ∆t, we first calculate the update of the population size
for each species on each patch given by the growth and dispersal dynamics [first two terms in Eq. (1), respectively]. The
contributions from growth and dispersal are calculated and updated separately in order to avoid unphysical scenarios, e.g. that
an unoccupied patch acts as a source of dispersal. After updating the deterministic abundance of each species on each patch,
demographic fluctuations [last term in Eq. (1)] are added by sampling from a Poisson distribution with the mean being the
deterministic abundance. Interpreting Eq. (1) in the Itô sense (47), the Euler forward update for the demographic fluctua-
tions are then incorporated by adding

√
∆t(Poisson[Nx,i]−Nx,i) to the deterministic abundances, where Poisson[Nx,i]

is a sample from a Poisson distribution with mean Nx,i. The implementation of demographic fluctuations through a Poisson
process guarantees that their variance is given by Nx,i (47), consistent with Eq. (1). As initial condition we either choose
Np,i = 15 (large initial population sizes) or Np,i = 1 (small initial population sizes) for all patches x ∈ {1, . . .P} and species
i ∈ {1, . . .S} with small random fluctuations. For the numerical solution of the more general metacommunity given by Eq. (3)
in the main text we employ an analogous Euler forward scheme as above where the interaction strengths αi,j are drawn from
normal distributions centered around µ, with standard deviation σ/S. For our numerical solutions, the time steps ∆t are adapted
to values between 0.02 and 1 and the last time step is chosen to be 20000, measured in units ω−1. The Python code devel-
oped for this study is based on the code of our previous study on metacommunities with competitive interactions available at
https://github.com/Hallatscheklab/Self-Consistent-Metapopulations, where we account for mu-
tualistic interactions by changing the sign of the interaction parameter α in the code.

Supplementary Note 2: Self-consistent mean-field approach
In the following we will discuss our analytical mean-field approach to species-rich metacommunities with global dispersal
that allows us to calculate static quantities such as the critical dispersal rate λc, the mean population size of species, and
the abundance distribution. For convenience, we describe our analysis based on the dynamics for the relative abundances
fx,i =Nx,i/K. and introduce the mean fields f̄i :=P−1∑P

x fx,i and f̂x := S−1∑S
i fx,i, where f̄i and f̂x denote the averages

of the relative abundance fx,i taken over patches and species, respectively. In the following we assume that the number of
patches P and the number of coexisting species on each patch are large, and that all species are statistically identical [with
identical growth rates, carrying capacities, interactions and dispersal rates, as in Eq. (1)]. Under this assumption, we estimate
the sums over different patches and species in Eq. (1) through the mean field expressions f̄i and f̂x and treat these mean
fields as deterministic parameters. In the following, we will first present the mean-field description for the case of direct
mutualistic interaction as in Eq. (1). Later, we discuss an analogous solution for density-dependent dispersal with a dispersal
term introduced in Eq. (4).

Mean-field approach for direct mutualistic interactions. Expressing Eq. (1) through the mean fields f̄i and f̂x, the dynamics
for every species on every patch can be written as

∂tf(t) = f
∂F
∂f

+
√
f/K η(t) (5)

with: F = rf

[
1− f2 +α(S−1)f̂

]
+λ

[
f̄ log(f)−f

]
, (6)

where we omitted the species and patch index since all species and patches are assumed statistically identical. The representa-
tion Eq. (5) admits an analytical equilibrium distribution in terms of a Gibbs measure (20, 48–50). To see this, it is convenient
to introduce the variable g :=

√
f . Using Itô’s lemma, we can rewrite Eq. (5) in terms of g as

∂tg =−∂U
∂g

+ 1
2
√
K
η(t) (7)

with: U =−1
4F+ 1

8K log(g) . (8)

This dynamics for g can be reinterpreted as the overdamped dynamics of a particle in a potential U with diffusion constant
1/(4K). The equilibrium distribution P[g] for g is then given through the Gibbs measure

P[g]∼ e−8KU = 1
g

e2KF , (9)
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which is equivalent to a Boltzmann distribution with an ”energy" given by F.
In terms of the relative abundance f , we have P[f ]∝ 1

f e2KF, which can be expressed more conveniently as

P[f, f̄ , f̂ ] = 1
Z

1
f1−2Kλf̄

e2Krf
[
1+α(S−1)f̄− f2

]
−2Kλf

, (10)

where we omitted the dependence of P on r,K,α, and λ, and Z denotes the normalization constant. In terms of the abundance
N =Kf , the distribution can be written as

P[N,N̄ ] = 1
Z

1
N1−2λN̄

e2rN
(
1+α(S−1) N̂K−

N
2K
)
−2λN

, (11)

with respective normalization Z. While we treated the mean fields f̄ and f̂ as deterministic parameters, in order for our analysis
to be self-consistent they have to be equal and also equal the actual statistical mean of f , which can be calculated from the
distribution Eq. (10). Introducing a Lagrange multiplier +εf/2K into the function F, we can take the derivative of log(Z) w.r.t
to ε, take the limit ε→ 0, and thereby obtain the mean abundance 〈f〉P[f̄ ,f̂ ,r,K,α,λ]. Self-consistency then requires:

f̄
!= f̂

!= 〈f〉P (12)

Fig. 5(a) shows the calculated mean 〈f〉P as a function of f̄ (where for specificity r = 0.3, K = 10, α = 0.1, and f̂ = f̄ due
to self-consistency). All calculations were performed using Mathematica (46). Varying the dispersal rate λ we find that
for small λ the only solution to the self-consistency condition, Eq. (12), is given by f̄ = 0. For S = 1, increasing λ above a
critical value λc, the solution f̄ = 0 is no longer stable; however, there appears a second solution with non-zero f̄ , which is
linearly stable and increases with λ [see Fig. 5(a)]. Thus, λc marks a bifurcation from zero to non-zero mean abundances. For
sufficiently large mutualistic interactions (e.g. S is sufficiently large for constant α), the self-consistency condition 〈f〉 = f̄
suggest an abrupt jump from zero to finite values close to the tipping point [see Fig. 5(b)].
To obtain an analytical expression for the critical dispersal rate we expand the calculated mean 〈f〉P[f̄ ] to first order in f̄ .
This yields the condition for the onset of finite mean abundance:

e
(Kr−Kλ)2

Kr
Kλ√
Kr

√
π

(
1 + Erf

[
Kr−Kλ√

Kr

])
!= 1 , (13)

where Erf[·] denotes the Error-function (incomplete Gaussian integral). Note that the onset of finite mean abundances, Eq. (13),
does not depend on the interaction strength α nor the number of interacting species S. This is consistent with the expectation
that at the onset of finite mean abundances, interactions between species on a patch should be negligible. For the limiting case
Kλ�Kr, we expand the condition Eq. (13) up to first order in Kλ/(Kr) and solved for λ, which yields the critical dispersal
rate λc:

Kλc(r,K)≈ e−Kr
√
Kr

π

(
1 + Erf[

√
Kr]

)−1
. (14)

When furthermore Kλ� 1, the growth rate must be correspondingly large so that we can set Erf[
√
Kr] ≈ 1. This yields

λc(r,K) ≈ e−Kr
√

r
4Kπ . The observation of a finite dispersal threshold for global dispersal is consistent with previous stud-

ies of metapopulations with implicit spatial extension (24–26), which used master equations to model species birth, death
and global dispersal between patches through a shared reservoir. In the limiting case Kλ� Kr we can expand the condi-
tion Eq. (13) to leading order of large Kλ/(Kr), and solve for λ. This yields the approximation:

λc(r,K)≈ 1
2K − r , (15)

Hence, we find that for infinitesimally small finite growth rates r, the critical dispersal rate approaches λc(r,K) = 1/(2K).
Both limiting behaviors of the critical dispersal rate λc, at Kλ/(Kr)� 1 and Kr/(Kλ)� 1, are in very good agreement with
respective numerical solutions of the Langevin equation Eq. (1) [see Fig. 5,(c)].
Beyond the onset of finite mean abundances (λ> λc), we can solve for the mean abundance f̄ that satisfies the self-consistency
condition Eq. (12) numerically [see Fig. 5(a),(b)]. Eventually, substituting this numerical solution for f̄ into Eq. (10) yields the
equilibrium abundance distribution P as a function of r, K, α, and the dispersal rate λ. The derived abundance distribution is
governed by different contributions, depending on the choice of parameters: When the dispersal rate is small (λKf̄ � 1) and
for f � 1 (i.e. abundances N �K), the distribution of the relative abundance f follows the scaling

P[f ]∝ xf/f with x= e−2K[r(1+α(S−1)f̄)−λ] . (16)
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Fig. 5. Self-consistency condition in the mean-field approximation. (a) Above a critical dispersal rate, λc, the self-consistency
condition 〈f〉= f̄ (dashed line) has a solution with non-zero mean abundance 〈f〉 marking an onset of finite population sizes. Shown
are 〈f〉 for dispersal rates smaller (green, λ = 10−3), close above (orange, λ = 10−2) and farther above (blue, λ = 10−1) the critical
dispersal rate λc. (b) For sufficiently large mutualistic interactions (here, S = 100, α = 0.005), there is a discontinuous transition at
the tipping point from a solution with zero to a solution with finite mean abundances. Shown are 〈f〉 for dispersal rates smaller (green,
λ = 10−5), close above (orange, λ = 10−3.5) and farther above (blue, λ = 10−2) the tipping point. Remaining parameters: r = 0.3,
K = 10. (c) The self-consistent mean-field solutions for the critical dispersal rate λc(r) (solid line) are in very good agreement with our
numerical solutions. The dashed and dotted lines denote the limiting behaviors forKλ/(Kr)� 1, Eq. (14), andKr/(Kλ)� 1, Eq. (15),
respectively. Remaining parameters: K = 10, S = 1, and for the numerical solutions: P = 2000.

The form of the abundance distributions P[f ] ∝ xf/f is well-known in ecology literature as Fisher log series (51), which
denotes one of the most widely used abundance distributions in ecology and has been recovered in a variety of ecological
systems (see (28, 29) for reviews). For larger relative abundances (f ∼ 1), the exponential term in Eq. (10) suggests a local
maximum of the abundance distribution characterized by a Gaussian distribution with mean 1+α(S−1)f̄−λ/r and a variance
1/(2Kr).

Mutualism through density-dependent dispersal. As detailed in the main text, we investigate mutualism through density-
dependent dispersal based on a dispersal rate given in Eq. (4). Using the mean fields f̄i and f̂x, the dynamics for every species
on every patch can be written as

∂tf(t) =f ∂F
∂f

+
√
f/K η(t)

with: F =rf
[
1− f2

]
+λ(1 +βk(S−1)f̂)

[
f̄ log(f)−f

]
, (17)

where, as in Eq. (5), we omitted the species and patch index since all species and patches are assumed statistically identical.
As discussed for direct mutualistic interactions, we can use this representation to derive the equilibrium probability distribution
P[f ] as a function of the mean fields:

P[f, f̄ , f̂ ] = 1
Z

1
f1−2Kλ(1+βk(S−1)f̂)f̄

e2Krf
[
1− f2

]
−2Kλ(1+βk(S−1)f̂)f

, (18)

where we omitted the dependence of P on r,K,α, and λ, and Z denotes the normalization constant. Imposing self-
consistency, Eq. (12), we can calculate f̄ (f̂ ) numerically and derive a closed solution for P[f ]. For sufficiently large S or
β, the self-consistent solutions for f̄ display a bifurcation depicted in Fig. 4 including a discontinuous transitions and hysteresis
upon varying the baseline dispersal rate λ. We comment, that at the critical dispersal rate λc, species interactions, also through
dispersal, are negligible and thus λc for mutualism through density-dependent dispersal is the same as for direct mutualistic
interactions.

Supplementary Note 3: Smoothening effect of stochastic fluctuations in metapopulations with
global dispersal
One of our main results is that in the presence of mutualistic interactions between species, demographic noise can cause a
sudden (discontinuous) transition between a regime where all species are extinct (inactive phase) and a regime of positive mean
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population size (active phase). Previous studies (30–32) have suggested that demographic fluctuations can also have the reverse
effect, i.e. turn a discontinuous into a smooth transition. In their description, the population dynamics on a single patch shows
bistability, with a stable fixed point at extinction and a second stable fixed point at a finite population size, separated by an
unstable fixed point at intermediate population size [Allee threshold, compare Fig. 1(a)]. In Ref. (30, 32), the authors find
that for short-range dispersal between patches (diffusive motion) demographic fluctuations can change the transition between
an inactive and active phase from discontinuous to continuous when the dispersal rate between patches is low, or stochastic
fluctuations are strong. In the following we investigate these findings for the case of global dispersal on the basis of our mean-
field approximation and numerical simulations. To this end, we first describe the dynamics of a single population with size N
that displays an Allee effect as

∂tN(t) =rN
(
N

A
−1
)(

1− N
K

)
(19)

+λ(N̄ −N) +
√
Nη ,

where we omitted the patch index to facilitate notation. This dynamics features bistability as illustrated in Fig. 1(a), with the
Allee threshold (unstable fixed point) given byA. Analogous to Appendix 2, we employ a mean-field approximation, where the
first term of the function F defined in Eq. (5), which accounts for the population dynamics, is now given by rf [1+ f

2 (1+ K
A )−

f2K
A ]. Figure 6(a) shows the obtained mean-field solutions for the mean population size 〈N〉 for r= 0.3,K = 10 andA= 2 and

a varying dispersal rate λ (lines), together with respective numerical solutions (triangles and circles denote simulations starting
at small and large initial mean population sizes, respectively). As expected, for very small dispersal rates, the population goes
extinct, while for larger dispersal rates there is a stable solution with positive population size. Interestingly, for intermediate
dispersal rates, there is a single stable solution, while for larger dispersal rates, the system either approaches extinction or a
finite population size, depending on the initial population size. Our mean field approach reveals an unstable solution which
separates these two stable outcomes. This strongly suggests that, depending on the dispersal rate, the metapopulation features
a strong Allee effect (high dispersal rates) or not (intermediate dispersal rates). For a better comparison with the results of (30),
who plotted the mean population size as a function of the linear growth rate, we will adapt our notation in the following to their
description and investigate a possible change from an abrupt to a smooth transition as they observed for short-range dispersal.
Analogous to (30), we define the population dynamics

∂f(t) = (af − bf2− cf3) +
√
fxη+λ(f̄ −f) , (20)

where, in contrast to (30), we included global dispersal (last term) instead of diffusive motion. η denotes Gaussian (white)
noise with zero mean and a variance we set equal to 1 in the following for simplicity. For negative b and a and positive c,
the deterministic dynamics of Eq. (20) suggests bistability as illustrated in Fig. 1(a), characterizing an explicit strong Allee
effect. Following (30), we now fix the parameters b=−2 and c= 1, and vary the parameter a for different dispersal rates λ [see
Figure 6(b)]. Similar to what (30) observed for short range dispersal, when increasing a, we see that low dispersal rates promote
a discontinuous transition from zero to finite mean population sizes, while for larger dispersal rate, the transition is smooth (i.e.
continuous). Together with our results discussed above [Fig. 6(a)], this strongly suggests that also for global dispersal, a
population dynamics that features bistability in terms of a strong Allee effect, can, depending on the growth and dispersal
parameters, result in a smooth transition between a regime of extinction and finite mean population sizes when embedded in a
metacommunity undergoing demographic noise.

Supplementary Note 4: Metacommunities with random interactions
For random interactions, we showed that the mean interactions of survivors I , defined in the main text as I =
〈(αi,j/K)Nj,x〉x,j , are positive in the intermediate dispersal rate regime of bistability and can be negative in for larger disper-
sal rates beyond the bistability regime [see Fig. 3(b)]. While in Fig. 3(b), we joined all calculated mean interactions I from
simulations with three different sets of random interactions, Fig. 7(a) shows the distributions of I , P[I], plotted separately for
each set of random interactions (each in a different color).
To investigate how the communities of remaining survivors of our numerical solution and their mean interaction compare to a
mean-field approximation with a species-independent interaction coefficient, we plot the mean-field solution taking into account
only the number of surviving species and their average interaction coefficient α= 〈αi,j〉 (where the average is taken only over
surviving species i and j). Interestingly, we observe that in the bistability regime [see Fig. 3(a)], the resulting mean interaction
coefficient puts the community very close to the tipping point of our mean-field solution [Fig. 7(b)]. This suggests that random
metacommunities self-organize to a state very close to the tipping point where they are very fragile against perturbations e.g.
in the dispersal rate and species number.
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Fig. 6. Smooth and discontinuous transitions in metapopulations with explicit strong Allee effect. (a) Our mean-field approach
(lines) and numerical solutions (circles and triangles correspond to simulations with initially large and small mean population size,
respectively) of a metapopulation with explicit strong Allee effect, Eq. (19), suggests bistability for large dispersal rates and a smooth
transition from extinction to a finite population size for small dispersal rates. Remaining parameters: K = 10, A = 2, r = 0.3, for the
numerical solutions: P = 1000. (b) Similar to what (30) observed for short range migration, we find a change from a smooth transition
for small dispersal rates (blue, λ= 0.3) to discontinuous transition with a regime of bistability for large dispersal rates (red, λ= 3). The
dashed line denotes unstable solution.
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Fig. 7. Strong metacommunity Allee effect and self-organized tipping points in random metacommunities. (a) Distributions
P[I] for individual independent sets of random interactions as shown jointly in Fig. 3(b) for λ = 10−1.5, λ = 10−2.2, and λ = 10−2.8

(from left to right). Different colors correspond to the three different sets of interaction coefficients αi,j used in in Fig. 3(a). (b) Each
panel shows the measured mean abundances of surviving species for three different dispersal rates in the regime of bistability shown
in Fig. 3(a). Dark to bright colors correspond to λ= 10−3, λ= 10−2.875, and λ= 10−2.75, respectively; the three panels correspond to
the three sets of random interaction coefficients used in (a) and Fig. 3. Mean-field solution calculated based on the number of surviving
species (ranging from ∼ 25 at λ= 10−3 to ∼ 55 at λ= 10−2.75) and mean of the interaction coefficients among the surviving species
for the corresponding three different dispersal rates (dark to bright colors correspond to λ = 10−3, λ = 10−2.875, and λ = 10−2.75,
respectively). Remaining parameters: S = 100, K = 10, r = 0.3, for the numerical solutions: P = 500.
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