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Synaptic plasticity is the primary mechanism for learning and memory in the brain. In recurrent
neural networks, synaptic plasticity creates intricate feedback loops between population activity
and connection strength. However, how the various topological features of brain networks, such
as the diverse connectivity patterns of different neuron types, affect synaptic plasticity remains
largely unknown. Here we investigate this question on the example of emergent excitatory and
inhibitory co-tuning. This dynamical feature has been observed in cortical networks and was shown
to be essential for efficient information processing. Computational models demonstrated that E/I
co-tuning could arise from synaptic re-organization by a well-orchestrated plasticity protocol in low-
noise feedforward networks. However, we show that the same plasticity protocol cannot give rise
to E/I co-tuning in the presence of strong noise and unstructured recurrent connectivity. Using
analytical methods and approximate Bayesian inference, we demonstrate that forming assembly
structures in the recurrent connectivity can restore the ability of synaptic plasticity to produce E/I
co-tuning, and we identify the optimal patterns for such co-tuning to emerge. In particular, we
find that enhanced excitatory connectivity between similarly tuned neurons, combined with more
homogeneous inhibitory connectivity, improves the ability of plasticity to produce co-tuning in an
upstream population. Our results demonstrate how structured recurrent connectivity could control
the ability of synaptic plasticity to adjust networks for efficient information processing.

I. INTRODUCTION

Synaptic plasticity is a fundamental mechanism of the nervous system, primarily associated with learning and
memory formation [1]. Neural plasticity has been the subject of intense experimental investigation, which has revealed
a large number of learning rules, secondary adaptive mechanisms, and homeostatic processes acting over multiple sub-
systems and neuron types [2] and following a wide range of timescales [3, 4].

Following these experimental findings, theoretical studies have ventured to model different plasticity mechanisms
and identify the processes that underlie synaptic modification and its relationship to learning. Starting with early
Hebbian models of synaptic plasticity in the 1940s, a large body of literature has accumulated focusing on more
complex and biophysically plausible learning rules [5, 6], plasticity models for varied neuron types [7] and different
homeostatic mechanisms [8]. Additionally, as both experimental understanding and simulation methods advance,
there has been a more concerted effort towards identifying combinations of different plasticity mechanisms that can
be associated with specific learning tasks such as assembly formation [9, 10] and novelty detection [11].

Input selectivity is a prevalent mechanism for encoding information in the nervous system [12]. Although originally
observed in excitatory neurons, it was later it was established that inhibitory neurons also display input selectivity [13].
Furthermore, experimental studies have demonstrated that excitatory and inhibitory inputs (coming from similarly
tuned E and I neurons) are highly correlated in cortical neurons (a given stimulus evokes near-simultaneous excitatory
and inhibitory currents in a neuron that cancel out after some time) [14, 15]. This feature is called E/I co-tuning, and it
was shown to optimize information transmission, for example, in the framework of efficient coding [16] or by enabling
precise temporal computations [17]. The emergence of co-tuning is attributed to synaptic plasticity, and multiple
theoretical studies have identified plasticity mechanisms leading to matching E/I selectivity in specific settings. These
include studies focusing on how inhibitory plasticity rules can match static excitatory connectivity [7, 18, 19] and how
various combinations of plasticity and diverse normalization mechanisms can enable the simultaneous development of
coordinated excitatory and inhibitory connectivity in feedforward [20, 21] or recurrent settings [22–24].

So far, theoretical studies of plasticity have aimed at identifying the optimal parameters of individual learning
rules and normalization mechanisms for specific tasks, such as the formation of input selectivity, in feed-forward
or homogeneous recurrent networks. These simplified connectivities are very different from the highly non-trivial
topologies of biological networks, which are known to display varied degrees of clustering and neuron type-specific
connectivity patterns [25]. However, different network topologies are known to give rise to distinct neural dynamics; for
example, clustering in recurrent network structure introduces correlations in the activity of similarly tuned neurons [26]
that can fundamentally influence how synaptic plasticity shapes the connectivity of these networks. We hypothesize
that there is a strong interdependence between the connectivity structure of recurrent networks and the ability of
local plasticity mechanisms to perform specific learning tasks.

Here we investigate how the development of matching E/I input selectivity in an upstream neuron via synaptic
plasticity can be influenced by the structure of recurrent connectivity in the input network. We combine excitatory
and inhibitory plasticity rules [6, 7, 21] in a spiking network to develop detailed co-tuning of excitatory and inhibitory
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FIG. 1. Emergence of co-tuning in a feedforward network a. A diagram of the network. The purple recurrent connections
are absent in the feedforward version of the model (panels b-f), but will be included in later sections.b. The modified (the
sign of inhibitory activities is inverted) covariance matrix determines the convergence point of the plasticity protocol. Here we
see a near-optimal matrix that leads to very clear co-tuning. c. The development of E and I weights in a feedforward network
with very low noise leads to balanced and diverse feedforward connectivity. d. An illustration of feedforward connectivity that
exhibits both balance and diversity. Different input groups are clearly distinct and the E and I weights for each group are
correlated e. A balanced but not diverse connectivity. E/I co-tuning is maintained, but there is hardly any distinction between
groups f. A diverse but not balanced connectivity. While each group is distinct from the others, there is no coordination of E
and I connections from the same group g. In the absence of both balance and diversity the feedforward connectivity lacks any
discernible pattern.

connectivity, and we demonstrate that the ability of these plasticity mechanisms to create co-tuning is significantly
reduced in the presence of noise and random recurrent connectivity between the input neurons. We further show
that the effects of recurrence and noise on E/I co-tuning can be fully ameliorated by the formation of synapse-
type specific assemblies of neurons, characterized by local excitation and lateral inhibition, a well-observed pattern
of cortical connectivity [27, 28]. Our findings demonstrate that network topology can significantly modulate the
capacity of synaptic plasticity to generate input selectivity in upstream neurons by shaping the population activity
of recurrent networks in lower areas. This highlights a synergistic interaction between structural connectivity and
learning mechanisms that can enhance the computational capabilities of brain networks

II. RESULTS

A. Co-tuning and its self-organization by synaptic plasticity in a low-noise feedforward setting

We model a single postsynaptic read-out unit driven by a population of N = 1000 neurons. The pre-synaptic
population is divided into M groups Gi, i ∈ {1, . . . ,M}. Each group is comprised of n = N/M neurons, of which 80%
are excitatory, and 20% are inhibitory. These neurons are driven by an identical, group-specific Poisson spike train —
a shared external input. Additionally, each neuron receives low-intensity independent external noise [7]. This setting,
depicted in Fig. 1a, leads to highly correlated firing among neurons of the same input group, which is a common
setting for studying the effect of different plasticity rules [7, 20, 21].

Input selectivity develops when the post-synaptic neuron responds differently to inputs from different groups (by
adjusting its firing rate). This happens when the excitatory feedforward projections are sufficiently diverse between
pre-synaptic groups, which leads to groups with stronger feedforward connections eliciting stronger post-synaptic
responses upon activation. Moreover, connections from neurons with highly correlated firing (i.e., from the same
group) should have a similar strength. To quantify this feature of the network, we define a diversity metric,

D = 1− 1

M · Std (WE)

M∑
i=1

Std(WE
Gi
), (1)
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FIG. 2. Noise and Recurrence Destroy E/I Co-Tuning. a. An increase in the input noise leads to a reduction in diversity
(green) and, for larger noise intensities, also balance (purple). b. The increase in noise leads to a the decrease in in-group
correlation, while the between-group correlation remains low. c. As the noise increases (noise level is indicated above each
panel), the spiking activity becomes more asynchronous. d. An increase in the recurrent coupling strength leads to a rapid
decrease in balance and diversity, which is caused by (e.) an increase in the between-group correlation. f. The spiking activity
becomes more synchronous as the coupling strength increases.

where WE ∈ Rn×n is the set of excitatory feedforward connection weights and WE
Gi
,∈ Rn×n is the subset of excitatory

feedforward connection weights from input group i and Std(·) denotes the standard deviation. Diversity D ∈ [0, 1]
equals unity when the feedforward connections are similar within a group but different across groups; D is close to
zero when pre-synaptic neurons are randomly projecting to the post-synaptic neuron.

Brain networks are characterized by a balance of excitatory and inhibitory currents [15, 29, 30]. For a neuron
to be balanced, the average inhibitory current must be equal to the average excitatory current during a (relatively
short) time window. In our setting, we aim to achieve a detailed balance, where the E and I currents match over
very small time windows. This type of balance has been linked to efficient coding [16, 31] and the ability to process
multiple signals [32] and can be achieved if the excitatory and inhibitory connection strengths of each input group are
matching. This setting results in the near-total canceling out of E and I currents following a small delay generated
by the difference in the synaptic timescales [7, 32].

To quantify detailed balance, we use the Pearson correlation coefficient between the mean excitatory and inhibitory
weights of each group,

B =
Cov

(
⟨WE

G ⟩, ⟨W I
G⟩
)

Std
(
⟨WE

G ⟩
)
· Std

(
⟨W I

G⟩
) , (2)

where ⟨W k
G⟩ =

(
⟨W k

G1
⟩, ⟨W k

G2
⟩, . . . , ⟨W k

Gm
⟩
)
, k ∈ {I, E} and ⟨W k

Gi
⟩ is the average projection weight from the excitatory

(k = E) or inhibitory (k = I) neurons in group i, and Cov(x1, x2) denotes the covariance of the variables x1 and x2.
In networks with high detailed balance B, the strength of incoming E and I currents is highly correlated.
We verify that high diversity (D ≈ 1) and detailed balance (B ≈ 1) can organically emerge via a combination

of plasticity mechanisms in the feedforward connections. Specifically, the excitatory connections follow the triplet
Hebbian STDP rule [33] and the inhibitory connections follow a homeostatic Hebbian rule [7]. We additionally use
competitive normalization in both the inhibitory and excitatory connections which amplifies small transient differences
between the firing rates of different input groups and leads to the development of input selectivity [21]. The plasticity
protocol consistently generates near-perfect E-I balance and creates strong input selectivity, Fig. 1c.

The point at which the feedforward weights converge is fully determined by the covariance matrix of the presynaptic
neurons’ activities. Specifically, it has been demonstrated [7, 20, 21] that the fixed points of the weight dynamics are
eigenvectors of the modified covariance matrix:

C =

〈(
EET −IET

EIT −IIT
)〉

(3)
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FIG. 3. Optimized assemblies of neurons restore the co-tuning in recurrent noisy networks. Top row — networks
with uniform connectivity, bottom — networks with inferred optimal assembly strengths. a. Diagram of the network, with
uniform connectivity and inferred optimal assembly strengths. b. Examples of stimulus-driven activity of a homogeneous (top)
and with optimized assemblies (bottom) population. c. Balance in homogeneous (top) and optimized assemblies (bottom)
networks with different strengths of noise and coupling. d. Same for diversity. Assemblies restore co-tuning even with strong
noise if given sufficient coupling strength, but for homogeneous networks, the strong coupling is detrimental to the development
of co-tuning. e. Approximate posterior distributions of optimal excitatory and inhibitory assemblies strength.

where E ∈ Rn and I ∈ Rn are the firing rates of the presynaptic excitatory and inhibitory neurons, respectively, and
⟨·⟩ stands for the average over time, Fig. 1b. We verify that in our model, the feedforward weights indeed converge
to an eigenvector of the covariance matrix (see Supplementary 2).

B. Noise and recurrent connectivity compromise the ability of STDP to produce E/I co-tuning

Strictly feed-forward and low-noise circuits are unrealistic approximations whose dynamics might deviate signifi-
cantly from the dynamics observed in real brain networks. Thus, we introduce noise and recurrent connectivity in our
network, both ubiquitously present in biological networks [34, 35]. First, we investigate how they individually affect
the emerging E/I co-tuning by changing the structure of the activity covariance matrix. Then we examine ways in
which different connectivity structures can ameliorate these effects.

As the ratio of noise to signal increases, the cross-correlations within each input group decrease, while the cross-
correlations between neurons of different input groups remain very low, Fig. 2b. We control the noise level by changing
the ratio of signal to noise spikes. Signal spikes are received by all neurons of the same group, while noise spikes come
from the neuron-specific Poisson process independently for each neuron. This allows us to vary the signal-to-noise
ratio while keeping the number of incoming spikes the same. The effect of this in-group decorrelation is an increased
variability in the learned projections to the postsynaptic neuron from neurons of the same input group and, thus,
a decrease in the resulting diversity. At the same time, increased noise has only a small effect on the correlation
between E and I populations as measured by the balance metric, which visibly declines only once the noise becomes
overwhelmingly stronger than the input (more than 80% incoming spikes are not shared between neurons of the same
group), Fig. 2a.

Recurrent connectivity in the pre-synaptic network introduces cross-correlations between the neurons from different
input groups, which compromises both diversity and balance. To test the extent of this effect, we connect the N
presynaptic neurons (creating a recurrent network) with connection probability p, and use the coupling strength W as
a control parameter. Initially, we only consider fully-connected networks (p = 1). By changing W , we can control the
ratio between the input received from the feedforward connections (whose rate and connection strength is fixed) and
the other neurons in the network via recurrent connectivity. The recurrent connectivity increases cross-correlations
between groups while maintaining the high correlation within each input group, Fig. 2e. The effect of these cross-
correlations is stronger than the effect of the noise since they affect both the diversity and the E/I balance, both of
which decline as the recurrent connections become stronger Fig. 2d.

The combination of noise and recurrent connectivity affects both in-group and between-group correlations, resulting
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FIG. 4. Assemblies improve co-tuning and allow for co-tuning in sparse networks. a. E/I balance (purple) and weights
diversity (teal) in the networks with assemblies compared to non-structured networks (dashed lines), error bars — standard
deviation. The noise level is 0.1 for all sparsities, and the coupling is 0.85 (scaled by 1/p). b. Loss for the sparser networks is
higher, which results in the overall worse performance; inset shows the loss for 50 accepted samples at the last ABC step. c.
Posterior distributions of all assembly strengths change with sparsity. Sparser networks require weaker inhibitory assemblies
(more uniform connections) to produce co-tuning.

in a reduction of balance and diversity as the noise and recurrent connection strength increase, Fig. 3c-d (top).
We develop a formal description of the effect of noise and recurrence on the covariance structure in a simplified

linear neural mass model. To this end, we consider M = 8 mesoscopic units instead of the previously studied M
inter-connected groups, represented by continuous rate variables xj(t), j = 1, . . . ,M . These units evolve in time,
subject to stochastic white noise. The linear approximation is justified for any system at a stationary state with a
constant average firing rate, and it serves as a simplified model for a wide range of parameters of the spiking network
(for details on the linear model and its relation to the spiking network, (see Supplementary 4).

In this simplified case, it is possible to derive analytical equations for all the relevant in- and between-group
covariances, which yield the correlation coefficients. These covariances are the solution to a linear system of equations,
which can be obtained exactly using numerical methods. Furthermore, one can find close-form solutions in some simple
scenarios. For example, in the case of a completely homogeneous network, where all coupling weights are the same,
correlation coefficients can be written explicitly (see Supplementary 4). If the coupling strength increases W → +∞,
all correlations grow to 1 as 1−O(1/W 2), while they decrease to MW/(M − 1)2 +O(r−2) when increasing the noise
to signal ratio r → 0+. Both cases eliminate any possible differentiation between the groups, thus compromising
the ability of the plasticity mechanisms to create diversity D. Another observation is that in the linear network,
increasing noise affects the correlation coefficient quadratically, while coupling increases it linearly. Therefore, since
r < 1, increasing the coupling has a larger impact on the co-tuning, a consequence that is recovered in the spiking
network, Fig. 2.

C. Neuronal type-specific assemblies restore the ability of STDP to produce co-tuning

The homogeneous all-to-all connectivity that we have examined so far is not a realistic assumption and could be
particularly detrimental to the self-organization of co-tuning. Thus, we examine the impact of different types of
inhomogeneous connectivity. In particular, using the idea of functional assemblies (strongly connected neurons that
are tuned to the same stimulus), we study whether stronger recurrent connectivity between neurons of the same input
group can lead to beneficial correlations in the population activity.

We aim to maintain the total recurrent input a neuron receives constant (the fraction of input coming from the
signal/noise vs the other neurons in the recurrent network) while using the ratio of input coming from neurons of the
same vs other input groups as a control parameter. Since we want to vary this ratio independently for each connection
type, we define a metric of assembly strength as:

rab =
Cab

in

Cab
in + Cab

out

=
W ab

in

W ab
in + (M − 1) ·W ab

out

, a, b ∈ {E, I}, (4)

where Cab
in in the total input a neuron of type b receives from neurons of type a, for a, b ∈ {E, I}, of its own input

group and Cab
out is the total input a neuron of type b receives from neurons of type a, for a, b ∈ {E, I}, from all other
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input groups, W ab
in the connection strength between neurons of the same group and W ab

out the connection strength
between neurons of different groups.

We vary assembly strengths for each type of connection rEE , rEI , rIE , and rII while keeping the total input to a
neuron Cab

in +Cab
out =

p·N
M · (W ab

in +(M −1) ·W ab
out) =: p ·N ·W constant. Here W is the average coupling strength, and

p is the recurrent connection probability. As in the network without assemblies, for now, we consider fully connected
networks (p = 1). Thus, we can vary the fraction of input coming to a neuron from its own input group without
changing the total recurrent E or I input it receives.

In the reduced linear neural mass model, we compute analytically the optimal assembly strengths (Supplementary 4)
and find that strong local excitation and dispersed inhibition restore the desired covariance structure in the network’s
activity. We find that for all combinations of noise and sufficiently strong recurrent connectivity, strong excitatory
assemblies (high rEE and rEI) and uniform inhibitory connectivity (low rIE and rII) allow the correlating excitatory
currents to remain mostly within the input group/assembly and maintain high in-group correlation, while the diffused
inhibitory currents reduce correlations between groups. Still, since the reduced model does not account for many
essential features of the spiking network, like sparsity of connections, in-group interactions between neurons of the
same type, and non-stationary dynamical states of the groups, the analytic solution obtained for the linear neural
mass model can serve to develop intuition, but the results need to be validated for the recurrent spiking network.

To capture the effect of various assembly strengths on balance and diversity in the spiking network, we can use as
a proxy their impact on the covariance structure of the spiking network’s activity. Thus, we search for combinations
of assembly strength rEE , rEI , rIE , rII that lead to the covariance structure that is associated with detailed E/I
balance (B ≈ 1) and maximum weight diversity (D ≈ 1). To this end, we use sequential Approximate Bayesian
Computation (ABC) [36] to minimize a loss function defined to be zero when the in-group correlations are equal one
and all between-group correlations vanish (for details, see Methods). This method allows us to find the approximate
posterior distribution of network parameters (assembly strengths) that minimize the loss. Afterward, we verify
whether connectivity parameters sampled from the approximate posterior lead to the emergence of co-tuning in the
post-synaptic neuron.

Networks with optimized assemblies largely regain the ability to develop E/I co-tuning despite the presence of noise
and recurrent connectivity. Assembly strengths that are drawn from the approximate posterior result in a covariance
structure very similar to the one observed in a feedforward/low noise network, which allows the plasticity to produce
a near-optimal structure in the feedforward connections, Fig. 3c-d (bottom). We find that the optimal assembly
structure involves very strong E → E and E → I assemblies and medium-strength I → E and I → I, Fig. 3e.

This connectivity pattern is similar to the optimal pattern of the reduced linear model, albeit with the difference
that the reduced model predicted optimal performance for uniform inhibitory weights (i.e., no inhibitory assemblies,
rIE = rII = 0). This difference can be attributed to the more complex dynamics of the spiking network that require
some degree of local inhibition to prevent extreme bursting behaviors (see Supplementary 3).

D. The sparsity of a network’s recurrent connectivity shifts the optimal assembly structure

Biological neural networks are usually very sparsely connected [37–39] and the sparsity of connections is associated
with distinct dynamics [40]. We observed that the impact of noise and recurrence on the deterioration of balance and
weight diversity in sparse networks without assemblies is qualitatively similar to fully-connected networks. Thus, we
examined the ability of neuronal assemblies to produce activity that restores balance and weight diversity in sparsely
connected recurrent networks that receive noisy input.

The optimal assembly strength values depend on sparsity levels. We use ABC to discover the approximate posterior
distribution of assembly strengths for 5 different levels of sparsity, corresponding to the probability of connection
p = 1.0, p = 0.75, p = 0.5, p = 0.25, and p = 0.1. We preserve the total input per neuron across different sparsities
by scaling the coupling strength inversely proportional to p. The optimal strength of most assemblies is reduced as
the connection probability is decreased, Fig. 4c. Specifically, we find that all but E → E assemblies should be weaker
in sparser networks, with the greatest decrease observed in the I → I assemblies that completely disappear for very
sparse networks.

As sparsity increases, the ability of assemblies to improve the tuning diminishes. After 21 ABC steps, the overall loss
is larger for the sparse networks than for fully-connected networks and increases with sparseness, Fig. 4b. Therefore,
despite an improvement in the tuning metrics for most sparse networks (compare the dashed and solid lines in Fig. 4a),
particularly diversity is strongly affected by sparseness and cannot be recovered by assemblies to the same extent as for
the fully connected networks, Fig. 4a. This reduced effectiveness is expected, given the smaller number of connections
and the greater variance in the network’s connectivity.
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III. DISCUSSION

Synaptic plasticity is theorized to be responsible for the formation of input selectivity across brain hierarchies,
including in brain areas that only receive input from highly recurrent networks. Here, we demonstrated how the
topology of the recurrent connectivity could hinder or boost the ability of synaptic plasticity mechanisms [7, 18, 20, 21]
to generate input selectivity in neurons of higher areas. We find that strong excitatory connectivity among neurons
tuned to the same input, combined with broader inhibition, creates population activity that enables the formation of
input selectivity by plasticity.

How different plasticity mechanisms shape neural connectivity, such as the formation of E/I co-tuning [7, 18, 20, 21]
in feedforward networks or of neural assemblies in recurrent networks [7, 10, 41], have been a topic of extensive
theoretical research. Nevertheless, the opposite effect - the ways in which connectivity can shape the effects of
synaptic plasticity - has only been studied in very specialized cases[42]. This omission has partially obscured the two-
way interaction between connectivity and synaptic plasticity in biological neural networks. While synaptic plasticity
constantly modifies some aspects of neural connectivity, it acts within the many constraints of network topology that
are either constant throughout an organism’s lifetime or change via structural adaptation mechanisms that act on
timescales slower than synaptic plasticity [43, 44]. Effectively, this means that synaptic plasticity modifies the details
of highly intricate network structures that result in neuronal activity very different from those of random networks
[9, 45]. Given that most synaptic plasticity mechanisms fundamentally depend on the statistics of network activity,
it is reasonable to assume that the behavior of synaptic plasticity is highly constrained by the network topology.

Cortical networks are known to be highly clustered [46], and the clustering has functional as well as spatial de-
terminants. For example, neurons that share common inputs [47] or targets [48] are more likely to form recurrent
connections between themselves [49]. Clustered networks are known to display distinct dynamics characterized by
slower timescales that can be useful for computations [26, 50]. Additionally, there is strong evidence that groups of
highly interconnected neurons (neuronal assemblies) share common functions within recurrent networks [24, 51, 52].
Moreover, evidence has accumulated [53, 54] that different neuron types (excitatory and inhibitory subtypes) fol-
low distinct spatial connectivity patterns, which have implications for neural computation [55]. Thus, our findings
complement the ongoing research on recurrent neural connectivity in biological networks and their computational
implications by suggesting a link between specific connectivity patterns and local learning via synaptic plasticity.

While the connectivity pattern we identify in our study is biologically plausible, the extent to which it is realized in
vivo remains unclear. Further experimental studies in the connectivity patterns of different neuron types are necessary
to be able to effectively model different network topologies and study their dynamics. Future studies could uncover
the mechanisms by which the synapse-type specific assembly structures we identify can emerge and be maintained in
plastic networks. Potential mechanisms include structural plasticity and variation in the learning rates of different
synaptic types. Additionally, the presence of different regulatory interneurons, which has been linked with assembly
formation [56], could play a role in modulating the relative assembly strengths of different connections.

For the purposes of our study, we parameterized the network topology by adopting a quantitative metric for the
strength of different types of neuronal assemblies. This resulted in a low-dimensional parameter space and allowed us
to use rejection sampling-based ABC [36] to infer the optimal assembly strengths. One limitation of this technique is
that it suffers from the curse of dimensionality and typically requires a large simulation budget [57, 58]. Therefore,
extensions of the current work using higher dimensional connectivity parameters or simultaneous inference of the
connectivity and neuron parameters will require more efficient simulation-based methods such as neural posterior
estimation [59]. Alternatively, direct optimization of each individual recurrent weight via gradient-based methods [60,
61] may uncover more intricate topological patterns that are not limited to the specific network parametrization we
chose.

To summarize, we identified how particular connectivity structures could be a favorable or detrimental substrate
for plasticity to develop co-tuning of excitation and inhibition. Our study is a first step in illuminating the two-way
dependence between the topological features of a network and synaptic plasticity that can motivate further research
on this intricate interaction.
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IV. MATERIALS AND METHODS

Neuron Model

We modelled all neurons of our networks as leaky integrate-and-fire (LIF) neurons with leaky synapses. The
evolution of their membrane potential is given by the ODE

Cm ·
dV (t)

dt
= gleak · (Vrest − V (t)) + gI(t) · (VI − V (t))− gE(t) · (VE − V (t)), (5)

where Vrest is the neuron’s resting potential, VE , VI are the excitatory and inhibitory reversal potentials and gleak the
leak conductance. Additionally, the excitatory and inhibitory conductances gE , gI decay exponentially over time and
get boosts upon excitatory or inhibitory pre-synaptic spiking, respectively, as

τE ·
dgE(t)

dt
= −gE(t) + gE ·

∑
j

WE
j ·
∑
f

δ(t− tfj ),

τI ·
dgI(t)

dt
= −gI(t) + gI ·

∑
j

W I
j ·
∑
f

δ(t− tfj ).

(6)

Here tfj denotes the time at which the f -th spike of the j−th neuron happened. When the membrane potential reaches
the spiking threshold Vth, a spike is emitted, and the potential is changed to a reset potential Vreset.

Network Input

The external input to each of the 1000 pre-synaptic neurons is the mixture of two Poisson spike trains. The first
Poisson spike train is shared with all the other neurons of the same group, while the second Poisson spike train is the
individual noise of the neuron,

Ctotal = Csignal + Cnoise, (7)

where Csignal ∼ Poisson((1− c) · r) and Cnoise ∼ Poisson(c · r). Here, r is the total firing rate of the input, and c is the
strength of the noise. Csignal is the same for all neurons of the same input group, while Cnoise is individual to each
neuron

Plasticity

Triplet excitatory STDP

The feedforward excitatory connections are modified according to a simplified form of the triplet STDP rule [6],
which has been shown to generalize the Bienenstock–Cooper–Munro (BCM) rule [5] for higher-order correlations [33].
The firing rates of the pre-synaptic excitatory neurons and the post-synaptic neuron are approximated by traces with
two different timescales,

τestdp1 · dy
E
k

dt
= −yEk +

∑
f

δ(t− tfk), (8a)

τestdp2 · dz
E
k

dt
= −zEk +

∑
f

δ(t− tfk), (8b)

τestdp1 · dx1

dt
= −x1 +

∑
f

δ(t− tfx), (8c)

τestdp2 · dx2

dt
= −x2 +

∑
f

δ(t− tfx), (8d)
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where τestdp1 < τestdp2 are the two timescales of the plasticity rule, yEk , z
E
k and x1, x2 represent the slow and fast traces

of the k-th excitatory pre-synaptic and the single post-synaptic neuron respectively while tfk and tfx are their respective
firing times. The connection weights are updated upon pre and post-synaptic spiking according to

∆WE
k = ηE ·ALTP · x1 · zEk ·

∑
f

δ(t− tfk)− ηE ·ALTD · x2 · yEk ·
∑
f

δ(t− tfx), (9)

where ηE is the excitatory learning rate and ALTP , ALTD the amplitudes of long term depression and potentiation
respectively.

Inhibitory STDP

We used the homeostatic STDP rule first proposed in [7] for the inhibitory feedforward connections. Approximations
of the firing rates are kept via a trace for each of the pre-synaptic inhibitory neurons as well as the post-synaptic
neuron,

τ istdp · dy
I
k

dt
= −yIk +

∑
f

δ(t− tfk), (10a)

τ istdp · dx
dt

= −x+
∑
f

δ(t− tfx), (10b)

where τ istdp is the single timesclae of the plasticity rule, yIk and x are the traces of the the kth inhibitory pre-synaptic

and the single post-synaptic neuron, and tfk , tfx are their respective spike times. The connection weights are updated
upon pre and post-synaptic spiking as

∆W I
k = ηI · (x− 2ρ0τ

stdp) ·
∑
f

δ(t− tfk) + ηI · yIk ·
∑
f

δ(t− tfx). (11)

Here, ηI is the inhibitory learning rate, and ρ0 is the target rate of the post-synaptic neuron.

Synaptic Scaling

Due to the instability of the triplet STDP rule, some sort of normalization mechanism is necessary to constrain
weight development. We use the novel competitive normalization protocol first proposed in [21], which we adapt for
spiking neurons. The normalization is separately applied to both excitatory and inhibitory incoming connections,

WA
k ←WA

k

(
1− ηN + ηN ·

WA
target∑NA

i=1 W
A
i

)
, A ∈ {E, I}. (12)

Where WA
target is the target total weight of each connection type and ηN is the normalization learning rate. The

normalization maintains the sum of the excitatory and the sum of the inhibitory feedforward connections weights
close to the set target total weights WE

target and W I
target.

Approximating the posterior distribution of the model parameters

To estimate the set of parameters that lead to high in-group correlations and low out-group correlations, we used
simulation-based inference [57]. The basic idea is to use simulation with known parameters to approximate the
full posterior distributions for the model given the required output, i.e., the distribution of parameters and samples
from which produce the required correlation structure. To approximate the posterior distribution we use sequential
Approximate Bayesian Computation (ABC) [36]. We define a loss function that maximizes in-group correlations and
minimizes between-group correlations:

L = −αC2
in − β

[
(1− CEE

out )
2 + (1− CEI

out)
2 + (1− CII

out)
2
]

(13)
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We define a uniform prior p(θ). A set of parameters θ = [ree, rei, rie, rii] is sampled from it and used to run the
simulations for 3 seconds. From the simulation results, correlations are computed, which allows us to obtain the loss.
We accept a parameter set if the loss is below the error ϵ, and keep sampling until the number of accepted samples is
60. We use the kernel density estimate on the accepted samples to obtain an approximate posterior. Next, we rescale
this approximate posterior with the original prior to obtain a proposal distribution that we use as a prior in the next
step of the ABC. In each step, we reduce ϵ by setting it to the 75th percentile of the losses for the accepted samples
(see [36] for more details). As a rule, we run 20 to 30 steps of the sequential ABC until the loss converges. We run
separate fits for networks with different levels of sparsity with connection probabilities p = 0.1, 0.25, 0.5, 0.75, 1.0. The
fitting was done using a modified version of the simple-abc toolbox https://github.com/rcmorehead/simpleabc/ for
python.

Reduced model

The dynamics of the system can be studied analytically using a simplified, reduced linear model. Here, each pair of
variables (xi, yi) represents the excitatory and inhibitory mean firing rate of a neuron group. In theory, these variables
display complicated non-linear interactions that arise from the microscopic details of the LIF spiking network and
synapse dynamics. However, in the stationary state –and away from any critical point– a linearised model can capture
the essential features of the correlations between different populations.

Internal noise, modelled as independent Poisson trains to each individual neuron, becomes Gaussian white noise
in the large-population limit, characterized by zero mean and variance σint. Each population is affected by different
internal fluctuations. For simplicity, external noise, which is applied as the same train of Poisson spikes to all the
neurons inside an input group, will also be approximated as a Gaussian white noise of mean η0 and variance σext.

Therefore, the simplified linear model reads

ẋi = axi + byi+
1

M − 1

∑
j ̸=i

(
WEExj +WEIyj

)
+ σintξ

x
i (t) + σextηi (t) + η0, (14a)

ẏi = cxi + dyi+
1

M − 1

∑
j ̸=i

(
W IExj +W IIyj

)
+ σintξ

y
i (t) + σextηi (t) + η0, (14b)

where M is the number of populations, a, b, c, d are parameters controlling in-group recurrent coupling, and WEE ,
WEI , W IE , W II are couplings between different clusters. Internal noise for each population is represented by ξx,yi (t),
while external noise is notated as ηi(t). All noises are uncorrelated, meaning that〈

ξci ξ
c′

j

〉
=δcc′δijδ (t− t′) , (15a)

⟨ξci (t) ηj (t′)⟩ =0 ∀i, j, t, t′, (15b)

⟨ηi (t) ηj (t′)⟩ =δijδ (t− t′) , (15c)

with c, c′ = {x, y}, and where ⟨. . .⟩ represents an ensemble average, i.e., an average over noise realizations. From this
model, it is possible to obtain closed equations for Pearson correlation coefficients (see Supplementary 4 for details).
Notice that stochastic differential equations are never complete without an interpretation, and we choose to interpret
these in the Itô sense, which will be relevant for computations.
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.

Appendix 1: The effects of inhomogeneous connectivity are independent of the plasticity protocols’ details

We examined whether our results are dependent on the particular plasticity protocol we used [21], and we verified
that they hold for alternative plasticity mechanisms. At first, we examine our result’s robustness with respect to
the form of the excitatory and inhibitory learning rules used, while maintaining the same competitive normalization
protocol [21]. We find that replacing the triplet rule [33] with a classic spike pair Hebbian rule [62] leads to no
discernible effect in the quality of the tuning. Furthermore, we examine a variety of different LTD and LTP amplitudes
in the excitatory plasticity as well as several target rates ρ0 for the inhibitory plasticity without observing any
noticeable changes on our main findings

a

b

c

d

FIG. 5. Alternative plasticity protocol. a. For diversity to emerge, there needs to be a mechanism that enforces inhomo-
geneity in the presynaptic firing rates, such as pulses of input. b. Given such a mechanism, the weights converge rapidly, in a
state of near-perfect E/I co-tuning (c), leading to very tight balance of incoming E/I currents (d).

Moreover, we studied both the triplet [33] and pair Hebbian rules [62] combined with a subtractive normalization
mechanism that has been previously used in plasticity studies [11] :

∆WE
k =

∑NA

i=1 W
E
ik −W target

NE
(11)

In 2016 [20] it was demonstrated that subtractive normalization only on the excitatory connections will lead to all
the weights converging on the same point due to the inhibitory plasticity creating a moving threshold. In order to
prevent this collapse of the receptive field, enforced inhomogeneity on the firing rates of different groups is needed.
We solved this problem by giving the network’s input as pulses of 500 mS, enforcing inhomogeneous firing rates which
result in the emergence of diverse and balanced feedforward connectivity.

We verified that the co-tuning achieved in this setting, similar to the mechanism presented in the main text, suffers
from the introduction of noise and recurrent connectivity. Furthermore, the assembling principles that we derived
for the original network, seem to have a similarly beneficial effect on this setting, restoring the original covariance
structure of the network’s activity and leading to detailed co-tuning between the E and I feedforward connections.
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Appendix 2: Convergence of weights to an eigenvector of the covariance matrix under plasticity

We verify that our model agrees with the analytics of previous studies [7, 20, 21] that the convergence point of the
weights is an eigenvector of the modified covariance matrix:

C =

〈(
EET −IET

EIT −IIT
)〉

(21)

where E, I are the activities of the excitatory and inhibitory populations respectively.

E I

E

I

Covariance Matrix C
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FIG. 6. Weights converge to an eigenvector of the covariance matrix. A: The estimated covariance matrix for a
feedforward network. B. We verify that the convergence point of the weights is an eigenvector of the covariance matrix.

Specifically, we multiply the converged weight vector with a numerical calculation of the covariance (estimated via
binning of the spike trains with a bin size of 1 mS) and verify that the resulting product is approximately equal to a
multiple of the original weight matrix.

Appendix 3: Perturbation of the optimal assembly strengths leads to diverse effects on the network’s activity

To investigate the relative importance of the different connection types, we perturb various assemblies away from
the optimal solutions inferred with ABC and check the resulting changes on the network activity as well as how fast
the balance and diversity deteriorate.

We find that I → E assemblies have a strong impact on the resulting network dynamics and consequently the
statistics that determine the emergence of co-tuning Fig. 7e. Thus, when I → E assemblies are too strong, the network
exhibits synchronous behavior that does not allow the discrimination between neuron groups and consequently the
emergence of co-tuned connectivity. In contrast, when I → E assemblies are too weak, one group of neurons is
constantly active. This eventually leads to perfect discrimination of only a single input.

E → E assemblies also have a strong effect on the resulting learned connectivity. When they are reduced, the
weights diversity rapidly reduces, while the balance metric first decreases and then restores. This behavior is related
to two different bifurcations in the population dynamics. First, synchronous full-network bursts emerge on top of the
stimulus-induced firing Fig. 7a. Then, as E → E are reduced further, the network enters an asynchronous irregular
state Fig. 7a.

Perturbations of I → I and E → I assemblies have weaker effect on the balance and weight diversity. Specifically,
when I → I assemblies are weakened the network displays synchronous bursts on top of the stimulus-driven activity
that only minimally reduce the balance and weights diversity Fig. 7d. When E → I assemblies are reduced, the
weight diversity slowly decreases, due to a decrease in the diversity of inhibitory weights. Thus, activity of inhibitory
population becomes more discoordinated Fig. 7c. On the other hand, network with uniform E → I connections (i.e.,
without E → I assemblies), show a dramatic reduction in the balance metric because of very strong activation of a
single neuron group accompanied by simultaneous activity of all inhibitory neurons Fig. 7c.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2023. ; https://doi.org/10.1101/2023.02.27.530253doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.530253
http://creativecommons.org/licenses/by/4.0/


16

500ms

Maxmum aposteriori

0.00

0.50

1.00

0.00

0.50

1.00

0.00

0.50

1.00

0.00

0.50

1.00

500ms

N
eu

ro
ns

0 0.3
Assembly strength

0.6

D
iv

er
si

ty

Ba
la

nc
e

Ba
la

nc
e

D
iv

er
si

ty

x

x

x

x

x

x

xx

0.00

0.50

1.00

0.00

0.50

1.00

0.00

0.50

1.00

0.00

0.50

1.00

500ms0 0.3 0.6
Assembly strength

D
iv

er
si

ty

Ba
la

nc
e

D
iv

er
si

ty

Ba
la

nc
e

x

x

x

x

x

x

xx

a

d

b c

e f

FIG. 7. Changes of the various assemblies strengths differently affect balance and diversity. a. We sequentially
vary the value of each assembly strength, while keeping the rest of the parameters fixed at the maximum a posteriori (MAP)
solution (d). b. A decrease in the E → E assembly strength (REE) introduces synchronous burst-like events that jeopardize
co-tuning and weight diversity. Further reduction of the E → E assembly strength results in sparse, asynchronous spiking which
significantly reduces tuning quality. c. Reduction of E → I assembly strength first leads to synchronous inhibitory firing across
groups and further reduction leads to persistent activity of the whole inhibitory population combined with bursts of excitatory
activity that prevent the development of diversity. e. Decreasing the I → E assembly strength leads to persistent activation of
a single group of neurons (which affects the tuning only marginally). While the increase of the I → E assembly strength leads
to oscillatory behavior of the whole network. f. Weakening the I → I assemblies decreases the weight diversity by introducing
occasional synchronous bursts in the network, while strengthening them leads to asynchronous inhibitory activity.

Appendix 4: Reduced model calculations

1. Derivation of the equations

In this Appendix, we start from main text Eqs. 14,

ẋi =axi + byi +
1

M − 1

∑
j ̸=i

(
WEExj +WEIyj

)
+ σintξ

x
i (t) + σextηi (t) + η0, (41a)

ẏi =cxi + dyi +
1

M − 1

∑
j ̸=i

(
W IExj +W IIyj

)
+ σintξ

y
i (t) + σextηi (t) + η0. (41b)

where we consider M groups composed by excitatory xi(t) and inhibitory yi(t) populations (i = 1, . . . , n) coupled
linearly (see also Methods). Internal noise of each population is represented by ξxi (t) and ξyi (t) for excitatory and
inhibitory populations, respectively. On the other hand, external noise ηi(t) is shared among both populations. All
the noises have zero mean and correlations

〈
ξci ξ

c′

j

〉
=δcc′δijδ (t− t′) , (42a)

⟨ξci (t) ηj (t′)⟩ =0 ∀i, j, t, t′, (42b)

⟨ηi (t) ηj (t′)⟩ =δijδ (t− t′) . (42c)

We will derive closed expressions for the correlation coefficients. We would like to remark that ⟨·⟩means an ensemble
average over noise realizations. All stochastic equations are to be interpreted in the Itô convention[63].

First of all, we redefine the noise terms, which will prove convenient later to simplify the algebra. For this reason,
we define
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ξ1i (t) = σintξ
x
i (t) + σextηi (t) , (43a)

ξ2i (t) = σintξ
y
i (t) + σextηi (t) , (43b)

which are Gaussian white noises with zero mean and correlation matrix

〈
ξ1i (t) ξ

1
j (t

′)
〉
=
〈
ξ2i (t) ξ

2
j (t

′)
〉
=δijδ (t− t′)

(
σ2
int + σ2

ext

)
, (44a)〈

ξ1i (t) ξ
2
j (t

′)
〉
=δijδ (t− t′)σ2

ext. (44b)

To start with, one can obtain the average values for the stationary rates by applying averages to both sides of
equations (41) and imposing the stationary state condition, ⟨ẋi⟩ = ⟨ẏi⟩ = 0. Once this is done, it is immediate
to solve the resulting linear system and check that ⟨x∗

i ⟩, ⟨y∗i ⟩ ∝ η0, where the star (*) indicates that these values
correspond to the stationary state. Hence, making η0 = 0 the mean values vanish. One can demonstrate that
correlations do not depend on η0, and hence we can make η0 = 0 without loss of generality. Conceptually, this means
just shifting up or down the baseline of fluctuations of the firing rate, which does not affect the fluctuations themselves.

In order to compute correlations, we need to evaluate the second-order moments between different populations, as
⟨xiyj⟩ or ⟨x2

i ⟩. A possible way of doing this is starting from the analytical solution of the multidimensional Orstein-
Uhlenbeck process [64]. However, this approach will yield a linear system with N(N+1)/2 variables to solve for, which
are all the elements of the (symmetric) correlation matrix. But all the groups are identical (or indistinguishable), so
we expect correlations not to depend on the particular population chosen. Therefore, all the equations will be reduced
to just 6 covariances: ⟨xixj⟩, ⟨xiyj⟩, ⟨yiyj⟩, ⟨x2

i ⟩, ⟨xiyi⟩ and ⟨y2i ⟩.
In this context, it is conceptually simpler to obtain equations for the evolution of the second moments, and then

evaluate them in the stationary state. We report here in detail the computation of two of these moments as an
example, giving just the final answer for the other four, which is performed in an analogous way.

First, we define Xij = xixj , and then look for the time evolution of Xij , i.e., Ẋij . Notice that this a non-linear
change of variables, and thus Itô’s lemma is required. The lemma tells us that if we have a change of variables z = z(x)
then one has to include the second-order terms in the expansion,

dz =

N∑
i=1

∂xizdxi︸ ︷︷ ︸
Chain rule

+
1

2

N∑
i=1

∂xi
∂xj

zdxidxj︸ ︷︷ ︸
Itô’s lemma

. (45)

The terms dxi can be obtained as ẋidt. It is important to remark that in this procedure noise terms are rewritten
as the differential of the Wiener processes, i.e., ηi(t)dt = dWi. After applying the Itô lemma above, only terms up to

order dt should be taken into account. Notice that dWi(t) ∝
√
dt [64]. Finally, one just divides again by dt to recover

the stochastic differential equation and applies the ensemble average.
For Xij , this reads as

d ⟨xixj⟩
dt

= ⟨ẋixj⟩+ ⟨xiẋj⟩+
1

2
⟨ẋiẋj⟩ =

a ⟨xixj⟩+ b ⟨yixj⟩+
WEE

M − 1

∑
k ̸=i

⟨xkxj⟩+
WEI

M − 1

∑
k ̸=i

⟨ykxj⟩+

+ a ⟨xixj⟩+ b ⟨xiyj⟩+
WEE

M − 1

∑
k ̸=j

⟨xixk⟩+
WEI

M − 1

∑
k ̸=j

⟨xiyk⟩+〈
ξ1i xj

〉
+
〈
xiξ

1
j

〉
+
〈
ξ1i ξ

1
j

〉
+O

(
dt2
)
, (46)

where all the averages between the noise and the variable yield 0, due to Itô’s prescription. The next step is to
simplify the sums involving correlations. As it was discussed above, since clusters are indistinguishable all the terms
are exactly the same. However, the dummy index k will take also the value of the fixed index, k = j, and this has to
be taken into account separately since the in-group is different to the between-group one. Then,

∑
k ̸=i

⟨xkxj⟩ = (M − 2) ⟨xixj⟩+
〈
x2
i

〉
, (47)
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allowing us to simplify the equation. At this step we simplify the notation by letting Xij = ⟨xixj⟩, Zij = ⟨xiyj⟩,
Yi = ⟨y2i ⟩, etc., leading to

1

2
Ẋij =

(
a+

M − 2

M − 1
WEE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Zij +

1

M − 1

[
WEEXi +WEIZi

]
. (48)

The same procedure can be repeated for all the other correlations, such as

d
〈
y2i
〉

dt
= ⟨2yiẏi⟩+

1

2

〈
2ẏ2i
〉
=

2c ⟨xiyi⟩+ 2d
〈
y2i
〉
+

2W IE

M − 1

∑
k ̸=i

⟨yixk⟩+
2W II

M − 1

∑
k ̸=i

⟨yiyk⟩+ 2
〈
yiξ

2
i

〉
+
〈
ξ2i ξ

2
i

〉
=

2c ⟨Zi⟩+ 2d ⟨Yi⟩+ 2W IE ⟨Zij⟩+ 2W II ⟨Yij⟩+ σ2
int + σ2

ext, (49)

where now the correlation between noises yields a non-vanishing value. This operation is repeated with all the
remaining terms, in order to find a linear system of differential equations with 6 variables and 6 equations,

1

2
Ẋi =aXi + bZi +

[
WEEXij +WEIZij

]
+

1

2

(
σ2
int + σ2

ext

)
, (410a)

1

2
Ẏi =cZi + dYi +

[
W IEZij +W IIYij

]
+

1

2

(
σ2
int + σ2

ext

)
, (410b)

Żi =cXi + (a+ d)Zi + bYi +
[
W IEXij +

(
WEE +W II

)
Zij +WEIYij

]
+ σ2

ext, (410c)

1

2
Ẋij =

(
a+

M − 2

M − 1
WEE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Zij +

1

M − 1

[
WEEXi +WEIZi

]
, (410d)

1

2
Ẏij =

(
d+

M − 2

M − 1
W II

)
Yij +

(
c+

M − 2

M − 1
W IE

)
Zij +

1

M − 1

[
W IIYi +W IEZi

]
, (410e)

Żij =

(
c+

M − 2

M − 1
W IE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Yij +

(
a+ d+

M − 2

M − 1

(
WEE +W II

))
Zij+ (410f)

+
1

M − 1

[
W IEXi +WEIYi +

(
WEE +W II

)
Zi

]
. (410g)

This system can be solved in the stationary limit when all the derivatives of the left-hand side are zero. From these,
one is able to obtain the Pearson correlation coefficients. Correlation with itself is always unity, thus there are only
four coefficients remaining: the correlation between excitation and inhibition inside a group C int

EI = Z∗
i /
√
X∗

i Y
∗
i , and

all three between-group correlations, Cext
EE = X∗

ij/X
∗
i , C

ext
II = Y ∗

ij/Y
∗
i , and Cext

EI = Z∗
ij/
√
X∗

i Y
∗
i .

2. Solutions for the homogeneous network

In some special cases, it is possible to give a simple solution in closed form for the correlation coefficients. One
example is the homogeneous network: when all weights are identical, and an intrinsic decay is added to both the
excitatory and inhibitory populations (i.e., with c = WEE = W IE = +W , b = W IE = W II = −W and a = W − 1,
d = −W − 1) the solution reads

C int
EI =

r2 (M − 1)
2
+W 2 (1− r)

2
M√

M2 (1− r)
4
W 4 + (M − 1) (1− r)2W 2 [M(2− 4(1− r)r)− (1− r)2] + (M − 1)4 [2(r − 1)r + 1]

2
, (411a)

Cext
EI =

W 2 (1− r)
2
M√

M2 (1− r)
4
W 4 + (M − 1) (1− r)2W 2 (M(4(r − 1)r + 2)− (r − 1)2) + (M − 1)4(2(r − 1)r + 1)2

, (411b)

Cext
EE =

(1− r)2W ((W + 1)M − 1)

M(1− r)2W 2 + (M − 1)(1− r)2W + (1−M)2 [1− 2(1− r)r]
, (411c)

Cext
II =

(1− r)2W ((W − 1)M + 1)

M(1− r)2W 2 − (M − 1)(1− r)2W + (1−M)2 [1− 2(1− r)r]
, (411d)
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where we defined r as the signal-to-noise ratio, σint = rσ, σext = (1 − r)σ. This analytical solution has some
interesting features. First, notice it does not depend on the total amount of noise σ that the system receives, but only
on the ratio between external and internal noise. Second, if W → ∞ all correlations go to 1, making the diversity
between groups vanish. Expanding in series around ϵ = 1/W = 0, one can see that all coefficients are C = 1−O(1/W 2)
for large coupling.

0 1
S2N

C ext
EE

rie

0 1
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C int
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FIG. 8. Optimical clustering for the analytical results. The selected values of the clustering lead to large decorrelations between
different groups. Large correlations in-group can be achieved for a large set of recurrence and external noise. In this case,
highly clustered excitation and homogeneous inhibition is recovered.

It is also possible to study the limiting values of the noise. r = 1 makes all the between-group correlations equal to
zero, while coupling determines the in-group value. On the other hand, when r ≪ 1, one gets

C int
EI ≃ Cext

EI ≃
MW 2

(M − 1)2
+O(r2), (412a)

Cext
EE ≃ −Cext

II ≃
W

M − 1
+O(r2). (412b)

meaning that the external correlations grow linearly with the coupling, but quadratically with the signal-to-noise
ratio: a small increase in coupling needs to be followed by a larger increase in signal intensity in order to recover the
previous tuning. As a result, the coupling has a larger impact on tuning than the signal-to-noise ratio, an effect that
can be measured in the full spiking network.

Finally, we see that between-group correlations also tend to zero as the limit M → +∞ is taken, since in that
case, the input that a module receives from all others becomes just white noise. A finite number of clusters (or finite
connectivity among them) is thus required for tuning.
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Appendix 5: Clustering optimisation

Optimization of the clustering for the fully-connected network can be done by minimizing a loss function which
depends on the correlations. A simple possibility is to employ minimum squares,

Lan[C; p] =
(
1− C int

EI

)2
+
(
Cext

EE

)2
+
(
Cext

EI

)2
+
(
Cext

II

)2
. (51)

The solution and associated optimal correlations are shown in 8. There are several key remarks following from this
figure:

1. Even for very large clustering and extremely low signal-to-noise ratio, the clustering is able to provide an in-group
correlation close to unity combined with low between-group correlations, thus ensuring co-tuning.

2. Inhibition to excitation never clusters. Inhibitory neurons act over excitatory individuals regardless of their
cluster.

3. Excitatory connections are clustered. In particular, excitatory connections always project to inhibitory neurons
in their own cluster, but not to other ones. Excitatory-to-excitatory connectivity is also strongly clustered,
except for large coupling.

4. Inhibition controls excitation for large W . If one keeps highly clustered excitation and increases the coupling,
the dynamics of single modules become unstable at a critical value Wc(r). However, the network can remain
stable if the excitatory clustering is reduced and the amount of inhibition in the group increases, which can be
accomplished by increasing rII .

5. When the signal-to-noise ratio is close to one, clustering becomes mostly irrelevant, since the system is driven
by the external input which allows co-tuning easily.

Notice that the optimization algorithm automatically finds solutions where the equations are well-defined –i.e.,
where the system reaches a stationary state– thus selecting to increase the inhibitory clustering when W goes over
the instability threshold.

Therefore, the analytical approach is able to find a good candidate for optimal clustering depending on the network
dynamics. Although it cannot be directly applied to the spiking network, which is able to display richer dynamics,
tells us that as a rule of thumb excitatory clustering should be as high as possible while avoiding crossing an instability
threshold. If this happens, inhibition needs to be increased.

Appendix 6: Tables of parameters

We mostly used the neuron model parameters from the original inhibitory STDP paper [7]

Network Model
Symbol Description Value
N Number of neurons 1000
NE Number of E neurons 800
NI Number of I neurons 200
M Number of input groups 8
gleak Leak conductance 10 nS
Vrest Resting potential -60 mV
Vreset Reset potential -60 mV
Vth Spiking threshold -50 mV
VE Excitatory reversal potential 0 mV
VI Inhibitory reversal potential -80 mV
Cm Membrane capacitance 200 pF
τref Absolute refractory period 5 ms
τE Decay time constant of E conductance 5 ms
τI Decay time constant of I conductance 10 ms
gE E weight scaling constant 1.4 nS
gI I weight scaling constant 3.5 nS
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Plasticity Rules
Symbol Description Value

τestdp1 Slow eSTDP timescale 50 ms

τestdp2 Fast eSTDP timescale 10 ms
ηE eSTDP learning rate 0.0025
ALTP Long term potentiation amplitude 1.0
ALTD Long term depression amplitude 0.1
τ istdp iSTDP timescale 10 ms
ηI iSTDP learning rate 0.01
ρ0 iSTDP target rate 3 Hz
ηN Normalization learning rate 0.003
WE

target Excitatory normalization target 5.0
W I

target Inhibitory normalization target 5.0

ABC Optimization
Symbol Description Value
α weight of in-group correlation 0.1
β weight of between-group correlations 0.3
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