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Abstract (232 words) 19 

Making a decision and reporting your confidence in the accuracy of that decision are 20 

thought to reflect a similar mechanism: the accumulation of evidence. Previous research has 21 

shown that choices and reaction times are well accounted for by a computational model 22 

assuming noisy accumulation of evidence until crossing a decision boundary (e.g., the drift 23 

diffusion model). Decision confidence can be derived from the amount of evidence following 24 

post-decision evidence accumulation. Currently, the stopping rule for post-decision evidence 25 

accumulation is underspecified. Inspired by recent neurophysiological evidence, we introduce 26 

additional confidence boundaries that determine the termination of post-decision evidence 27 

accumulation. If this conjecture is correct, it implies that confidence judgments should be 28 

subject to the same strategic considerations as the choice itself, i.e. a tradeoff between speed 29 

and accuracy. To test this prediction, we instructed participants to make fast or accurate 30 

decisions, and to give fast or carefully considered confidence judgments. Results show that 31 

our evidence accumulation model with additional confidence boundaries successfully 32 

captured the speed-accuracy tradeoffs seen in both decisions and confidence judgments. Most 33 

importantly, instructing participants to make fast versus accurate decisions influenced the 34 

decision boundaries, whereas instructing participants to make fast versus careful confidence 35 

judgments influenced the confidence boundaries. Our data show that the stopping rule for 36 

confidence judgments can be well understood within the context of evidence accumulation 37 

models, and that the computation of decision confidence is under strategic control. 38 

 Keywords: Confidence, decision-making, drift diffusion model, computational 39 

modeling  40 
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Introduction 41 

Human decision making is accompanied by a sense of confidence. Humans often 42 

report high confidence when they make correct decisions and low confidence when they 43 

make incorrect decisions (Fleming et al., 2010). Understanding the computational 44 

underpinnings of decision confidence is of high importance, given that humans use decision 45 

confidence to adapt subsequent behavior (Desender et al., 2018, 2019; Folke et al., 2016). In 46 

recent work, identifying the computational underpinnings of decision confidence has been 47 

identified as an important common goal for the field of metacognition (Rahnev et al., 2022). 48 

Given that decision confidence reflects an evaluation of the accuracy of a decision, 49 

computational accounts of decision confidence usually depart from decision making models 50 

and aim to explain the computation of confidence within these models. 51 

In many decision making scenarios, human observers face the challenging task to 52 

make accurate decisions based on noisy evidence. Many theories of decision making assume 53 

that people solve this challenge by accumulating multiple pieces of evidence. Accumulation-54 

to-bound models specifically propose that evidence is accumulated sequentially until the 55 

accumulated evidence reaches a predefined decision boundary. Once the decision boundary is 56 

reached, the model makes a choice (for review, see Gold & Shadlen, 2007). Within the drift 57 

diffusion model (DDM), evidence accumulates towards one of two opposite decision 58 

boundaries, with the additional assumption that evidence for both choice options is perfectly 59 

anti-correlated (Ratcliff & McKoon, 2008). In its most basic implementation, the DDM 60 

explains the dynamics of decision making using only three main parameters: a drift rate, 61 

reflecting the strength of the evidence accumulation process, a decision boundary, reflecting 62 

the degree of evidence required before a decision is made, and non-decision time, capturing 63 

non-decision related components. This simple tenet has proven to be a powerful framework 64 

that can account for a realm of behavioral and neurophysiological data. For example, 65 
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accumulation-to-bound signals such as described by the DDM have been observed in human 66 

(Donner et al., 2009; O’Connell et al., 2012) and primate (Gold & Shadlen, 2007) 67 

neurophysiology. Most prominently, the DDM can explain the tradeoff between speed and 68 

accuracy that characterizes all forms of speeded decision making (Bogacz et al., 2006; 69 

Bogacz, Wagenmakers, et al., 2010). When participants are instructed to make speeded 70 

versus accurate decisions, the DDM explains these data by changing the height of the 71 

decision boundary (althoug the selectivity of this effect has been debated; Rafiei & Rahnev, 72 

2021). Decreasing the decision boundary effectively lowers the required level of evidence 73 

before reaching it, promoting fast responses at the expense of accuracy. Given that 74 

participants are able to change the decision boundary based on instructions (amongst many 75 

other manipulations), it is believed that the height of the decision boundary is under voluntary 76 

strategic control (Balci et al., 2011; Bogacz, Hu, et al., 2010).  77 

Given the success of the DDM in explaining decision making, several attempts have 78 

been made to explain decision confidence within these models. Capitalizing on the notion 79 

that the sense of confidence seems to arise after a decision has been made, Pleskac and 80 

Busemeyer (2010) proposed that the process of evidence accumulation does not terminate 81 

once a choice boundary has been crossed, but rather there is continued accumulation of (post-82 

decision) evidence, which further informs decision confidence. If additional post-decision 83 

evidence confirms the initial decision, the model will produce a high confidence response. If 84 

additional post-decision evidence contradicts the initial decision, the model produces low 85 

confidence, or even changes its mind about the initial decision (Resulaj et al., 2009; Van Den 86 

Berg et al., 2016). Given that post-decision evidence is most likely to contradict initial 87 

decisions when these were incorrect, this account can explain why confidence is usually 88 

higher for correct than for incorrect decisions (Moran et al., 2015; Pleskac & Busemeyer, 89 
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2010), and why confidence better tracks accuracy when participants take more time to report 90 

confidence (Yu et al., 2015). 91 

Previous modeling work mostly used this model to jointly explain choices, reaction 92 

times and decision confidence. Strikingly, much less attention has been devoted towards the 93 

speed with which confidence reports are provided. This is remarkable, given that confidence 94 

RTs are highly informative about the underlying computations (Moran et al., 2015). As a 95 

consequence, most of the abovementioned models use a too simplistic stopping rule for the 96 

post-decision evidence accumulation process. For example, typical DDM models with post-97 

decision processing include an additional parameter which controls the duration of the post-98 

decision processing time (i.e. the time between the choice and the confidence report; 99 

Hellmann et al., 2021; Pleskac & Busemeyer, 2010; Yu et al., 2015). Thus, in these models 100 

the stopping rule for confidence judgments is to stop accumulating post-decision evidence 101 

once a certain amount of time has passed. However, such a static implementation seems 102 

incompatible with the considerable variation in confidence RTs that is usually observed in 103 

empirical data. Indeed, under a strict interpretation, this account predicts that confidence 104 

judgments will always be provided after a fixed latency. Contrary to this, confidence RTs 105 

show the same right-skewed distributions as decision RTs. This critique also applies to a 106 

more recent proposal which quantified confidence as the maximal evidence accumulated by a 107 

leaky evidence accumulation process (Pereira et al., 2021, 2022). Although such an account 108 

explains confidence in detection tasks very well, it does not make any prediction regarding 109 

the stopping rule for confidence judgments (see also Balsdon et al., 2020).  110 

Recent neurophysiological work suggests that the stopping rule for confidence 111 

judgments is very similar to the stopping rule for decisions (for recent review, see Desender 112 

et al., 2021). For example, Murphy and colleagues (2015) showed that both choices and error 113 

detection judgments were associated with a similar accumulation-to-bound signature over 114 
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parietal electrodes in human EEG recordings. In line with this observation, Moran and 115 

colleagues (2015) established a list of empirical patterns involving confidence RTs and 116 

showed that a model with continuous post-decision accumulation until reaching a slowly 117 

collapsing confidence boundary was able to account for all empirical patterns, where other 118 

models failed to explain some of them. The work from Moran et al. (2015) provides initial 119 

evidence for (collapsing) confidence boundaries as the stopping rule for confidence 120 

judgments. Importantly, as discussed previously, there is extensive evidence that choice 121 

boundaries are under strategic control. Consequently, if a similar accumulation-to-bound 122 

mechanism underlies the stopping rule for confidence judgments, it is predicted that the 123 

termination of post-decision evidence accumulation should be similarly under strategic 124 

control. Remarkably, although there are numerous studies that have investigated speed-125 

accuracy tradeoffs in choice formation (for review, see Bogacz, Wagenmakers, et al., 2010), 126 

to our knowledge it has yet to be investigated whether similar tradeoffs can be observed in 127 

confidence formation, and if so whether these are best accounted for by changes in the 128 

confidence boundary controlling post-decision evidence termination. Therefore, in the current 129 

work we modeled the stopping rule for confidence judgments as an accumulation-to-bound 130 

mechanism (see Figure 1 for a visual description of the model and hypotheses). In two 131 

experiments (one with a binary and one with a 6-choice confidence report), we then 132 

investigated the following hypotheses: 1) the stopping rule for confidence judgments is well 133 

described by an accumulation-to-bound mechanism similar to that for the primary decision, 134 

2) participants can selectively modulate the height of the choice boundary and the height of 135 

the confidence boundary when instructed to do so via speed-accuracy tradeoff instructions. 136 

 137 

 138 
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Figure 1. Drift Diffusion Model (DDM) with additional Confidence Boundaries. In the 139 

classical DDM, evidence is assumed to accumulate (departing from starting point z*a) until 140 

it reaches one of two opposing boundaries (a or 0). The strength of the accumulation process 141 

is captured by the drift rate (v). The decision boundaries are thought to be under strategic 142 

control, and thus can be strategically increased or decreased (indicated by the arrows). To 143 

explain decision confidence, the model continues to accumulate post-decision evidence, the 144 

strength of which is controlled by the post-decision drift rate (v2). Note that the ratio between 145 

v and v2 has been coined v-ratio (Desender et al., 2022). The post-decision accumulation 146 

process continues until it reaches one of two opposing confidence boundaries (a2 or -a2). The 147 

reported level of confidence depends on the confidence boundary that was reached. Similar 148 

to the choice boundaries, the height of these confidence boundaries are thought to be under 149 

strategic control (indicated by the arrows). Non-decision related components are captured by 150 

Ter and Ter2 Note that confidence boundaries are allowed to slowly collapse over time 151 

(controlled by an urgency parameter u), to account for possible speed pressure on confidence 152 

formation.  153 
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Experiment 1 154 

Methods and Materials 155 

Preregistration and Code 156 

All hypotheses, sample sizes, exclusion criteria for participants, analyzed variables, 157 

the experimental design and planned analyses were preregistered on the Open Science 158 

Framework (OSF) registries (https://doi.org/10.17605/OSF.IO/Z2UCM), unless specified as 159 

exploratory. Additionally, all code and data are made publicly available on GitHub 
160 

(https://github.com/StefHerregods/ConfidenceBounds). 161 

Participants 162 

We decided a priori to test a minimum of 40 viable participants, in line with previous 163 

speed-accuracy trade-off research (Desender et al., 2022). Participant recruitment continued 164 

until this sample size was met after applying exclusion criteria. In total, 51 participants took 165 

part in Experiment 1 in return for course credit. From the total dataset, one participant gave 166 

the same confidence rating in more than 95% of the trials and 10 participants required too 167 

many training trials or did not complete the experiment in time. Data from these participants 168 

was excluded from further analyses. The final dataset comprised 40 participants (36 female), 169 

with a mean age of 18.0 (SD = 0.6, range = 17-19). All participants had normal or corrected-170 

to-normal vision, and signed informed consent before their participation. The experiment was 171 

approved by the local ethics committee. 172 

Stimuli and Apparatus 173 

The experiment was programmed using Python v3.6.6 and PsychoPy (Peirce et al., 174 

2019). Participants completed the experiment on 24-inch LCD screens using an AZERTY-175 

keyboard, with blue stickers indicating buttons used for confidence judgments and red 176 

stickers indicating decision-making buttons. 177 
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Procedure 178 

Each experimental trial started with the display of a white fixation cross on a black 179 

background for 1s (see Figure 2). Instructions regarding the speed-accuracy regime were 180 

shown above and below the fixation cross for decision-making and confidence judgments, 181 

respectively. Depending on the block, the instructions were to either ‘Make fast decisions’ or 182 

‘Make accurate decisions’, and to ‘Give fast confidence ratings’ or ‘Think carefully about 183 

your confidence ratings’, for choices and confidence reports, respectively. For convenience, 184 

we will refer to both type of instructions as choice SAT and confidence SAT, respectively. 185 

Next, a dynamic random dot motion stimulus was presented until participants gave a 186 

response. If participants did not provide a response within 5s, the message “Too slow, please 187 

respond faster” was shown on the screen. Motion coherence was controlled by the proportion 188 

of dots consistently moving towards the left versus right side of the screen. During the main 189 

experiment, three levels of coherence were used (.1, .2 and .4). Participants were instructed to 190 

press the ‘c’ or ‘n’ key with the thumbs of their left and right hand, to indicate whether they 191 

thought dots were moving towards the left or the right, respectively. If participants responded 192 

within 5s, they were subsequently asked about their level of confidence. The text ‘How 193 

confident are you that you made the correct choice?’ appeared on top of the screen, and 194 

participants pressed the ‘e’ or the ‘u’ key with their index fingers, mapped to high and low 195 

confidence, respectively (mapping counterbalanced across participants). Confidence 196 

judgments were transformed to numeric values, with ‘low confidence’ as zero and ‘high 197 

confidence’ as one. 198 

The experiment started with three practice blocks (24 trials each). In block 1 199 

participants only made random dot motion decisions with a coherence of .5 for all trials. 200 

During this block they received immediate feedback about choice accuracy. Participants 201 

repeated block 1 until achieving average accuracy of 85% or more. Block 2 was identical 202 
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except that the same three coherence levels as in the main phase were used (.1, .2 and .4). 203 

Participants repeated block 2 until achieving average accuracy of 60% or more. In block 3, 204 

participants no longer received trial-by-trial feedback but instead were asked about their level 205 

of confidence after each trial. Afterwards, participants took part in twelve blocks of 60 trials 206 

each. In each block there was a similar number of coherent left and right dot motion trials, 207 

and an equal occurrence of the three coherence levels. Finally, each block had specific 208 

instructions about the speed-accuracy regime for decision-making and confidence judgments. 209 

These instructions appeared both before each block and at the start of each trial (i.e. during 210 

the fixation cross). Speed-accuracy regime instructions were constant within a block, but 211 

switched after each block. Each combination of instructions appeared three times, and the 212 

order of appearance was counterbalanced across participants using a Latin square. After each 213 

block, participants received feedback about their average accuracy, average reaction time and 214 

average confidence reaction time of the preceding block.  215 

 216 
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 218 

Figure 2. Example of an experimental trial. During presentation of the fixation cross 219 

participants received specific instructions regarding the speed-accuracy regime for choices 220 

(above fixation) and confidence (below fixation). These instructions were constant within a 221 

block, but switched each block. Next, participants made binary choices about random dot 222 

motion, and afterwards indicated their level of confidence on a two-point scale (Experiment 223 

1), or a six-point scale (Experiment 2). 224 

 225 

 226 
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Statistical analyses 227 

Reaction times on correct trials, accuracy, confidence judgments on correct trials and 228 

confidence RT’s on correct trials were analyzed using mixed effects models. All models 229 

included at least a random intercept per participant, and all manipulations (choice SAT, 230 

confidence SAT and coherence) and their interactions as fixed effects, unless otherwise 231 

specified. These models were then extended with random slopes in order of biggest increase 232 

in BIC, until the addition of random slopes led to a non-significant increase in likelihood or 233 

until the random effects structure was too complex to be supported by the data (leading to an 234 

unstable fit). We used the lmer and glmer functions of the lme4 package (Bates et al., 2015) 235 

to fit the linear and generalized linear mixed models, respectively, in R (R Core Team, 2021). 236 

The calculation of p values is based on chi-square estimations using the Wald test from the 237 

car-package (Fox & Weinberg, 2019). Due to violations of the assumptions of normally 238 

distributed residuals and homoscedasticity, all RT’s and confidence RT’s were log 239 

transformed and mean-centered. Finally, the influence of the speed-accuracy manipulations 240 

on estimated model parameters was examined using a repeated measures ANOVA’s and 241 

follow-up paired t-tests, as implemented in the rstatix package (Kassambara, 2021).  242 

Model Specification 243 

 We simulated noisy evidence accumulation using a random walk approximation of 244 

the drift diffusion process (Tuerlinckx et al., 2001). A random walk process started at z*a, 245 

with z being an unbiased starting point of .5, and continued to accumulate until the 246 

accumulated evidence reaches 0 or a (reflecting the height of the decision boundaries). At 247 

each time step � the accumulated evidence was updated with Δ, with the update rule shown in 248 

equation (1): 249 
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Δ  = v * � �  σ �  √� �  ��0,1� (1) 

with v reflecting the drift rate, N reflecting the standard normal distribution, � 250 

reflecting precision, which was set to .001 in all simulations, and σ reflecting within-trial 251 

noise which was fixed to 1. Choice and RT are quantified at the moment of boundary 252 

crossing. An additional time ter is added to predicted RTs to capture non-decision-related 253 

processes. After the accumulated evidence reached 0 or a, evidence continued to accumulate 254 

at each time step � with displacement Δp, with the post-decision update rule shown in 255 

equation (2): 256 

Δp  = v2 * � �  σ �  √� �  ��0,1� (2) 

with v2 reflecting the drift rate governing post-decisional processing. Allowing 257 

dissociations between drift rate and post-decisional drift rate is necessary to account for 258 

differences in metacognitive accuracy (Desender et al., 2022). Post-decisional accumulation 259 

continued until the lower or upper confidence boundary was reached. The height of the 260 

confidence boundaries is given by equation (3): 261 

if(choice=a) confidence boundary = a ± a2 ± u * t2 

if(choice=0) confidence boundary = 0 ± a2 ± u * t2 

(3) 

 with a2 reflecting the height of the confidence boundaries, u reflecting the amount of 262 

linear urgency, and t2 reflecting post-decision time. The ± sign indicates that this value 263 

should be added or subtracted depending on whether it reflects the upper or lower boundary. 264 

Finally, an additional time ter2 was added to predicted confidence RTs to capture non-265 

confidence related processes (e.g. pressing a confidence button). In contrast to ter, which is 266 

by definition always positive, we also allowed ter2 to take negative values, to account for the 267 

possibility that post-decision evidence accumulation already starts before an overt response 268 
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has been made (e.g., during the motor execution of the first response). An overview of all 269 

parameters can be found in table 1. 270 

 271 

Table 1. Parameters of the extended drift diffusion model. 272 

Parameter Meaning Description 

v Drift rate Average rate of evidence accumulation  

σ Drift coefficient Noise in the accumulation process, fixed to .1 

a Boundary  Determines the amount of evidence required before 

making a choice 

ter, ter2 Non-decision time Non-decision related components (e.g. motor execution) 

z Starting point Determines the starting point of the accumulation 

process, fixed to .5. 

v2 Post-decision drift 

rate 

Average rate of post-decision evidence accumulation 

a2 Confidence 

boundary 

Determines the amount of evidence requires before 

making a confidence judgment 

u Urgency Evidence-independent constant subtracted from the 

confidence boundary each time step (i.e. collapsing 

boundary) 

 273 

Parameter Estimation and Model Fit 274 

 We estimated best fitting parameters by minimizing an error function based on 275 

quantile optimization of the RT and confidence RT distributions. Quantiles were computed in 276 

observed and simulated data for (i) decision RT quantiles, separately for correct and error 277 
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trials, (ii) confidence RT quantiles, separately for correct and error trials, and (iii) confidence 278 

RT quantiles, separately for high and low confidence ratings. The resulting error function is 279 

shown in equation (4): 280 

RSS = 2 � ∑�����,� � ����,��� + ∑���������,� � ��������,��� + ∑���������,� �281 

��������,���      (4) 282 

with oRT and sRT referring to observed and simulated RT proportions, and oRTconf and 283 

sRTconf referring to observed and simulated confidence RT proportions, across multiple 284 

quantiles (q) (.1, .3, .5, .7, and .9), for correct- and error-trials (i), and high- and low 285 

confidence trials (j) separately. We minimized the abovementioned error function using 286 

differential evolution optimization as operationalized in the DEoptim package, and by setting 287 

the amount of iterations to 1000 (Mullen et al., 2011). Model fitting was done separately per 288 

participant. To test model fits, we simulated choices, RTs, confidence and confidence RTs 289 

from the estimated parameters.  290 

Parameter Recovery 291 

 Before estimating parameters based on empirical data, we performed parameter 292 

recovery to ensure that the extended DDM accurately recovers known parameters. For this 293 

end, we simulated data for N = 40 synthetic participants, once with Ntrials = 10.000 (i.e., 294 

simulating an ideal scenario) and once with Ntrials = 180 (i.e. the number of trials per cell in 295 

our design). Parameters were randomly sampled from a uniform distribution with the 296 

minimum and maximum values chosen such that they were in line with the empirically 297 

observed fits; a = [.5, 3], a2 = [.5, 5], u = [0, 3], v = [0, 3], ter = [0, 1], ter2 = [-.5, .5], v2 = [0, 298 

7]. Subsequently, we performed linear regression predicting the true parameter value by the 299 

estimated value. Inspection of the regression results revealed that with 10.000 trials all slopes 300 

were significant (ps < .002) and close to 1, reflecting excellent recovery. The only exception 301 
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was the urgency parameter, u, which yielded a slope of .19. Given the low recovery of this 302 

parameter, estimates of u should be interpreted with caution. Results did not drastically 303 

change when the parameter recovery was repeated with 180 trials. Full results of the 304 

parameter recovery for Experiment 1 can be found in table S1. 305 

 306 

Results 307 

Behavioral Analysis 308 

Trials with RTs below .2s were excluded from the dataset (00.40%) (Moran et al., 309 

2015). In addition, confidence RTs slower than 5s were excluded (00.10%; note that choice 310 

RTs slower than 5s were excluded by design). Next, we report a set of analyses testing how 311 

RTs, confidence RTs, accuracy and confidence judgments were influenced by motion 312 

coherence (3 levels: .1, .2 and .4), choice SAT (2 levels: fast vs accurate) and confidence 313 

SAT (2 levels: fast vs careful). 314 

For reaction times on correct trials (shown in Figure 3A), as expected we found a 315 

significant effect of choice SAT instructions, χ2(1) = 68.87, p < .001, but not of confidence 316 

SAT instructions, χ2(1) = 0.56, p = .455. Choice RTs were shorter when participants were 317 

instructed to respond fast (M = 0.92s) versus accurate (M = 1.38s). Also the main effect of 318 

motion coherence was significant, χ2(2) = 687.25, p < .001, reflecting shorter RTs with 319 

increasing motion coherence. Additionally, we found a significant interaction between the 320 

choice SAT and confidence SAT, χ2(1) = 15.35, p < .001, reflecting that the choice SAT 321 

effect was more expressed when participants were instructed to provide accurate versus 322 

careful confidence ratings. There was also a significant interaction between choice SAT and 323 

coherence, χ2(1) = 43.24, p < .001, reflecting that the choice SAT effect was slightly larger 324 

for low coherence trials. All other effects were not significant, ps > .525. For accuracy, we 325 
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likewise found a significant effect of the choice SAT, χ2(1) = 8.25, p = .004, and coherence, 326 

χ
2(2) = 165.58, p < .001, but not of the confidence SAT, χ2(1) = 0.63, p = .429. As shown in 327 

Figure 3B, participants responded more correct when instructed to be accurate (M = 72.28%) 328 

compared to when instructed to be fast (M = 70.78%), and accuracy increased with motion 329 

coherence. All other effects were not significant, ps > .071.  330 

For confidence RTs on correct trials, we found significant effects of the confidence 331 

SAT instructions, χ2(1) = 77.06, p < .001, and coherence, χ2(2) = 14.29, p = .001. As 332 

expected, choice SAT instructions did not influence confidence RTs, χ2(1) = 0.42, p = .518. 333 

As can be seen in Figure 3C, confidence RTs were faster when participants were instructed to 334 

make fast (M = 0.31s) vs careful (M = 0.73s) confidence judgments. Additionally, we found a 335 

significant interaction between choice SAT and confidence SAT, χ2(1) = 6.28, p = .012, 336 

reflecting a small spill-over from choice SAT into confidence RTs (mostly visible in the 337 

“accurate” condition). All other effects were not significant, ps > .464. Finally, for confidence 338 

judgments (see Figure 3D) we observed a significant main effect of coherence, χ2(2) = 339 

120.71, p < .001, reflecting that confidence increased with the proportion of motion 340 

coherence. There were no significant main effects of choice SAT, χ2(1) = 1.23, p = .267, nor 341 

confidence SAT, χ2(1) = 0.27, p = .606. There was only a small but significant interaction 342 

between choice SAT and confidence SAT, χ2(1) = 4.89, p = .027, reflecting that participants 343 

more often reported high confidence for fast (M = .64) than for accurate (M = .61) choices in 344 

the fast confidence condition, whereas there were was no such difference in the careful 345 

confidence condition (.62 vs .62, respectively). Finally, there was an interaction between 346 

choice SAT and coherence, χ2(2) = 9.97, p = .007, reflecting that the relation between 347 

confidence and coherence was slightly stronger in the accurate compared to the fast choice 348 

condition. All other effects were not significant, ps > .160.  349 
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Given that there was no effect of the SAT manipulations on average confidence, we 350 

additionally examined whether there was a difference in confidence resolution (i.e. the 351 

relation between confidence and accuracy). To do so, we computed type II ROC separately 352 

for each condition (ignoring coherence). Note that these analyses were not pre-registered. A 353 

2-way ANOVA on these estimates showed a main effect of confidence SAT, F(1,39) = 354 

15.42, p < .001, but not from choice SAT, p = .599, nor was there an interaction, p = .491. As 355 

can be seen in Figure 4A, the relation between confidence and accuracy (expressed in AUC 356 

units) was higher when participants were instructed to make deliberate versus fast confidence 357 

ratings. Thus, although confidence did not strongly change on average, there was clear 358 

evidence in our data that confidence SAT did influence confidence resolution. 359 

  360 
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 361 

Figure 3. The influence of choice SAT and confidence SAT on reaction times (A), 362 

accuracy (B), confidence RTs (C) and confidence (D) for Experiment 1. As expected, when 363 

participants were instructed to make fast versus accurate choices this led to fast versus slow 364 

choice RTs (A) and to a lesser extent to less and more accurate choices (B), respectively. 365 

When participants were instructed to make fast vs deliberate confidence judgments, this led 366 

to fast versus slow confidence RTs (C). The effects on confidence judgments (D) were 367 

pronounced. Note: error bars reflect SEM, transparent dots reflect means of individual 368 

participants, black crosses reflect extended DDM fits.  369 
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Figure 4. Confidence resolution in Experiment 1 and Experiment 2, expressed as Type II 370 

AUC. Although confidence SAT instructions did not have a clear effect on average 371 

confidence, we did observe a clear effect on confidence resolution, which was not the case for 372 

choice SATs. Same conventions as in Figure 3. 373 

 374 

Modeling speed-accuracy tradeoffs in choices and confidence  375 

Our modeling framework departed from the classical drift diffusion model (DDM), a 376 

popular evidence accumulation model that accounts well for choices and reaction times in 377 

perceptual decisions (Ratcliff & McKoon, 2008). To also account for confidence within the 378 

DDM, we allow the evidence to accumulate after it has reached a threshold (post-decision 379 

evidence accumulation; Pleskac & Busemeyer, 2010). Critically, post-decision evidence 380 

accumulation continues until the evidence reaches a second boundary. We will refer to this 381 

second boundary as the confidence boundary to dissociate it from the (first) decision 382 

boundary. Given that Experiment 1 only has two levels of confidence (high vs low), 383 

confidence here fully coincides with the boundary that was reached (i.e., high versus low 384 

confidence when reaching the upper vs lower confidence boundary; see Figure 1). In addition 385 

to a confidence boundary, we also allowed the height of the confidence boundaries to 386 
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collapse over time, an effect often referred to as urgency since it accounts for possible time-387 

pressure effects.  388 

Model fit 389 

 Having confirmed that our speed accuracy tradeoff instruction had the desired effect 390 

for both choices and for confidence judgments, we turned towards computational modeling of 391 

our data. Before looking at the estimated parameters, we first ensured that our model 392 

provided a good account of the decision process underlying the data, by examining whether it 393 

successfully captures both choices, RTs, confidence judgments and confidence RTs at the 394 

same time. In Figure 3, model predictions for RTs, choices, confidence and confidence RTs 395 

are plotted on top of the observed data. As can be seen, our model captured the trends in the 396 

data very well. This is further confirmed by analyzing model predictions (generated using the 397 

same number of trials as in the empirical data) in the same way as previously done with 398 

empirical data, which provided highly similar results. Most importantly, choice RTs and 399 

accuracy were both modulated by choice SAT instructions (RTs: χ2(1) = 63.52, p < .001; 400 

accuracy: χ2(1) = 5.30, p = .021), but not by confidence SAT instructions (RTs: p = .262; 401 

accuracy: p = 388). Reversely, confidence RTs and confidence were modulated by 402 

confidence SAT instructions (confidence RTs; χ2(1) = 71.75, p < .001; confidence: χ2(1) = 403 

5.15, p = .023), but not by choice SAT instructions (confidence RTs: p = .998; confidence: p 404 

= .708). Note that the main effect of confidence SAT instructions on confidence was not 405 

significant in the empirical data, reflecting a subtle but qualitative difference. We also note 406 

that the model slightly overestimates confidence for low coherence trials. The full results for 407 

the analysis of model predictions can be found in the Supplementary Materials, table S3. 408 

Finally, because the DDM aims to explain entire RT distributions, and not just summary 409 

statistics, we also inspected similarities between observed and simulated RT and confidence 410 
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RT distributions. As can be seen in Figure 5, the model captured the RT and confidence RT 411 

distributions very well across the different SAT manipulations.  412 

 413 

Figure 5. Distributions of reaction times (A) and confidence RTs (B-C) for data and model 414 

fit for Experiment 1. Inspection of the model fit reveals that an extended DDM accurately 415 

captures the distributions in reaction times and confidence RTs seen in the data, across all 416 

four SAT manipulations. Note: AA, AF, FA and FF refer to SAT instructions to be 417 
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accurate/cautious (A) or fast (F) with the first index referring to the decision and the second 418 

index referring to confidence.  419 

Model parameters 420 

Having established that our model provides a good fit to the experimental data, we 421 

next turn towards the actual parameters. We hypothesized that SAT instructions for choices 422 

selectively affected choice boundaries, leaving confidence boundaries unaffected. Likewise, 423 

we expected SAT instructions about confidence to selectively affect confidence boundaries, 424 

leaving choice boundaries unaffected. These observations would support our hypothesis that 425 

indeed the stopping rule for both choices and choice confidence are under strategic control.  426 

First, we used a repeated measures ANOVA to examine the influence of choice SAT 427 

(fast vs accurate), confidence SAT (fast vs careful), and their interaction on estimated 428 

decision boundaries. As expected, we found a strong and significant effect of the choice SAT, 429 

F(1, 39) = 75.10, p < .001, ηp
2 = .66, but not of confidence SAT, F(1, 39) = 0.78, p = .384, 430 

ηp
2 = .02, nor was there an interaction, F(1, 39) = 2.82, p = .101, ηp

2 = .07. As can be seen in 431 

Figure 6A, when participants were asked to make fast decisions, the separation between both 432 

choice boundaries was smaller (M = 1.46) compared to when they were asked to make 433 

accurate decisions (M = 1.96).  434 

Second, the same analysis on the estimated confidence boundaries revealed, as 435 

expected, a significant main effect of confidence SAT, F(1, 39) = 36.14, p < .001, ηp
2 = .48, 436 

but not of choice SAT, F(1, 39) = 3.29, p = .078, ηp
2 = .08. There was, however, a significant 437 

interaction between both types of instruction, F(1, 39) = 9.20, p = .004, ηp
2 = .19. Paired t-438 

tests showed that indeed confidence boundaries were higher when confidence SAT 439 

instructions were to make careful as opposed to fast confidence judgments, and this effect 440 

was slightly stronger when choice SAT focused on speed, t(39) = -6.45, p < .001, then when 441 
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it focused on accuracy, t(39) = -4.00, p < .001, although it was highly significant in both 442 

cases (see Figure 6B). Choice SAT instructions did not influence confidence boundaries 443 

when confidence SAT instructed people to respond fast, t(39) = -0.45, p = .658, but when 444 

confidence SAT instructed people to respond carefully, choice SAT seemed to influence 445 

estimated confidence boundaries, t(39) = 2.83, p = .007.  446 

Third, we looked at the influence of SAT instructions on estimated urgency 447 

parameters. There were no significant effect of the choice SAT, F(1, 39) = 1.88, p = .179, ηp
2 448 

= .05, nor of the confidence SAT, F(1, 39) = 0.002, p = .967, ηp
2 < 0.001, nor was there an 449 

interaction, F(1, 39) = 0.05, p = .824, ηp
2 = 0.001. Thus, it seems that confidence SAT 450 

instructions are implemented by changing the height of the confidence decision boundaries, 451 

while leaving urgency constant. In Figure 6C, two outliers with an urgency value higher than 452 

5 can be noticed. Removing these outliers from the analysis did not alter any of the 453 

conclusions. 454 

Finally, as a sanity check we confirmed that estimated drift rates scaled with motion 455 

coherence using a repeated measures ANOVA, F(1.18, 45.98) = 108.304, p < .001, ηp
2 = 74. 456 

The other parameters were not allowed to vary, their mean estimates can be found in Table 2. 457 
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 458 

Figure 6. Influence of choice SAT and confidence SAT on decision boundaries and 459 

confidence boundaries in Experiment 1. Instructing participants to make fast vs accuracy 460 

choices influences estimated decision boundaries (A), but rarely influences confidence 461 

boundaries or urgency (B-C). Instructing participants to provide fast vs careful confidence 462 

ratings influences estimated confidence boundaries (B), but does not affect decision bounds 463 

and urgency (A,C). Same conventions as in Figure 4. 464 

  465 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2023. ; https://doi.org/10.1101/2023.02.27.530208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.530208
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

Table 2. Mean (SD) Estimates for the Extended Drift Diffusion Model. Note, AA, AF, FA 466 

and FF refer to SAT instructions to be accurate/cautious (A) or fast (F) with the first index 467 

referring to the decision and the second index referring to confidence. 468 

Experiment 1 

Parameter AA AF FA FF 

a 1.99 (0.48) 1.92 (0.49) 1.46 (0.39) 1.46 (0.38) 

v_1 (coherence = 0.1) 0.26 (0.15) 0.27 (0.15) 0.34 (0.26) 0.36 (0.27) 

v_2 (coherence = 0.2) 0.56 (0.31) 0.51 (0.27) 0.65 (0.39) 0.68 (0.41) 

v_3 (coherence = 0.4) 1.12 (0.64) 1.17 (0.68) 1.31 (0.68) 1.27 (0.70) 

ter 0.51 (0.25) 0.44 (0.17) 0.39 (0.13) 0.41 (0.14) 

ter2 0.08 (0.20) 0.04 (0.08) 0.05 (0.30) 0.05 (0.09) 

v-ratio (= v2 / v) 1.32 (1.73) 2.02 (2.19) 0.97 (1.27) 1.78 (1.76) 

a2 2.00 (0.97) 1.25 (0.73) 2.51 (1.28) 1.20 (0.57) 

u 0.57 (0.55) 0.59 (0.79) 0.82 (1.31) 0.78 (1.13) 

Experiment 2 

a 2.11 (0.46) 1.81 (0.41) 1.55 (0.39) 1.41 (0.30) 

v_1 (coherence = 0.1) 0.30 (0.19) 0.36 (0.23) 0.36 (0.24) 0.34 (0.22) 

v_2 (coherence = 0.2) 0.60 (0.39) 0.58 (0.31) 0.70 (0.38) 0.70 (0.44) 

v_3 (coherence = 0.4) 1.18 (0.68) 1.08 (0.69) 1.33 (0.81) 1.32 (0.83) 

ter 0.52 (0.18) 0.50 (0.18) 0.42 (0.12) 0.43 (0.10) 

ter2 -0.53 (0.61) -0.33 (0.42) -0.76 (0.94) -0.23 (0.38) 

v-ratio (= v2 / v) 1.05 (1.28) 1.66 (2.40) 1.25 (1.91) 1.40 (1.85) 

a2_upper 3.76 (2.91) 3.30 (3.01) 4.22 (3.17) 2.63 (2.16) 

a2_lower -5.47 (3.90) -5.44 (3.46) -5.87 (3.35) -4.58 (3.58) 
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u_upper 2.12 (1.65) 3.95 (2.77) 1.96 (1.64) 3.22 (2.74) 

u_lower 2.69 (2.74) 4.15 (3.30) 2.67 (2.74) 3.36 (3.26) 

 469 

Interim Summary 470 

In Experiment 1, participants were instructed to make fast or accurate decisions and to 471 

make fast or careful confidence judgments, depending on the block they were in. At the 472 

behavioral level, we observed that participants were indeed able to selectively speed up 473 

choices or confidence judgments when instructed to do so. More importantly, model fits 474 

using an extended DDM with additional confidence boundaries revealed that the mechanism 475 

underlying such behavior was a change in the decision boundary for choices, and the 476 

confidence boundary for confidence. Thus, these findings show that the stopping rule for 477 

confidence judgments, just like the choice boundary for choices, is under voluntary strategic 478 

control. One limitation of Experiment 1 is that participants were only allowed to give binary 479 

confidence ratings (high or low). This design choice made for an easy modeling approach, 480 

because it allows to directly map high and low confidence onto the upper and lower 481 

confidence boundary, respectively. It is well known, however, that humans can provide more 482 

fine-grained estimates of their performance. Thus, this begs the question whether our 483 

extended DDM can also account for tasks with more fine-grained confidence scales. For this 484 

end, in Experiment 2 we replicated Experiment 1, but now using a more fine-grained 6-485 

choice confidence scale.  486 

 487 

Experiment 2 488 

Methods and Materials 489 

Preregistration and Code 490 
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The preregistration of this experiment can be found on OSF registries 
491 

(https://doi.org/10.17605/OSF.IO/VYH4K), all code and data can be found on GitHub 492 

(https://github.com/StefHerregods/ConfidenceBounds).  493 

Participants 494 

A total of 54 participants participated in Experiment 2. Requirements and recruitment 495 

was identical to Experiment 1, with the additional criterium of not having participated in 496 

Experiment 1. Data of six participants were removed for not having an accuracy above 497 

chance level as assessed by a binomial test, and four participants for requiring more than 498 

seven training blocks. Finally, four participants did not finish the experiment in time. The 499 

final sample comprised 40 participants (33 female), with a mean age of 18.5 (SD = 1.3, range 500 

= 17 - 24). 501 

Stimuli and Apparatus 502 

Experiment 2 used the same apparatus and stimuli as in Experiment 1. 503 

Procedure 504 

The experiment was identical to Experiment 1, except for the following two 505 

exceptions: First, instead of a binary confidence rating, participants could choose between six 506 

options; ‘Sure wrong’, ‘Probably wrong’, ‘Guess wrong’, ‘Guess correct’, ‘Probably correct’ 507 

and ‘Sure correct’, using the ‘1’, ‘2’, ‘3’, ‘8’, ‘9’ and ‘0’ keys on top of the keyboard. These 508 

six options were mapped onto a 1-6 confidence scale (counterbalanced between participants). 509 

Second, a time-limit of 5s was imposed on indicating confidence judgments, equal to the 510 

time-limit during decision-making. If a participant did not respond within this limit, they 511 

were instructed to respond faster in future trials with the following text: ‘Too slow… Please 512 

respond faster’.  513 

Model Specification and fit 514 
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 The modeling strategy was identical to Experiment 1 except for the following: we 515 

estimated separate parameters for upper and lower confidence boundary separation, and 516 

separate parameters for urgency of the upper and the lower boundary. This was done to allow 517 

the model to account for the negative relationship between confidence and confidence RTs 518 

(discussed in more detail below). In order for the model to be able to produce six levels of 519 

confidence, we changed the implementation such that confidence no longer corresponded to 520 

the confidence boundary that was reached (as in Experiment 1). Instead, confidence depended 521 

on the level of accumulated evidence at the time of reaching the confidence boundary. We 522 

evenly divided the space in between the two confidence boundaries into six categories, and 523 

the model produced a level of confidence between 1 and 6 depending on the state of the 524 

accumulated evidence.  525 

Parameter Recovery 526 

 Because the extended DDM used in Experiment 2 differed in important aspects from 527 

Experiment 1, we repeated the parameter recovery exercise. The following minimum and 528 

maximum values were used: a = [.5, 3], a2_upper = [.1, 15], a2_lower = [.1, 15], uupper = [0, 15], 529 

ulower = [0, 15], v = [0, 3], ter = [0, 1], ter2 = [-.2, .2], v2 = [0, 5]. Inspection of the regression 530 

analyses results revealed that with 10.000 trials all slopes were significant (ps < .001), but the 531 

estimates were less close to 1 compared to Experiment 1. Given these results, particularly the 532 

estimate of v2 should be interpreted with caution. Results did not change drastically when the 533 

parameter recovery was repeated with only 180 trials. Full results of the parameter recovery 534 

for Experiment 2 can be found in table S2. 535 

Results 536 

Behavioral Analysis: Mixed Effects Modelling 537 
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 Data were analyzed in the same way as described in Experiment 1. Similar to 538 

Experiment 1, trials with a decision time of less than 0.2 s were excluded (0.30%). A mixed 539 

effects model on decision RTs on correct trials showed a significant effect of choice SAT, 540 

χ
2(1) = 57.91, p < .001, and coherence, χ2(2) = 956.89, p < .001. Unexpectedly, there also was 541 

a significant effect of confidence SAT, χ2(1) = 34.02, p < .001. Additionally, we found 542 

significant interactions between the choice SAT and confidence SAT, χ2(1) = 8.72, p = .003, 543 

between coherence and choice SAT, χ2(2) = 21.80, p < .001, and between coherence and 544 

confidence SAT, χ2(2) = 12.10, p = .002. The three-way interaction between choice SAT, 545 

confidence SAT and coherence was not significant, χ2(2) = 0.65, p = .722. As can be seen in 546 

Figure 7A, choice RTs were shorter when participants were instructed to respond fast (M = 547 

0.93s) versus accurate (M = 1.34s), however the effect was not as selective as in Experiment 548 

1, because choice RTs were also shorter when participants were instructed to provide fast (M 549 

= 1.06s) versus careful confidence ratings (M = 1.20s). The same analysis on accuracy 550 

likewise showed significant main effects of choice SAT, χ2(1) = 6.05, p = .014, confidence 551 

SAT, χ2(1) = 4.76, p = .029, and coherence χ2(2) = 1202.14, p < .001 (see Figure 7B). 552 

Accuracy was lower when participants were instructed to make fast (M = 73%) compared to 553 

accurate choices (M = 75%), and likewise when participants were instructed to make fast (M 554 

= 74%) versus careful confidence ratings (M = 75%). All other effects were not significant, 555 

ps > .257.  556 

The same analysis on confidence RTs on correct trials, showed significant main 557 

effects of confidence SAT, χ2(1) = 85.62, p < .001, and coherence, χ2(2) = 71.12, p < .001. 558 

Unexpectedly, there was also a significant main effect of choice SAT, χ2(1) = 9.64, p = .002. 559 

Finally, the interaction between the confidence SAT and coherence was significant, χ2(2) = 560 

6.26, p = .044. All other effects were not significant, ps > .161. As can be seen in Figure 7C, 561 

although confidence SAT clearly affected confidence RTs in the expected way, the effect was 562 
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not as selective as in Experiment 1. Confidence RTs were shorter when participants were 563 

instructed to make fast (M = .39s) versus careful (M = .76s) confidence ratings, and 564 

counterintuitively confidence RTs were slightly longer when participants were instructed to 565 

make fast (M = .62s) versus accurate (M = .53s) decisions.  566 

Finally, the same analysis was carried out on confidence for correct trials. Note that 567 

for this analysis, the three-way interaction and the interaction between the choice SAT and 568 

confidence SAT were excluded because they caused variance inflation factors higher than 10. 569 

In the final model, there was a significant main effect of coherence, χ2(2) = 100.06, p < .001, 570 

and the confidence SAT, χ2(1) = 4.36, p = .037, but not of the choice SAT, χ2(1) = 0.84, p = 571 

.359. As can be seen in Figure 7D, variations in confidence were mostly driven by coherence, 572 

but confidence was also slightly lower when participants were instructed to make fast (M = 573 

4.54) versus careful (M = 4.84) confidence judgments. Finally, we found a significant 574 

interaction between the confidence SAT and coherence, χ2(2) = 22.10, p < .001, reflecting 575 

that the confidence SAT was more pronounced on low coherence trials. The interaction 576 

between the choice SAT and coherence was found to be not significant, χ2(2) = 1.57, p = 577 

.455.  578 

Similar to Experiment 1, in a non-preregistered analysis we additionally looked at 579 

confidence resolution by calculating type II AUC separately for each condition. Again, a 2-580 

way ANOVA showed a main effect of confidence SAT, F(1,39) = 14.49, p < .001, but not 581 

from choice SAT, p = .066, nor was there an interaction, p = .125. As can be seen in Figure 582 

4B, the relation between confidence and accuracy (expressed in AUC units) was higher when 583 

participants were instructed to make careful vs fast confidence ratings 584 
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 585 

Figure 7. The influence of choice SAT and confidence SAT on reaction times (A), 586 

accuracy (B), confidence RTs (C) and confidence (D) for Experiment 2. As expected, when 587 

participants were instructed to make fast versus accurate choices this led to fast versus slow 588 

choice RTs (A) and to a lesser extent to less and more accurate choices (B), respectively. 589 

When participants were instructed to make fast vs deliberate confidence judgments, this led 590 

to fast versus slow confidence RTs (C), with less pronounced effects on confidence judgments. 591 

Note: same conventions as in Figure 3.  592 

 593 
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Extended Drift Diffusion Model Fits 594 

Model fit 595 

Similar to Experiment 1, we again first inspected whether our model captured the 596 

patterns in the data well. In Figure 7, it can be appreciated that model predictions capture the 597 

trends seen in the behavioral data. This is further confirmed by analyzing model predictions 598 

(generated using the same number of trials as in the empirical data) in the same way as 599 

previously done with empirical data, which provided highly similar results. Most importantly, 600 

choice RTs and accuracy were both modulated by choice SAT instructions (RTs: χ2(1) = 601 

61.15, p < .001; accuracy: χ2(1) = 7.95, p = .005), as well as by confidence SAT instructions 602 

(RTs: χ2(1) = 23.62, p < .001; accuracy: χ2(1) = 13.61, p = .005), similar to what was found in 603 

the behavioral data. Confidence RTs and confidence were modulated by confidence SAT 604 

instructions (confidence RTs; χ2(1) = 65.47, p < .001; confidence: χ2(2) = 4.88, p = .027), and 605 

choice SAT instructions influenced confidence RTs, χ2(1) = 11.92, p < .001, but not 606 

confidence, p = .929. Note that, similar to the fits in Experiment 1, the model slightly 607 

overestimates confidence for low coherence trials. The full results for the analysis of model 608 

predictions can be found in the Supplementary Materials, Table S4. Finally, in Figure 8 it can 609 

be seen that the model captures RT and confidence RT distributions very well across the 610 

different SAT manipulations. Because Experiment 2 features six confidence levels, we 611 

additionally investigated the relation between the reported level of confidence and confidence 612 

RT. As can be seen in Figure 8D, participants tended to be faster when reporting high then 613 

low confidence, a pattern that was captured well by the computational model. Note that a 614 

model with a single parameter controlling the height of both the upper and the lower 615 

confidence boundary (cf. the model used in Experiment 1) could not capture this pattern.  616 

 617 
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 618 

Figure 8. Distributions of reaction times (A), confidence RTs (B) and confidence (C-D) for 619 

data and model fit for Experiment 2. Inspection of the model fit reveals that our model 620 

accurately captures the distributions in reaction times, confidence RTs and confidence seen 621 

in the data, across all four SAT manipulations.  622 
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Model parameters 623 

Replicating the findings of Experiment 1, we again observed that estimated decision 624 

boundaries were affected by choice SAT, F(1, 39) = 56.27, p < .001, ηp
2 = .66. However, we 625 

also found a significant effect of the confidence SAT, F(1, 39) = 40.46, p < .001, ηp
2 = .02, 626 

and an interaction between both, F(1, 39) = 8.28, p < .001, ηp
2 = .07. Follow-up paired t-tests 627 

showed that the effect of the decision RT instructions on decision boundary separation was 628 

significant both when confidence SAT was to be accurate, t(39) = -7.14, p < .001, as well as 629 

when confidence SAT was to be fast, t(39) = -6.69, p < .001. As expected, choice boundaries 630 

were modulated by choice SAT instructions (Figure 9), although the effect also seemed to 631 

scale, to a lesser extent, with confidence SAT.  632 

Second, we analyzed the confidence boundaries (see Figure 9B-C). Notice that, 633 

different from Experiment 1, both confidence boundaries were allowed to vary independently 634 

and thus are analyzed separately. First, analysis of the upper confidence boundary revealed a 635 

significant effect of the confidence SAT, F(1, 39) = 12.80, p < .001, ηp
2 = .25, but not of the 636 

choice SAT, F(1, 39) = 0.08, p = .779, ηp
2 = .002, nor was there an interaction, F(1, 39) = 637 

3.01, p = .086, ηp
2 = .07. In line with our hypothesis, participants increased the upper 638 

confidence boundary when instructed to make careful confidence judgments compared to 639 

when instructed to make fast confidence judgments. Interestingly, the lower confidence 640 

boundary seemed unaffected by any of our manipulations: neither confidence SAT, F(1, 39) 641 

= 2.69, p = .109, ηp
2 = .06, nor choice SAT, F(1, 39) = 0.33, p = .570, ηp

2 = .008, nor the 642 

interaction between both, F(1, 39) = 2.96, p = .093, ηp
2 = .07, was significant. 643 

Finally, we analyzed the urgency parameters controlling the slope of the confidence 644 

boundaries. For the upper confidence boundary we observed that a strong difference in 645 

urgency depending on confidence SAT, F(1, 39) = 22.75, p < .001, ηp
2 = .37, and to a lesser 646 
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extent also on choice SAT, F(1, 39) = 5.68, p = .022, ηp
2 = .13. There was no significant 647 

interaction, F(1, 39) = 1.51, p = .227, ηp
2 = .04. As can be seen in Figure 9D, instructions to 648 

make fast decisions and instructions to give fast confidence ratings led to increased urgency 649 

on the upper confidence boundary. Finally, for the lower confidence boundary we found that 650 

urgency was significantly affected by confidence SAT, F(1, 39) = 6.37, p = .016 ηp
2 = .14, 651 

but not by choice SAT, F(1, 39) = 0.71, p = .405, ηp
2 = .02, nor was there an interaction, F(1, 652 

39) = 0.94, p = .339, ηp
2 = .02. When participants were instructed to make fast confidence 653 

judgments, this led to increased urgency for the lower confidence boundary (Figure 9E). All 654 

parameter estimates can be found in Table 2.  655 
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Figure 9. Influence of choice and confidence SAT on decision boundaries and confidence 656 

boundaries in Experiment 2. Instructing participants to make fast vs accuracy choices 657 

influences estimated decision boundaries (A), but rarely influences upper or lower confidence 658 

boundaries and urgency (B-E). Instructing participants to provide fast vs careful confidence 659 

ratings influences the estimated lower but not upper confidence boundary (B-C) and urgency 660 

(D-E). Same conventions as in Figure 4. 661 

 662 
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Discussion 663 

The human ability to estimate and report the level of confidence in their decisions has 664 

been the central topic of much recent investigations (Rahnev et al., 2022). Despite a large 665 

number of studies examining how confidence is computed, how people decide when to 666 

provide a confidence rating has been unresolved. This is remarkable, because the timing of 667 

confidence judgments can be highly diagnostic about the computations underlying decision 668 

confidence (Moran et al., 2015). In the current work, we propose to model the stopping rule 669 

for confidence judgments using an accumulation-to-bound mechanism similar to the one 670 

underlying decisions. Given that decision boundaries are believed to be under strategic 671 

control, this account predicts that confidence boundaries should also be under strategic 672 

control. We investigated this prediction by providing participants with different instructions 673 

regarding the tradeoff between speed and accuracy, both for decisions and for confidence 674 

judgments. In two experiments, we found that participants made faster and less accurate 675 

decisions when instructed to favor speed over accuracy, and that they made faster confidence 676 

judgments when instructed to favor speed over careful deliberation. Although the effects on 677 

average confidence were subtle or even absent, in both experiments the relation between 678 

confidence and accuracy (cf. confidence resolution) was clearly stronger when participants 679 

were more cautious in their confidence ratings. When modeling these data with an extension 680 

of the DDM with additional confidence boundaries for post-decision processing, results were 681 

as expected: SAT instructions about the decision influenced decision boundaries, while SAT 682 

instructions about confidence influenced confidence boundaries. Our findings have important 683 

consequences for the field of decision confidence, as they shed light on the importance of 684 

considering the dynamics of confidence RTs when investigating the computations underlying 685 

decision confidence. 686 

The stopping rule for confidence is under strategic control 687 
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Previous work investigating the dynamics of decision confidence has mostly focused 688 

on explaining variations in decision confidence, with less focus on the speed with which 689 

confidence reports are given. The most common approach is to simply have a free parameter 690 

that controls the duration of post-decision evidence accumulation (Hellmann et al., 2021; 691 

Pleskac & Busemeyer, 2010; Yu et al., 2015). Such an implementation, however, predicts 692 

that confidence judgments will always be provided at the same post-decision latency. This 693 

prediction is at odds with the observation that confidence RTs show a right-skewed 694 

distribution that is also characteristic of decision RTs. Confidence boundaries, on the other 695 

hand, provide a plausible mechanism for the stopping rule of post-decision evidence 696 

accumulation. A notable exception to this critique is a study by Moran and colleagues (2015) 697 

who proposed a single confidence boundary that collapses slowly over time, with the level of 698 

confidence being determined by the height of the boundary at the time of crossing. Their 699 

model has three free parameters that control the termination of post-decision processing: i) a 700 

parameter that controls the initial height of the boundary, similar to a2 in our model, ii) a 701 

parameter controlling the collapse rate, similar to u in our model, and iii) a parameter 702 

controlling the time before the first collapse, for which there is no equivalent in our model. 703 

The proposal from Moran and colleagues further differs from ours because it does not 704 

consider a lower confidence boundary; the model provides a confidence rating of .5 if the 705 

collapsing confidence boundary has not been reached before it collapsed to .5. Contrastingly, 706 

in our implementation the model features both an upper and a lower confidence boundary, 707 

which can be mapped onto high versus low confidence (Experiment 1), but critically can also 708 

account for changes-of-mind by further dividing the area in between the two confidence 709 

boundaries (Experiment 2). Most importantly, although Moran and colleagues also 710 

considered speed-accuracy tradeoff in the decision, they did not investigate whether a similar 711 
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tradeoff exists for confidence judgments and whether this can be accounted for within their 712 

model.  713 

Speed-accuracy tradeoffs can be implemented in accumulation-to-bound models via 714 

two different mechanisms: changing the overall height of the boundary or changing the 715 

collapse rate of the boundary over time. Previous work in decision making has unraveled that 716 

instructions regarding the tradeoff between speed and accuracy for the decision tend to 717 

modulate the height of the decision boundary, while not affecting urgency (Katsimpokis et 718 

al., 2020). Reversely, when providing participants with a response deadline (e.g. respond 719 

within 1s) data are best accounted for by a slowly collapsing decision boundary (Katsimpokis 720 

et al., 2020; Murphy et al., 2016). In theory, the same two mechanisms could be used to 721 

implement speed-accuracy tradeoffs for confidence judgments. However, in our experiments 722 

where confidence SAT was modulated by means of instructions, given the evidence cited 723 

above, it was expected that participants would change the height of the confidence boundary, 724 

while leaving the urgency constant. In both our experiments, there was clear evidence that 725 

participants changed the height of the confidence boundary in response to SAT instructions. 726 

Results were more mixed concerning urgency. In Experiment 1, we did not observe any 727 

difference between conditions in terms of urgency, suggesting that participants selectively 728 

changed the height of the confidence boundaries but not the slope. In Experiment 2, however, 729 

we found that in response to instructions requiring fast confidence responses, participants 730 

also increased the level of urgency for both the upper and the lower confidence boundary. 731 

Given that both experiments were identical to each other except for the number of confidence 732 

options, this suggest that complexity of the design (i.e. arbitrating between high and low 733 

confidence versus arbitrating between six fine-grained levels of confidence) is an important 734 

factor determining the specificity with which these manipulations have an effect. As already 735 

noted, however, parameter recovery for urgency was rather low, suggesting these values 736 
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should be interpreted with great caution. Nevertheless, in addition to further unravelling the 737 

role of design complexity, future work might also investigate the influence of providing a 738 

hard deadline for confidence judgments (e.g. you have to provide a confidence rating within 739 

1s) on the confidence boundary and associated urgency signal. 740 

Characteristics of post-decision processing   741 

If confidence can be understood as an accumulation-to-bound signal, it follows that 742 

the reported level of confidence should depend on the height of the confidence boundary. 743 

Similar to how decreasing the decision boundary induces faster RTs and less accurate 744 

responses, it follows that decreasing the confidence boundaries should induce faster 745 

confidence RTs and lower confidence. Contrary to this, we did not observe a clear influence 746 

of confidence SAT on average confidence despite a clear difference in the height of the 747 

confidence boundary. As can be seen in Table 2, the extended DDM explained these data by 748 

assuming that decreasing the confidence boundaries was associated with increased post-749 

decision drift rates. Future work might examine whether this prediction holds in post-decision 750 

centro-parietal EEG signals, which are thought to reflect the post-decision accumulation-to-751 

bound signal (Desender et al., 2021). Although we did not find an effect on average 752 

confidence, there was a clear effect on confidence resolution: the relation between confidence 753 

and accuracy was much stronger when participants increased the confidence boundary. This 754 

finding could be anticipated, because increasing the confidence boundaries effectively 755 

requires collecting more post-decision evidence before reporting confidence, i.e. making a 756 

more informed confidence judgment. This finding adds to a number of reports showing that 757 

measures of metacognitive accuracy critically depend on the timing of confidence reports 758 

(Rosenbaum et al., 2022; Yu et al., 2015). 759 
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Inspection of the estimated model parameters in Table 2 reveals an interesting 760 

difference in magnitude between the non-decision component associated with the decision, 761 

Ter, and that associated with the confidence report, Ter2. In line with the literature, values of 762 

Ter are in the range of .4s - .5s on average, suggesting that this is the time participants spend 763 

on processes unrelated to the actual decision (e.g. stimulus processing, motor components). 764 

These estimates are by definition positive. Contrary to this, values of Ter2 are very low for 765 

Experiment 1 and even negative for Experiment 2. Although negative values of Ter2 might 766 

seem counterintuitive at first, they suggest that “post-decision” processing already initiates 767 

prior to the execution of the decision motor response (e.g., Verdonck et al., 2020). In line 768 

with this observation, there is some work that has suggested that pre-choice or peri-choice 769 

neural signals contribute to the computation of decision confidence (Feuerriegel et al., 2022; 770 

Gherman & Philiastides, 2015; Murphy et al., 2015). 771 

The computations underlying decision confidence 772 

Humans differ in the extent to which they can accurately judge the accuracy of their 773 

decisions via confidence judgments (i.e. metacognitive accuracy). Such variability is not 774 

without consequences, as metacognitive accuracy has been associated with political 775 

extremism (Rollwage et al., 2018), anxiety and depression (Rouault et al., 2018). Although 776 

this variability is widely accepted, there is much debate regarding the best way to quantify, 777 

so-called, metacognitive accuracy (Fleming & Lau, 2014). In recent years, there has been an 778 

increase in the number of studies investigating the computations underlying decision 779 

confidence, and accompanying proposals of novel ways to quantify metacognitive accuracy 780 

(Dayan, 2022; Desender et al., 2022; Guggenmos, 2022; Mamassian & Gardelle, 2021; 781 

Maniscalco & Lau, 2012). To our knowledge, none of these proposals takes the dynamics of 782 

confidence RTs into account. This is of critical importance, though, given our demonstration 783 

that different strategies in the reporting of decision confidence (i.e., fast versus carefully) 784 
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have a consistent influence on metacognitive accuracy: the relation between confidence and 785 

accuracy is stronger when participants are more cautious in their reporting of confidence. 786 

Thus, measures that do not take these dynamics into account risk to confound variability in 787 

the caution with which confidence judgments are provided with variability in genuine 788 

metacognitive accuracy. This cautionary tale bears close resemblance to a previous study in 789 

which we showed that static measures of metacognition confound caution with metacognition 790 

because they do not take the height of the decision boundary into account (Desender et al., 791 

2022). Although this might sound very similar to the conclusion of the current work (i.e. the 792 

height of the boundary influences confidence) the underlying mechanism is very different. In 793 

our previous work, the reasoning is that impulsive decisions made with a low decision 794 

boundary lead to many premature errors that are easy to detect. Although detecting premature 795 

errors is obviously an act of metacognition, the fact that these errors are easier to detect 796 

should be taken into account when quantifying metacognition. In the current work, the 797 

reasoning is that (all) errors are easier to detect when the confidence boundaries are 798 

increased, because more evidence is accumulated to inform about the level of confidence (see 799 

also Yu et al., 2015). 800 

Conclusion 801 

We demonstrated that the stopping rule for confidence judgments is well described by 802 

a set of confidence boundaries that terminate post-decision processing. Importantly, just like 803 

with decision boundaries, these confidence boundaries are under strategic control, and can be 804 

increased or decreased by instructing participants to make very careful or very fast 805 

confidence judgments, respectively. When prompted to be more careful about their 806 

confidence judgments, individuals tend to be slower but metacognitively more accurate when 807 

reporting their confidence. Taken together, these results highlight the importance of taking 808 

into account the dynamics of confidence computation to unravel its underlying mechanisms. 809 
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Supplementary Materials 939 

Table S1. Parameter recovery for the extended DDM used in Experiment 1. 940 

Ntrials = 10.000 

     95% CI  

Model Predictor Estimate SE t LL UL p 

a β0 0.03 0.06 0.52 -0.09 0.14 .606 

 β1 0.99 0.03 30.96 0.92 1.05 < .001 

a2 β0 0.40 0.31 1.32 -0.22 1.02 .196 

 β1 0.78 0.09 8.89 0.60 0.96 < .001 

u β0 1.30 0.16 7.92 0.97 1.63 < .001 

 β1 0.19 0.06 3.40 0.08 0.30 .002 

ter β0 0.01 0.00 1.82 -0.00 0.02 .077 

 β1 0.98 0.01 116.55 0.96 1.00 < .001 

ter2 β0 0.01 0.01 0.90 -0.01 0.02 .373 

 β1 0.96 0.02 57.86 0.93 1.00 < .001 

v  β0 -0.00 0.04 -0.08 -0.09 0.08 .941 

 β1 1.02 0.02 79.41 0.97 1.06 < .001 

v2 β0 0.35 0.30 1.16 -0.26 0.96 .255 

 β1 0.84 0.08 10.28 0.67 1.00 < .001 

Ntrials = 180 

     95% CI  

Model Predictor Estimate SE t LL UL p 

a β0 0.15 0.11 1.35 -0.07 0.37 .187 

 β1 0.91 0.06 14.93 0.79 1.04 < .001 
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a2 β0 1.22 0.41 2.95 0.38 2.05 .005 

 β1 0.56 0.12 4.52 0.31 0.81 < .001 

u β0 1.36 0.17 7.82 1.01 1.71 < .001 

 β1 0.13 0.05 2.70 0.03 0.23 .010 

ter β0 0.00 0.01 0.07 -0.02 0.02 .948 

 β1 1.00 0.02 57.54 0.96 1.03 < .001 

ter2 β0 -0.00 0.01 -0.13 -0.02 0.02 .895 

 β1 1.02 0.03 37.91 0.97 1.10 < .001 

v  β0 0.12 0.08 1.49 -0.04 0.29 .144 

 β1 0.94 0.04 22.46 0.86 1.03 < .001 

v2 β0 1.14 0.35 3.27 0.43 1.85 .002 

 β1 0.59 0.09 6.62 0.41 0.77 < .001 

 941 
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Table S2. Parameter recovery for the extended DDM used in Experiment 2. 943 

Ntrials = 10.000 

     95% CI  

Model Predictor Estimate SE t LL UL p 

a β0 0.22 0.10 2.30 0.03 0.41 .027 

 β1 0.86 0.05 17.77 0.76 0.96 < .001 

a2_upper β0 1.31 1.31 1.00 -1.34 3.97 .323 

 β1 0.72 0.14 5.31 0.45 0.99 < .001 

a2_lower β0 2.32 1.08 2.16 0.14 4.50 .037 

 β1 0.69 0.12 5.95 0.46 0.93 < .001 

u_upper β0 1.59 0.69 2.29 0.18 2.99 .028 

 β1 0.82 0.08 9.74 0.65 1.00 < .001 

u_lower β0 2.74 0.99 2.77 0.74 4.74 .009 

 β1 0.65 0.12 5.52 0.41 0.89 < .001 

ter β0 0.01 0.01 1.39 -0.01 0.03 .171 

 β1 0.98 0.02 56.85 0.95 1.02 < .001 

ter2 β0 -0.04 0.05 -0.85 -0.13 0.05 .402 

 β1 0.78 0.08 10.21 0.62 0.93 < .001 

v  β0 0.07 0.09 0.87 -0.10 0.25 .393 

 β1 0.98 0.05 18.64 0.87 1.09 < .001 

v2 β0 1.07 0.32 3.31 0.41 1.72 .002 

 β1 0.51 0.08 6.10 0.34 0.68 < .001 

Ntrials = 180 

     95% CI  

Model Predictor Estimate SE t LL UL p 
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a β0 0.22 0.11 2.21 0.01 0.44 .040 

 β1 0.86 0.05 15.92 0.75 0.97 < .001 

a2_upper β0 3.02 1.16 2.60 0.67 5.38 .013 

 β1 0.57 0.12 4.57 0.32 0.82 < .001 

a2_lower β0 2.35 1.16 2.03 0.01 4.69 .049 

 β1 0.74 0.14 5.46 0.47 1.02 < .001 

u_upper β0 1.17 0.55 2.13 0.06 2.28 .039 

 β1 0.86 0.07 13.24 0.73 0.99 < .001 

u_lower β0 0.90 1.05 0.86 -1.22 3.03 .396 

 β1 0.93 0.14 6.87 0.66 1.21 < .001 

ter β0 0.02 0.02 1.25 -0.01 0.05 0.22 

 β1 0.97 0.03 34.15 0.91 1.03 < .001 

ter2 β0 -0.08 0.04 -1.95 -0.16 0.00 0.058 

 β1 0.77 0.07 10.64 0.62 0.92 < .001 

v  β0 0.01 0.11 0.07 -0.21 0.23 .942 

 β1 1.00 0.06 15.45 0.87 1.13 < .001 

v2 β0 0.99 0.30 3.32 0.39 1.59 .002 

 β1 0.55 0.08 7.00 0.39 0.71 < .001 

 944 

 945 

  946 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2023. ; https://doi.org/10.1101/2023.02.27.530208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.530208
http://creativecommons.org/licenses/by-nc-nd/4.0/


55 

 

 

Table S3. Full results table of the analyses on the extended DDM model predictions for 947 

Experiment 1. 948 

Experiment 1 

Dependent variable = log(RT)  Chi-square df p value 

Choice SAT 63.52 1 < .001 

Confidence SAT 1.26 1 .262 

Coherence 563.29 2 < .001 

Choice SAT x confidence SAT 9.59 1 .002 

Choice SAT x coherence 20.11 2 < .001 

Confidence SAT x coherence 3.49 2 .175 

Choice SAT x confidence SAT x 

coherence 

0.95 2 .622 

Dependent variable = log(confidence 

RT)  

   

Choice SAT 0.00 1 .998 

Confidence SAT 71.75 1 < .001 

Coherence 140.67 2 < .001 

Choice SAT x confidence SAT 5.39 1 .020 

Choice SAT x coherence 4.28 2 .117 

Confidence SAT x coherence 2.89 2 .236 

Choice SAT x confidence SAT x 

coherence 

1.95 2 .377 

Dependent variable = accuracy     

Choice SAT 5.30 1 .021 

Confidence SAT 0.75 1 .388 
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Coherence 85.68 2 < .001 

Choice SAT x confidence SAT 0.64 1 .424 

Choice SAT x coherence 14.00 2 < .001 

Confidence SAT x coherence 2.30 2 .317 

Choice SAT x confidence SAT x 

coherence 

3.61 2 .164 

Dependent variable = confidence     

Choice SAT 0.14 1 .708 

Confidence SAT 5.15 1 .023 

Coherence 92.41 2 < .001 

Choice SAT x confidence SAT 1.29 1 .257 

Choice SAT x coherence 3.11 2 .211 

Confidence SAT x coherence 0.83 2 .660 

Choice SAT x confidence SAT x 

coherence 

2.57 2 .277 

 949 
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Table S4. Full results table of the analyses on the extended DDM model predictions for 951 

Experiment 2. Note that two interaction effects were omitted from the confidence model in the 952 

behavioral data (due to inflated VIF values), and these were likewise omitted here in order to 953 

be able to directly compare both fits.  954 

Experiment 2 

Dependent variable = log(RT)  Chi-square df p value 

Choice SAT 61.15 1 < .001 

Confidence SAT 23.62 1 < .001 

Coherence 636.23 2 < .001 

Choice SAT x confidence SAT 6.89 1 .009 

Choice SAT x coherence 20.50 2 < .001 

Confidence SAT x coherence 8.64 2 .013 

Choice SAT x confidence SAT x 

coherence 

0.63 2 .731 

Dependent variable = log(confidence 

RT)  

   

Choice SAT 11.92 1 < .001 

Confidence SAT 65.47 1 < .001 

Coherence 160.92 2 < .001 

Choice SAT x confidence SAT 1.34 1 .247 

Choice SAT x coherence 1.83 2 .400 

Confidence SAT x coherence 2.50 2 .287 

Choice SAT x confidence SAT x 

coherence 

1.36 2 .507 

Dependent variable = accuracy     
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Choice SAT 7.95 1 .005 

Confidence SAT 13.61 1 < .001 

Coherence 1001.67 2 < .001 

Choice SAT x confidence SAT 5.43 1 .020 

Choice SAT x coherence 4.55 2 .103 

Confidence SAT x coherence 4.21 2 .122 

Choice SAT x confidence SAT x 

coherence 

0.58 2 .746 

Dependent variable = confidence     

Choice SAT 0.01 1 .929 

Confidence SAT 4.88 2 .027 

Coherence 39.25 1 < .001 

Choice SAT x confidence SAT - - - 

Choice SAT x coherence 1.44 2 .486 

Confidence SAT x coherence 10.20 2 .006 

Choice SAT x confidence SAT x 

coherence 

- - - 
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